mirror of
				https://github.com/postgres/postgres.git
				synced 2025-10-31 10:30:33 +03:00 
			
		
		
		
	It seems potentially useful to label our shared libraries with version information, now that a facility exists for retrieving that. This patch labels them with the PG_VERSION string. There was some discussion about using semantic versioning conventions, but that doesn't seem terribly helpful for modules with no SQL-level presence; and for those that do have SQL objects, we typically expect them to support multiple revisions of the SQL definitions, so it'd still not be very helpful. I did not label any of src/test/modules/. It seems unnecessary since we don't install those, and besides there ought to be someplace that still provides test coverage for the original PG_MODULE_MAGIC macro. Author: Tom Lane <tgl@sss.pgh.pa.us> Discussion: https://postgr.es/m/dd4d1b59-d0fe-49d5-b28f-1e463b68fa32@gmail.com
		
			
				
	
	
		
			1100 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1100 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * contrib/seg/seg.c
 | |
|  *
 | |
|  ******************************************************************************
 | |
|   This file contains routines that can be bound to a Postgres backend and
 | |
|   called by the backend in the process of processing queries.  The calling
 | |
|   format for these routines is dictated by Postgres architecture.
 | |
| ******************************************************************************/
 | |
| 
 | |
| #include "postgres.h"
 | |
| 
 | |
| #include <float.h>
 | |
| #include <math.h>
 | |
| 
 | |
| #include "access/gist.h"
 | |
| #include "access/stratnum.h"
 | |
| #include "fmgr.h"
 | |
| 
 | |
| #include "segdata.h"
 | |
| 
 | |
| 
 | |
| #define DatumGetSegP(X) ((SEG *) DatumGetPointer(X))
 | |
| #define PG_GETARG_SEG_P(n) DatumGetSegP(PG_GETARG_DATUM(n))
 | |
| 
 | |
| 
 | |
| /*
 | |
| #define GIST_DEBUG
 | |
| #define GIST_QUERY_DEBUG
 | |
| */
 | |
| 
 | |
| PG_MODULE_MAGIC_EXT(
 | |
| 					.name = "seg",
 | |
| 					.version = PG_VERSION
 | |
| );
 | |
| 
 | |
| /*
 | |
|  * Auxiliary data structure for picksplit method.
 | |
|  */
 | |
| typedef struct
 | |
| {
 | |
| 	float		center;
 | |
| 	OffsetNumber index;
 | |
| 	SEG		   *data;
 | |
| } gseg_picksplit_item;
 | |
| 
 | |
| /*
 | |
| ** Input/Output routines
 | |
| */
 | |
| PG_FUNCTION_INFO_V1(seg_in);
 | |
| PG_FUNCTION_INFO_V1(seg_out);
 | |
| PG_FUNCTION_INFO_V1(seg_size);
 | |
| PG_FUNCTION_INFO_V1(seg_lower);
 | |
| PG_FUNCTION_INFO_V1(seg_upper);
 | |
| PG_FUNCTION_INFO_V1(seg_center);
 | |
| 
 | |
| /*
 | |
| ** GiST support methods
 | |
| */
 | |
| PG_FUNCTION_INFO_V1(gseg_consistent);
 | |
| PG_FUNCTION_INFO_V1(gseg_compress);
 | |
| PG_FUNCTION_INFO_V1(gseg_decompress);
 | |
| PG_FUNCTION_INFO_V1(gseg_picksplit);
 | |
| PG_FUNCTION_INFO_V1(gseg_penalty);
 | |
| PG_FUNCTION_INFO_V1(gseg_union);
 | |
| PG_FUNCTION_INFO_V1(gseg_same);
 | |
| static Datum gseg_leaf_consistent(Datum key, Datum query, StrategyNumber strategy);
 | |
| static Datum gseg_internal_consistent(Datum key, Datum query, StrategyNumber strategy);
 | |
| static Datum gseg_binary_union(Datum r1, Datum r2, int *sizep);
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** R-tree support functions
 | |
| */
 | |
| PG_FUNCTION_INFO_V1(seg_same);
 | |
| PG_FUNCTION_INFO_V1(seg_contains);
 | |
| PG_FUNCTION_INFO_V1(seg_contained);
 | |
| PG_FUNCTION_INFO_V1(seg_overlap);
 | |
| PG_FUNCTION_INFO_V1(seg_left);
 | |
| PG_FUNCTION_INFO_V1(seg_over_left);
 | |
| PG_FUNCTION_INFO_V1(seg_right);
 | |
| PG_FUNCTION_INFO_V1(seg_over_right);
 | |
| PG_FUNCTION_INFO_V1(seg_union);
 | |
| PG_FUNCTION_INFO_V1(seg_inter);
 | |
| static void rt_seg_size(SEG *a, float *size);
 | |
| 
 | |
| /*
 | |
| ** Various operators
 | |
| */
 | |
| PG_FUNCTION_INFO_V1(seg_cmp);
 | |
| PG_FUNCTION_INFO_V1(seg_lt);
 | |
| PG_FUNCTION_INFO_V1(seg_le);
 | |
| PG_FUNCTION_INFO_V1(seg_gt);
 | |
| PG_FUNCTION_INFO_V1(seg_ge);
 | |
| PG_FUNCTION_INFO_V1(seg_different);
 | |
| 
 | |
| /*
 | |
| ** Auxiliary functions
 | |
| */
 | |
| static int	restore(char *result, float val, int n);
 | |
| 
 | |
| 
 | |
| /*****************************************************************************
 | |
|  * Input/Output functions
 | |
|  *****************************************************************************/
 | |
| 
 | |
| Datum
 | |
| seg_in(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	char	   *str = PG_GETARG_CSTRING(0);
 | |
| 	SEG		   *result = palloc(sizeof(SEG));
 | |
| 	yyscan_t	scanner;
 | |
| 
 | |
| 	seg_scanner_init(str, &scanner);
 | |
| 
 | |
| 	if (seg_yyparse(result, fcinfo->context, scanner) != 0)
 | |
| 		seg_yyerror(result, fcinfo->context, scanner, "bogus input");
 | |
| 
 | |
| 	seg_scanner_finish(scanner);
 | |
| 
 | |
| 	PG_RETURN_POINTER(result);
 | |
| }
 | |
| 
 | |
| Datum
 | |
| seg_out(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	SEG		   *seg = PG_GETARG_SEG_P(0);
 | |
| 	char	   *result;
 | |
| 	char	   *p;
 | |
| 
 | |
| 	p = result = (char *) palloc(40);
 | |
| 
 | |
| 	if (seg->l_ext == '>' || seg->l_ext == '<' || seg->l_ext == '~')
 | |
| 		p += sprintf(p, "%c", seg->l_ext);
 | |
| 
 | |
| 	if (seg->lower == seg->upper && seg->l_ext == seg->u_ext)
 | |
| 	{
 | |
| 		/*
 | |
| 		 * indicates that this interval was built by seg_in off a single point
 | |
| 		 */
 | |
| 		p += restore(p, seg->lower, seg->l_sigd);
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		if (seg->l_ext != '-')
 | |
| 		{
 | |
| 			/* print the lower boundary if exists */
 | |
| 			p += restore(p, seg->lower, seg->l_sigd);
 | |
| 			p += sprintf(p, " ");
 | |
| 		}
 | |
| 		p += sprintf(p, "..");
 | |
| 		if (seg->u_ext != '-')
 | |
| 		{
 | |
| 			/* print the upper boundary if exists */
 | |
| 			p += sprintf(p, " ");
 | |
| 			if (seg->u_ext == '>' || seg->u_ext == '<' || seg->l_ext == '~')
 | |
| 				p += sprintf(p, "%c", seg->u_ext);
 | |
| 			p += restore(p, seg->upper, seg->u_sigd);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	PG_RETURN_CSTRING(result);
 | |
| }
 | |
| 
 | |
| Datum
 | |
| seg_center(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	SEG		   *seg = PG_GETARG_SEG_P(0);
 | |
| 
 | |
| 	PG_RETURN_FLOAT4(((float) seg->lower + (float) seg->upper) / 2.0);
 | |
| }
 | |
| 
 | |
| Datum
 | |
| seg_lower(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	SEG		   *seg = PG_GETARG_SEG_P(0);
 | |
| 
 | |
| 	PG_RETURN_FLOAT4(seg->lower);
 | |
| }
 | |
| 
 | |
| Datum
 | |
| seg_upper(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	SEG		   *seg = PG_GETARG_SEG_P(0);
 | |
| 
 | |
| 	PG_RETURN_FLOAT4(seg->upper);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*****************************************************************************
 | |
|  *						   GiST functions
 | |
|  *****************************************************************************/
 | |
| 
 | |
| /*
 | |
| ** The GiST Consistent method for segments
 | |
| ** Should return false if for all data items x below entry,
 | |
| ** the predicate x op query == false, where op is the oper
 | |
| ** corresponding to strategy in the pg_amop table.
 | |
| */
 | |
| Datum
 | |
| gseg_consistent(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	GISTENTRY  *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
 | |
| 	Datum		query = PG_GETARG_DATUM(1);
 | |
| 	StrategyNumber strategy = (StrategyNumber) PG_GETARG_UINT16(2);
 | |
| 
 | |
| 	/* Oid		subtype = PG_GETARG_OID(3); */
 | |
| 	bool	   *recheck = (bool *) PG_GETARG_POINTER(4);
 | |
| 
 | |
| 	/* All cases served by this function are exact */
 | |
| 	*recheck = false;
 | |
| 
 | |
| 	/*
 | |
| 	 * if entry is not leaf, use gseg_internal_consistent, else use
 | |
| 	 * gseg_leaf_consistent
 | |
| 	 */
 | |
| 	if (GIST_LEAF(entry))
 | |
| 		return gseg_leaf_consistent(entry->key, query, strategy);
 | |
| 	else
 | |
| 		return gseg_internal_consistent(entry->key, query, strategy);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The GiST Union method for segments
 | |
| ** returns the minimal bounding seg that encloses all the entries in entryvec
 | |
| */
 | |
| Datum
 | |
| gseg_union(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	GistEntryVector *entryvec = (GistEntryVector *) PG_GETARG_POINTER(0);
 | |
| 	int		   *sizep = (int *) PG_GETARG_POINTER(1);
 | |
| 	int			numranges,
 | |
| 				i;
 | |
| 	Datum		out = 0;
 | |
| 	Datum		tmp;
 | |
| 
 | |
| #ifdef GIST_DEBUG
 | |
| 	fprintf(stderr, "union\n");
 | |
| #endif
 | |
| 
 | |
| 	numranges = entryvec->n;
 | |
| 	tmp = entryvec->vector[0].key;
 | |
| 	*sizep = sizeof(SEG);
 | |
| 
 | |
| 	for (i = 1; i < numranges; i++)
 | |
| 	{
 | |
| 		out = gseg_binary_union(tmp, entryvec->vector[i].key, sizep);
 | |
| 		tmp = out;
 | |
| 	}
 | |
| 
 | |
| 	PG_RETURN_DATUM(out);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** GiST Compress and Decompress methods for segments
 | |
| ** do not do anything.
 | |
| */
 | |
| Datum
 | |
| gseg_compress(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	PG_RETURN_POINTER(PG_GETARG_POINTER(0));
 | |
| }
 | |
| 
 | |
| Datum
 | |
| gseg_decompress(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	PG_RETURN_POINTER(PG_GETARG_POINTER(0));
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The GiST Penalty method for segments
 | |
| ** As in the R-tree paper, we use change in area as our penalty metric
 | |
| */
 | |
| Datum
 | |
| gseg_penalty(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	GISTENTRY  *origentry = (GISTENTRY *) PG_GETARG_POINTER(0);
 | |
| 	GISTENTRY  *newentry = (GISTENTRY *) PG_GETARG_POINTER(1);
 | |
| 	float	   *result = (float *) PG_GETARG_POINTER(2);
 | |
| 	SEG		   *ud;
 | |
| 	float		tmp1,
 | |
| 				tmp2;
 | |
| 
 | |
| 	ud = DatumGetSegP(DirectFunctionCall2(seg_union,
 | |
| 										  origentry->key,
 | |
| 										  newentry->key));
 | |
| 	rt_seg_size(ud, &tmp1);
 | |
| 	rt_seg_size(DatumGetSegP(origentry->key), &tmp2);
 | |
| 	*result = tmp1 - tmp2;
 | |
| 
 | |
| #ifdef GIST_DEBUG
 | |
| 	fprintf(stderr, "penalty\n");
 | |
| 	fprintf(stderr, "\t%g\n", *result);
 | |
| #endif
 | |
| 
 | |
| 	PG_RETURN_POINTER(result);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Compare function for gseg_picksplit_item: sort by center.
 | |
|  */
 | |
| static int
 | |
| gseg_picksplit_item_cmp(const void *a, const void *b)
 | |
| {
 | |
| 	const gseg_picksplit_item *i1 = (const gseg_picksplit_item *) a;
 | |
| 	const gseg_picksplit_item *i2 = (const gseg_picksplit_item *) b;
 | |
| 
 | |
| 	if (i1->center < i2->center)
 | |
| 		return -1;
 | |
| 	else if (i1->center == i2->center)
 | |
| 		return 0;
 | |
| 	else
 | |
| 		return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The GiST PickSplit method for segments
 | |
|  *
 | |
|  * We used to use Guttman's split algorithm here, but since the data is 1-D
 | |
|  * it's easier and more robust to just sort the segments by center-point and
 | |
|  * split at the middle.
 | |
|  */
 | |
| Datum
 | |
| gseg_picksplit(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	GistEntryVector *entryvec = (GistEntryVector *) PG_GETARG_POINTER(0);
 | |
| 	GIST_SPLITVEC *v = (GIST_SPLITVEC *) PG_GETARG_POINTER(1);
 | |
| 	int			i;
 | |
| 	SEG		   *seg,
 | |
| 			   *seg_l,
 | |
| 			   *seg_r;
 | |
| 	gseg_picksplit_item *sort_items;
 | |
| 	OffsetNumber *left,
 | |
| 			   *right;
 | |
| 	OffsetNumber maxoff;
 | |
| 	OffsetNumber firstright;
 | |
| 
 | |
| #ifdef GIST_DEBUG
 | |
| 	fprintf(stderr, "picksplit\n");
 | |
| #endif
 | |
| 
 | |
| 	/* Valid items in entryvec->vector[] are indexed 1..maxoff */
 | |
| 	maxoff = entryvec->n - 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Prepare the auxiliary array and sort it.
 | |
| 	 */
 | |
| 	sort_items = (gseg_picksplit_item *)
 | |
| 		palloc(maxoff * sizeof(gseg_picksplit_item));
 | |
| 	for (i = 1; i <= maxoff; i++)
 | |
| 	{
 | |
| 		seg = DatumGetSegP(entryvec->vector[i].key);
 | |
| 		/* center calculation is done this way to avoid possible overflow */
 | |
| 		sort_items[i - 1].center = seg->lower * 0.5f + seg->upper * 0.5f;
 | |
| 		sort_items[i - 1].index = i;
 | |
| 		sort_items[i - 1].data = seg;
 | |
| 	}
 | |
| 	qsort(sort_items, maxoff, sizeof(gseg_picksplit_item),
 | |
| 		  gseg_picksplit_item_cmp);
 | |
| 
 | |
| 	/* sort items below "firstright" will go into the left side */
 | |
| 	firstright = maxoff / 2;
 | |
| 
 | |
| 	v->spl_left = (OffsetNumber *) palloc(maxoff * sizeof(OffsetNumber));
 | |
| 	v->spl_right = (OffsetNumber *) palloc(maxoff * sizeof(OffsetNumber));
 | |
| 	left = v->spl_left;
 | |
| 	v->spl_nleft = 0;
 | |
| 	right = v->spl_right;
 | |
| 	v->spl_nright = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Emit segments to the left output page, and compute its bounding box.
 | |
| 	 */
 | |
| 	seg_l = (SEG *) palloc(sizeof(SEG));
 | |
| 	memcpy(seg_l, sort_items[0].data, sizeof(SEG));
 | |
| 	*left++ = sort_items[0].index;
 | |
| 	v->spl_nleft++;
 | |
| 	for (i = 1; i < firstright; i++)
 | |
| 	{
 | |
| 		Datum		sortitem = PointerGetDatum(sort_items[i].data);
 | |
| 
 | |
| 		seg_l = DatumGetSegP(DirectFunctionCall2(seg_union,
 | |
| 												 PointerGetDatum(seg_l),
 | |
| 												 sortitem));
 | |
| 		*left++ = sort_items[i].index;
 | |
| 		v->spl_nleft++;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Likewise for the right page.
 | |
| 	 */
 | |
| 	seg_r = (SEG *) palloc(sizeof(SEG));
 | |
| 	memcpy(seg_r, sort_items[firstright].data, sizeof(SEG));
 | |
| 	*right++ = sort_items[firstright].index;
 | |
| 	v->spl_nright++;
 | |
| 	for (i = firstright + 1; i < maxoff; i++)
 | |
| 	{
 | |
| 		Datum		sortitem = PointerGetDatum(sort_items[i].data);
 | |
| 
 | |
| 		seg_r = DatumGetSegP(DirectFunctionCall2(seg_union,
 | |
| 												 PointerGetDatum(seg_r),
 | |
| 												 sortitem));
 | |
| 		*right++ = sort_items[i].index;
 | |
| 		v->spl_nright++;
 | |
| 	}
 | |
| 
 | |
| 	v->spl_ldatum = PointerGetDatum(seg_l);
 | |
| 	v->spl_rdatum = PointerGetDatum(seg_r);
 | |
| 
 | |
| 	PG_RETURN_POINTER(v);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Equality methods
 | |
| */
 | |
| Datum
 | |
| gseg_same(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	bool	   *result = (bool *) PG_GETARG_POINTER(2);
 | |
| 
 | |
| 	if (DirectFunctionCall2(seg_same, PG_GETARG_DATUM(0), PG_GETARG_DATUM(1)))
 | |
| 		*result = true;
 | |
| 	else
 | |
| 		*result = false;
 | |
| 
 | |
| #ifdef GIST_DEBUG
 | |
| 	fprintf(stderr, "same: %s\n", (*result ? "TRUE" : "FALSE"));
 | |
| #endif
 | |
| 
 | |
| 	PG_RETURN_POINTER(result);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** SUPPORT ROUTINES
 | |
| */
 | |
| static Datum
 | |
| gseg_leaf_consistent(Datum key, Datum query, StrategyNumber strategy)
 | |
| {
 | |
| 	Datum		retval;
 | |
| 
 | |
| #ifdef GIST_QUERY_DEBUG
 | |
| 	fprintf(stderr, "leaf_consistent, %d\n", strategy);
 | |
| #endif
 | |
| 
 | |
| 	switch (strategy)
 | |
| 	{
 | |
| 		case RTLeftStrategyNumber:
 | |
| 			retval = DirectFunctionCall2(seg_left, key, query);
 | |
| 			break;
 | |
| 		case RTOverLeftStrategyNumber:
 | |
| 			retval = DirectFunctionCall2(seg_over_left, key, query);
 | |
| 			break;
 | |
| 		case RTOverlapStrategyNumber:
 | |
| 			retval = DirectFunctionCall2(seg_overlap, key, query);
 | |
| 			break;
 | |
| 		case RTOverRightStrategyNumber:
 | |
| 			retval = DirectFunctionCall2(seg_over_right, key, query);
 | |
| 			break;
 | |
| 		case RTRightStrategyNumber:
 | |
| 			retval = DirectFunctionCall2(seg_right, key, query);
 | |
| 			break;
 | |
| 		case RTSameStrategyNumber:
 | |
| 			retval = DirectFunctionCall2(seg_same, key, query);
 | |
| 			break;
 | |
| 		case RTContainsStrategyNumber:
 | |
| 		case RTOldContainsStrategyNumber:
 | |
| 			retval = DirectFunctionCall2(seg_contains, key, query);
 | |
| 			break;
 | |
| 		case RTContainedByStrategyNumber:
 | |
| 		case RTOldContainedByStrategyNumber:
 | |
| 			retval = DirectFunctionCall2(seg_contained, key, query);
 | |
| 			break;
 | |
| 		default:
 | |
| 			retval = false;
 | |
| 	}
 | |
| 
 | |
| 	PG_RETURN_DATUM(retval);
 | |
| }
 | |
| 
 | |
| static Datum
 | |
| gseg_internal_consistent(Datum key, Datum query, StrategyNumber strategy)
 | |
| {
 | |
| 	bool		retval;
 | |
| 
 | |
| #ifdef GIST_QUERY_DEBUG
 | |
| 	fprintf(stderr, "internal_consistent, %d\n", strategy);
 | |
| #endif
 | |
| 
 | |
| 	switch (strategy)
 | |
| 	{
 | |
| 		case RTLeftStrategyNumber:
 | |
| 			retval =
 | |
| 				!DatumGetBool(DirectFunctionCall2(seg_over_right, key, query));
 | |
| 			break;
 | |
| 		case RTOverLeftStrategyNumber:
 | |
| 			retval =
 | |
| 				!DatumGetBool(DirectFunctionCall2(seg_right, key, query));
 | |
| 			break;
 | |
| 		case RTOverlapStrategyNumber:
 | |
| 			retval =
 | |
| 				DatumGetBool(DirectFunctionCall2(seg_overlap, key, query));
 | |
| 			break;
 | |
| 		case RTOverRightStrategyNumber:
 | |
| 			retval =
 | |
| 				!DatumGetBool(DirectFunctionCall2(seg_left, key, query));
 | |
| 			break;
 | |
| 		case RTRightStrategyNumber:
 | |
| 			retval =
 | |
| 				!DatumGetBool(DirectFunctionCall2(seg_over_left, key, query));
 | |
| 			break;
 | |
| 		case RTSameStrategyNumber:
 | |
| 		case RTContainsStrategyNumber:
 | |
| 		case RTOldContainsStrategyNumber:
 | |
| 			retval =
 | |
| 				DatumGetBool(DirectFunctionCall2(seg_contains, key, query));
 | |
| 			break;
 | |
| 		case RTContainedByStrategyNumber:
 | |
| 		case RTOldContainedByStrategyNumber:
 | |
| 			retval =
 | |
| 				DatumGetBool(DirectFunctionCall2(seg_overlap, key, query));
 | |
| 			break;
 | |
| 		default:
 | |
| 			retval = false;
 | |
| 	}
 | |
| 
 | |
| 	PG_RETURN_BOOL(retval);
 | |
| }
 | |
| 
 | |
| static Datum
 | |
| gseg_binary_union(Datum r1, Datum r2, int *sizep)
 | |
| {
 | |
| 	Datum		retval;
 | |
| 
 | |
| 	retval = DirectFunctionCall2(seg_union, r1, r2);
 | |
| 	*sizep = sizeof(SEG);
 | |
| 
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| 
 | |
| Datum
 | |
| seg_contains(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	SEG		   *a = PG_GETARG_SEG_P(0);
 | |
| 	SEG		   *b = PG_GETARG_SEG_P(1);
 | |
| 
 | |
| 	PG_RETURN_BOOL((a->lower <= b->lower) && (a->upper >= b->upper));
 | |
| }
 | |
| 
 | |
| Datum
 | |
| seg_contained(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	Datum		a = PG_GETARG_DATUM(0);
 | |
| 	Datum		b = PG_GETARG_DATUM(1);
 | |
| 
 | |
| 	PG_RETURN_DATUM(DirectFunctionCall2(seg_contains, b, a));
 | |
| }
 | |
| 
 | |
| /*****************************************************************************
 | |
|  * Operator class for R-tree indexing
 | |
|  *****************************************************************************/
 | |
| 
 | |
| Datum
 | |
| seg_same(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	int			cmp = DatumGetInt32(DirectFunctionCall2(seg_cmp,
 | |
| 														PG_GETARG_DATUM(0),
 | |
| 														PG_GETARG_DATUM(1)));
 | |
| 
 | |
| 	PG_RETURN_BOOL(cmp == 0);
 | |
| }
 | |
| 
 | |
| /*	seg_overlap -- does a overlap b?
 | |
|  */
 | |
| Datum
 | |
| seg_overlap(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	SEG		   *a = PG_GETARG_SEG_P(0);
 | |
| 	SEG		   *b = PG_GETARG_SEG_P(1);
 | |
| 
 | |
| 	PG_RETURN_BOOL(((a->upper >= b->upper) && (a->lower <= b->upper)) ||
 | |
| 				   ((b->upper >= a->upper) && (b->lower <= a->upper)));
 | |
| }
 | |
| 
 | |
| /*	seg_over_left -- is the right edge of (a) located at or left of the right edge of (b)?
 | |
|  */
 | |
| Datum
 | |
| seg_over_left(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	SEG		   *a = PG_GETARG_SEG_P(0);
 | |
| 	SEG		   *b = PG_GETARG_SEG_P(1);
 | |
| 
 | |
| 	PG_RETURN_BOOL(a->upper <= b->upper);
 | |
| }
 | |
| 
 | |
| /*	seg_left -- is (a) entirely on the left of (b)?
 | |
|  */
 | |
| Datum
 | |
| seg_left(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	SEG		   *a = PG_GETARG_SEG_P(0);
 | |
| 	SEG		   *b = PG_GETARG_SEG_P(1);
 | |
| 
 | |
| 	PG_RETURN_BOOL(a->upper < b->lower);
 | |
| }
 | |
| 
 | |
| /*	seg_right -- is (a) entirely on the right of (b)?
 | |
|  */
 | |
| Datum
 | |
| seg_right(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	SEG		   *a = PG_GETARG_SEG_P(0);
 | |
| 	SEG		   *b = PG_GETARG_SEG_P(1);
 | |
| 
 | |
| 	PG_RETURN_BOOL(a->lower > b->upper);
 | |
| }
 | |
| 
 | |
| /*	seg_over_right -- is the left edge of (a) located at or right of the left edge of (b)?
 | |
|  */
 | |
| Datum
 | |
| seg_over_right(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	SEG		   *a = PG_GETARG_SEG_P(0);
 | |
| 	SEG		   *b = PG_GETARG_SEG_P(1);
 | |
| 
 | |
| 	PG_RETURN_BOOL(a->lower >= b->lower);
 | |
| }
 | |
| 
 | |
| Datum
 | |
| seg_union(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	SEG		   *a = PG_GETARG_SEG_P(0);
 | |
| 	SEG		   *b = PG_GETARG_SEG_P(1);
 | |
| 	SEG		   *n;
 | |
| 
 | |
| 	n = (SEG *) palloc(sizeof(*n));
 | |
| 
 | |
| 	/* take max of upper endpoints */
 | |
| 	if (a->upper > b->upper)
 | |
| 	{
 | |
| 		n->upper = a->upper;
 | |
| 		n->u_sigd = a->u_sigd;
 | |
| 		n->u_ext = a->u_ext;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		n->upper = b->upper;
 | |
| 		n->u_sigd = b->u_sigd;
 | |
| 		n->u_ext = b->u_ext;
 | |
| 	}
 | |
| 
 | |
| 	/* take min of lower endpoints */
 | |
| 	if (a->lower < b->lower)
 | |
| 	{
 | |
| 		n->lower = a->lower;
 | |
| 		n->l_sigd = a->l_sigd;
 | |
| 		n->l_ext = a->l_ext;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		n->lower = b->lower;
 | |
| 		n->l_sigd = b->l_sigd;
 | |
| 		n->l_ext = b->l_ext;
 | |
| 	}
 | |
| 
 | |
| 	PG_RETURN_POINTER(n);
 | |
| }
 | |
| 
 | |
| Datum
 | |
| seg_inter(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	SEG		   *a = PG_GETARG_SEG_P(0);
 | |
| 	SEG		   *b = PG_GETARG_SEG_P(1);
 | |
| 	SEG		   *n;
 | |
| 
 | |
| 	n = (SEG *) palloc(sizeof(*n));
 | |
| 
 | |
| 	/* take min of upper endpoints */
 | |
| 	if (a->upper < b->upper)
 | |
| 	{
 | |
| 		n->upper = a->upper;
 | |
| 		n->u_sigd = a->u_sigd;
 | |
| 		n->u_ext = a->u_ext;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		n->upper = b->upper;
 | |
| 		n->u_sigd = b->u_sigd;
 | |
| 		n->u_ext = b->u_ext;
 | |
| 	}
 | |
| 
 | |
| 	/* take max of lower endpoints */
 | |
| 	if (a->lower > b->lower)
 | |
| 	{
 | |
| 		n->lower = a->lower;
 | |
| 		n->l_sigd = a->l_sigd;
 | |
| 		n->l_ext = a->l_ext;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		n->lower = b->lower;
 | |
| 		n->l_sigd = b->l_sigd;
 | |
| 		n->l_ext = b->l_ext;
 | |
| 	}
 | |
| 
 | |
| 	PG_RETURN_POINTER(n);
 | |
| }
 | |
| 
 | |
| static void
 | |
| rt_seg_size(SEG *a, float *size)
 | |
| {
 | |
| 	if (a == (SEG *) NULL || a->upper <= a->lower)
 | |
| 		*size = 0.0;
 | |
| 	else
 | |
| 		*size = fabsf(a->upper - a->lower);
 | |
| }
 | |
| 
 | |
| Datum
 | |
| seg_size(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	SEG		   *seg = PG_GETARG_SEG_P(0);
 | |
| 
 | |
| 	PG_RETURN_FLOAT4(fabsf(seg->upper - seg->lower));
 | |
| }
 | |
| 
 | |
| 
 | |
| /*****************************************************************************
 | |
|  *				   Miscellaneous operators
 | |
|  *****************************************************************************/
 | |
| Datum
 | |
| seg_cmp(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	SEG		   *a = PG_GETARG_SEG_P(0);
 | |
| 	SEG		   *b = PG_GETARG_SEG_P(1);
 | |
| 
 | |
| 	/*
 | |
| 	 * First compare on lower boundary position
 | |
| 	 */
 | |
| 	if (a->lower < b->lower)
 | |
| 		PG_RETURN_INT32(-1);
 | |
| 	if (a->lower > b->lower)
 | |
| 		PG_RETURN_INT32(1);
 | |
| 
 | |
| 	/*
 | |
| 	 * a->lower == b->lower, so consider type of boundary.
 | |
| 	 *
 | |
| 	 * A '-' lower bound is < any other kind (this could only be relevant if
 | |
| 	 * -HUGE_VAL is used as a regular data value). A '<' lower bound is < any
 | |
| 	 * other kind except '-'. A '>' lower bound is > any other kind.
 | |
| 	 */
 | |
| 	if (a->l_ext != b->l_ext)
 | |
| 	{
 | |
| 		if (a->l_ext == '-')
 | |
| 			PG_RETURN_INT32(-1);
 | |
| 		if (b->l_ext == '-')
 | |
| 			PG_RETURN_INT32(1);
 | |
| 		if (a->l_ext == '<')
 | |
| 			PG_RETURN_INT32(-1);
 | |
| 		if (b->l_ext == '<')
 | |
| 			PG_RETURN_INT32(1);
 | |
| 		if (a->l_ext == '>')
 | |
| 			PG_RETURN_INT32(1);
 | |
| 		if (b->l_ext == '>')
 | |
| 			PG_RETURN_INT32(-1);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * For other boundary types, consider # of significant digits first.
 | |
| 	 */
 | |
| 	if (a->l_sigd < b->l_sigd)	/* (a) is blurred and is likely to include (b) */
 | |
| 		PG_RETURN_INT32(-1);
 | |
| 	if (a->l_sigd > b->l_sigd)	/* (a) is less blurred and is likely to be
 | |
| 								 * included in (b) */
 | |
| 		PG_RETURN_INT32(1);
 | |
| 
 | |
| 	/*
 | |
| 	 * For same # of digits, an approximate boundary is more blurred than
 | |
| 	 * exact.
 | |
| 	 */
 | |
| 	if (a->l_ext != b->l_ext)
 | |
| 	{
 | |
| 		if (a->l_ext == '~')	/* (a) is approximate, while (b) is exact */
 | |
| 			PG_RETURN_INT32(-1);
 | |
| 		if (b->l_ext == '~')
 | |
| 			PG_RETURN_INT32(1);
 | |
| 		/* can't get here unless data is corrupt */
 | |
| 		elog(ERROR, "bogus lower boundary types %d %d",
 | |
| 			 (int) a->l_ext, (int) b->l_ext);
 | |
| 	}
 | |
| 
 | |
| 	/* at this point, the lower boundaries are identical */
 | |
| 
 | |
| 	/*
 | |
| 	 * First compare on upper boundary position
 | |
| 	 */
 | |
| 	if (a->upper < b->upper)
 | |
| 		PG_RETURN_INT32(-1);
 | |
| 	if (a->upper > b->upper)
 | |
| 		PG_RETURN_INT32(1);
 | |
| 
 | |
| 	/*
 | |
| 	 * a->upper == b->upper, so consider type of boundary.
 | |
| 	 *
 | |
| 	 * A '-' upper bound is > any other kind (this could only be relevant if
 | |
| 	 * HUGE_VAL is used as a regular data value). A '<' upper bound is < any
 | |
| 	 * other kind. A '>' upper bound is > any other kind except '-'.
 | |
| 	 */
 | |
| 	if (a->u_ext != b->u_ext)
 | |
| 	{
 | |
| 		if (a->u_ext == '-')
 | |
| 			PG_RETURN_INT32(1);
 | |
| 		if (b->u_ext == '-')
 | |
| 			PG_RETURN_INT32(-1);
 | |
| 		if (a->u_ext == '<')
 | |
| 			PG_RETURN_INT32(-1);
 | |
| 		if (b->u_ext == '<')
 | |
| 			PG_RETURN_INT32(1);
 | |
| 		if (a->u_ext == '>')
 | |
| 			PG_RETURN_INT32(1);
 | |
| 		if (b->u_ext == '>')
 | |
| 			PG_RETURN_INT32(-1);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * For other boundary types, consider # of significant digits first. Note
 | |
| 	 * result here is converse of the lower-boundary case.
 | |
| 	 */
 | |
| 	if (a->u_sigd < b->u_sigd)	/* (a) is blurred and is likely to include (b) */
 | |
| 		PG_RETURN_INT32(1);
 | |
| 	if (a->u_sigd > b->u_sigd)	/* (a) is less blurred and is likely to be
 | |
| 								 * included in (b) */
 | |
| 		PG_RETURN_INT32(-1);
 | |
| 
 | |
| 	/*
 | |
| 	 * For same # of digits, an approximate boundary is more blurred than
 | |
| 	 * exact.  Again, result is converse of lower-boundary case.
 | |
| 	 */
 | |
| 	if (a->u_ext != b->u_ext)
 | |
| 	{
 | |
| 		if (a->u_ext == '~')	/* (a) is approximate, while (b) is exact */
 | |
| 			PG_RETURN_INT32(1);
 | |
| 		if (b->u_ext == '~')
 | |
| 			PG_RETURN_INT32(-1);
 | |
| 		/* can't get here unless data is corrupt */
 | |
| 		elog(ERROR, "bogus upper boundary types %d %d",
 | |
| 			 (int) a->u_ext, (int) b->u_ext);
 | |
| 	}
 | |
| 
 | |
| 	PG_RETURN_INT32(0);
 | |
| }
 | |
| 
 | |
| Datum
 | |
| seg_lt(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	int			cmp = DatumGetInt32(DirectFunctionCall2(seg_cmp,
 | |
| 														PG_GETARG_DATUM(0),
 | |
| 														PG_GETARG_DATUM(1)));
 | |
| 
 | |
| 	PG_RETURN_BOOL(cmp < 0);
 | |
| }
 | |
| 
 | |
| Datum
 | |
| seg_le(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	int			cmp = DatumGetInt32(DirectFunctionCall2(seg_cmp,
 | |
| 														PG_GETARG_DATUM(0),
 | |
| 														PG_GETARG_DATUM(1)));
 | |
| 
 | |
| 	PG_RETURN_BOOL(cmp <= 0);
 | |
| }
 | |
| 
 | |
| Datum
 | |
| seg_gt(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	int			cmp = DatumGetInt32(DirectFunctionCall2(seg_cmp,
 | |
| 														PG_GETARG_DATUM(0),
 | |
| 														PG_GETARG_DATUM(1)));
 | |
| 
 | |
| 	PG_RETURN_BOOL(cmp > 0);
 | |
| }
 | |
| 
 | |
| Datum
 | |
| seg_ge(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	int			cmp = DatumGetInt32(DirectFunctionCall2(seg_cmp,
 | |
| 														PG_GETARG_DATUM(0),
 | |
| 														PG_GETARG_DATUM(1)));
 | |
| 
 | |
| 	PG_RETURN_BOOL(cmp >= 0);
 | |
| }
 | |
| 
 | |
| 
 | |
| Datum
 | |
| seg_different(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	int			cmp = DatumGetInt32(DirectFunctionCall2(seg_cmp,
 | |
| 														PG_GETARG_DATUM(0),
 | |
| 														PG_GETARG_DATUM(1)));
 | |
| 
 | |
| 	PG_RETURN_BOOL(cmp != 0);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /*****************************************************************************
 | |
|  *				   Auxiliary functions
 | |
|  *****************************************************************************/
 | |
| 
 | |
| /*
 | |
|  * The purpose of this routine is to print the given floating point
 | |
|  * value with exactly n significant digits.  Its behaviour
 | |
|  * is similar to %.ng except it prints 8.00 where %.ng would
 | |
|  * print 8.  Returns the length of the string written at "result".
 | |
|  *
 | |
|  * Caller must provide a sufficiently large result buffer; 16 bytes
 | |
|  * should be enough for all known float implementations.
 | |
|  */
 | |
| static int
 | |
| restore(char *result, float val, int n)
 | |
| {
 | |
| 	char		buf[25] = {
 | |
| 		'0', '0', '0', '0', '0',
 | |
| 		'0', '0', '0', '0', '0',
 | |
| 		'0', '0', '0', '0', '0',
 | |
| 		'0', '0', '0', '0', '0',
 | |
| 		'0', '0', '0', '0', '\0'
 | |
| 	};
 | |
| 	char	   *p;
 | |
| 	int			exp;
 | |
| 	int			i,
 | |
| 				dp,
 | |
| 				sign;
 | |
| 
 | |
| 	/*
 | |
| 	 * Put a cap on the number of significant digits to avoid garbage in the
 | |
| 	 * output and ensure we don't overrun the result buffer.  (n should not be
 | |
| 	 * negative, but check to protect ourselves against corrupted data.)
 | |
| 	 */
 | |
| 	if (n <= 0)
 | |
| 		n = FLT_DIG;
 | |
| 	else
 | |
| 		n = Min(n, FLT_DIG);
 | |
| 
 | |
| 	/* remember the sign */
 | |
| 	sign = (val < 0 ? 1 : 0);
 | |
| 
 | |
| 	/* print, in %e style to start with */
 | |
| 	sprintf(result, "%.*e", n - 1, val);
 | |
| 
 | |
| 	/* find the exponent */
 | |
| 	p = strchr(result, 'e');
 | |
| 
 | |
| 	/* punt if we have 'inf' or similar */
 | |
| 	if (p == NULL)
 | |
| 		return strlen(result);
 | |
| 
 | |
| 	exp = atoi(p + 1);
 | |
| 	if (exp == 0)
 | |
| 	{
 | |
| 		/* just truncate off the 'e+00' */
 | |
| 		*p = '\0';
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		if (abs(exp) <= 4)
 | |
| 		{
 | |
| 			/*
 | |
| 			 * remove the decimal point from the mantissa and write the digits
 | |
| 			 * to the buf array
 | |
| 			 */
 | |
| 			for (p = result + sign, i = 10, dp = 0; *p != 'e'; p++, i++)
 | |
| 			{
 | |
| 				buf[i] = *p;
 | |
| 				if (*p == '.')
 | |
| 				{
 | |
| 					dp = i--;	/* skip the decimal point */
 | |
| 				}
 | |
| 			}
 | |
| 			if (dp == 0)
 | |
| 				dp = i--;		/* no decimal point was found in the above
 | |
| 								 * for() loop */
 | |
| 
 | |
| 			if (exp > 0)
 | |
| 			{
 | |
| 				if (dp - 10 + exp >= n)
 | |
| 				{
 | |
| 					/*
 | |
| 					 * the decimal point is behind the last significant digit;
 | |
| 					 * the digits in between must be converted to the exponent
 | |
| 					 * and the decimal point placed after the first digit
 | |
| 					 */
 | |
| 					exp = dp - 10 + exp - n;
 | |
| 					buf[10 + n] = '\0';
 | |
| 
 | |
| 					/* insert the decimal point */
 | |
| 					if (n > 1)
 | |
| 					{
 | |
| 						dp = 11;
 | |
| 						for (i = 23; i > dp; i--)
 | |
| 							buf[i] = buf[i - 1];
 | |
| 						buf[dp] = '.';
 | |
| 					}
 | |
| 
 | |
| 					/*
 | |
| 					 * adjust the exponent by the number of digits after the
 | |
| 					 * decimal point
 | |
| 					 */
 | |
| 					if (n > 1)
 | |
| 						sprintf(&buf[11 + n], "e%d", exp + n - 1);
 | |
| 					else
 | |
| 						sprintf(&buf[11], "e%d", exp + n - 1);
 | |
| 
 | |
| 					if (sign)
 | |
| 					{
 | |
| 						buf[9] = '-';
 | |
| 						strcpy(result, &buf[9]);
 | |
| 					}
 | |
| 					else
 | |
| 						strcpy(result, &buf[10]);
 | |
| 				}
 | |
| 				else
 | |
| 				{				/* insert the decimal point */
 | |
| 					dp += exp;
 | |
| 					for (i = 23; i > dp; i--)
 | |
| 						buf[i] = buf[i - 1];
 | |
| 					buf[11 + n] = '\0';
 | |
| 					buf[dp] = '.';
 | |
| 					if (sign)
 | |
| 					{
 | |
| 						buf[9] = '-';
 | |
| 						strcpy(result, &buf[9]);
 | |
| 					}
 | |
| 					else
 | |
| 						strcpy(result, &buf[10]);
 | |
| 				}
 | |
| 			}
 | |
| 			else
 | |
| 			{					/* exp <= 0 */
 | |
| 				dp += exp - 1;
 | |
| 				buf[10 + n] = '\0';
 | |
| 				buf[dp] = '.';
 | |
| 				if (sign)
 | |
| 				{
 | |
| 					buf[dp - 2] = '-';
 | |
| 					strcpy(result, &buf[dp - 2]);
 | |
| 				}
 | |
| 				else
 | |
| 					strcpy(result, &buf[dp - 1]);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* do nothing for abs(exp) > 4; %e must be OK */
 | |
| 		/* just get rid of zeroes after [eE]- and +zeroes after [Ee]. */
 | |
| 
 | |
| 		/* ... this is not done yet. */
 | |
| 	}
 | |
| 	return strlen(result);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Miscellany
 | |
| */
 | |
| 
 | |
| /* find out the number of significant digits in a string representing
 | |
|  * a floating point number
 | |
|  */
 | |
| int
 | |
| significant_digits(const char *s)
 | |
| {
 | |
| 	const char *p = s;
 | |
| 	int			n,
 | |
| 				c,
 | |
| 				zeroes;
 | |
| 
 | |
| 	zeroes = 1;
 | |
| 	/* skip leading zeroes and sign */
 | |
| 	for (c = *p; (c == '0' || c == '+' || c == '-') && c != 0; c = *(++p));
 | |
| 
 | |
| 	/* skip decimal point and following zeroes */
 | |
| 	for (c = *p; (c == '0' || c == '.') && c != 0; c = *(++p))
 | |
| 	{
 | |
| 		if (c != '.')
 | |
| 			zeroes++;
 | |
| 	}
 | |
| 
 | |
| 	/* count significant digits (n) */
 | |
| 	for (c = *p, n = 0; c != 0; c = *(++p))
 | |
| 	{
 | |
| 		if (!((c >= '0' && c <= '9') || (c == '.')))
 | |
| 			break;
 | |
| 		if (c != '.')
 | |
| 			n++;
 | |
| 	}
 | |
| 
 | |
| 	if (!n)
 | |
| 		return zeroes;
 | |
| 
 | |
| 	return n;
 | |
| }
 |