1
0
mirror of https://github.com/postgres/postgres.git synced 2025-05-05 09:19:17 +03:00
postgres/src/backend/executor/nodeIndexscan.c
Tom Lane 09d3670df3 Change the relation_open protocol so that we obtain lock on a relation
(table or index) before trying to open its relcache entry.  This fixes
race conditions in which someone else commits a change to the relation's
catalog entries while we are in process of doing relcache load.  Problems
of that ilk have been reported sporadically for years, but it was not
really practical to fix until recently --- for instance, the recent
addition of WAL-log support for in-place updates helped.

Along the way, remove pg_am.amconcurrent: all AMs are now expected to support
concurrent update.
2006-07-31 20:09:10 +00:00

986 lines
28 KiB
C

/*-------------------------------------------------------------------------
*
* nodeIndexscan.c
* Routines to support indexed scans of relations
*
* Portions Copyright (c) 1996-2006, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* $PostgreSQL: pgsql/src/backend/executor/nodeIndexscan.c,v 1.116 2006/07/31 20:09:04 tgl Exp $
*
*-------------------------------------------------------------------------
*/
/*
* INTERFACE ROUTINES
* ExecIndexScan scans a relation using indices
* ExecIndexNext using index to retrieve next tuple
* ExecInitIndexScan creates and initializes state info.
* ExecIndexReScan rescans the indexed relation.
* ExecEndIndexScan releases all storage.
* ExecIndexMarkPos marks scan position.
* ExecIndexRestrPos restores scan position.
*/
#include "postgres.h"
#include "access/genam.h"
#include "access/nbtree.h"
#include "executor/execdebug.h"
#include "executor/nodeIndexscan.h"
#include "nodes/nodeFuncs.h"
#include "optimizer/clauses.h"
#include "utils/array.h"
#include "utils/lsyscache.h"
#include "utils/memutils.h"
static TupleTableSlot *IndexNext(IndexScanState *node);
/* ----------------------------------------------------------------
* IndexNext
*
* Retrieve a tuple from the IndexScan node's currentRelation
* using the index specified in the IndexScanState information.
* ----------------------------------------------------------------
*/
static TupleTableSlot *
IndexNext(IndexScanState *node)
{
EState *estate;
ExprContext *econtext;
ScanDirection direction;
IndexScanDesc scandesc;
Index scanrelid;
HeapTuple tuple;
TupleTableSlot *slot;
/*
* extract necessary information from index scan node
*/
estate = node->ss.ps.state;
direction = estate->es_direction;
/* flip direction if this is an overall backward scan */
if (ScanDirectionIsBackward(((IndexScan *) node->ss.ps.plan)->indexorderdir))
{
if (ScanDirectionIsForward(direction))
direction = BackwardScanDirection;
else if (ScanDirectionIsBackward(direction))
direction = ForwardScanDirection;
}
scandesc = node->iss_ScanDesc;
econtext = node->ss.ps.ps_ExprContext;
slot = node->ss.ss_ScanTupleSlot;
scanrelid = ((IndexScan *) node->ss.ps.plan)->scan.scanrelid;
/*
* Check if we are evaluating PlanQual for tuple of this relation.
* Additional checking is not good, but no other way for now. We could
* introduce new nodes for this case and handle IndexScan --> NewNode
* switching in Init/ReScan plan...
*/
if (estate->es_evTuple != NULL &&
estate->es_evTuple[scanrelid - 1] != NULL)
{
if (estate->es_evTupleNull[scanrelid - 1])
return ExecClearTuple(slot);
ExecStoreTuple(estate->es_evTuple[scanrelid - 1],
slot, InvalidBuffer, false);
/* Does the tuple meet the indexqual condition? */
econtext->ecxt_scantuple = slot;
ResetExprContext(econtext);
if (!ExecQual(node->indexqualorig, econtext, false))
ExecClearTuple(slot); /* would not be returned by scan */
/* Flag for the next call that no more tuples */
estate->es_evTupleNull[scanrelid - 1] = true;
return slot;
}
/*
* ok, now that we have what we need, fetch the next tuple.
*/
if ((tuple = index_getnext(scandesc, direction)) != NULL)
{
/*
* Store the scanned tuple in the scan tuple slot of the scan state.
* Note: we pass 'false' because tuples returned by amgetnext are
* pointers onto disk pages and must not be pfree()'d.
*/
ExecStoreTuple(tuple, /* tuple to store */
slot, /* slot to store in */
scandesc->xs_cbuf, /* buffer containing tuple */
false); /* don't pfree */
return slot;
}
/*
* if we get here it means the index scan failed so we are at the end of
* the scan..
*/
return ExecClearTuple(slot);
}
/* ----------------------------------------------------------------
* ExecIndexScan(node)
* ----------------------------------------------------------------
*/
TupleTableSlot *
ExecIndexScan(IndexScanState *node)
{
/*
* If we have runtime keys and they've not already been set up, do it now.
*/
if (node->iss_NumRuntimeKeys != 0 && !node->iss_RuntimeKeysReady)
ExecReScan((PlanState *) node, NULL);
/*
* use IndexNext as access method
*/
return ExecScan(&node->ss, (ExecScanAccessMtd) IndexNext);
}
/* ----------------------------------------------------------------
* ExecIndexReScan(node)
*
* Recalculates the value of the scan keys whose value depends on
* information known at runtime and rescans the indexed relation.
* Updating the scan key was formerly done separately in
* ExecUpdateIndexScanKeys. Integrating it into ReScan makes
* rescans of indices and relations/general streams more uniform.
* ----------------------------------------------------------------
*/
void
ExecIndexReScan(IndexScanState *node, ExprContext *exprCtxt)
{
EState *estate;
ExprContext *econtext;
Index scanrelid;
estate = node->ss.ps.state;
econtext = node->iss_RuntimeContext; /* context for runtime keys */
scanrelid = ((IndexScan *) node->ss.ps.plan)->scan.scanrelid;
if (econtext)
{
/*
* If we are being passed an outer tuple, save it for runtime key
* calc. We also need to link it into the "regular" per-tuple
* econtext, so it can be used during indexqualorig evaluations.
*/
if (exprCtxt != NULL)
{
ExprContext *stdecontext;
econtext->ecxt_outertuple = exprCtxt->ecxt_outertuple;
stdecontext = node->ss.ps.ps_ExprContext;
stdecontext->ecxt_outertuple = exprCtxt->ecxt_outertuple;
}
/*
* Reset the runtime-key context so we don't leak memory as each outer
* tuple is scanned. Note this assumes that we will recalculate *all*
* runtime keys on each call.
*/
ResetExprContext(econtext);
}
/*
* If we are doing runtime key calculations (ie, the index keys depend on
* data from an outer scan), compute the new key values
*/
if (node->iss_NumRuntimeKeys != 0)
ExecIndexEvalRuntimeKeys(econtext,
node->iss_RuntimeKeys,
node->iss_NumRuntimeKeys);
node->iss_RuntimeKeysReady = true;
/* If this is re-scanning of PlanQual ... */
if (estate->es_evTuple != NULL &&
estate->es_evTuple[scanrelid - 1] != NULL)
{
estate->es_evTupleNull[scanrelid - 1] = false;
return;
}
/* reset index scan */
index_rescan(node->iss_ScanDesc, node->iss_ScanKeys);
}
/*
* ExecIndexEvalRuntimeKeys
* Evaluate any runtime key values, and update the scankeys.
*/
void
ExecIndexEvalRuntimeKeys(ExprContext *econtext,
IndexRuntimeKeyInfo *runtimeKeys, int numRuntimeKeys)
{
int j;
for (j = 0; j < numRuntimeKeys; j++)
{
ScanKey scan_key = runtimeKeys[j].scan_key;
ExprState *key_expr = runtimeKeys[j].key_expr;
Datum scanvalue;
bool isNull;
/*
* For each run-time key, extract the run-time expression and
* evaluate it with respect to the current outer tuple. We then stick
* the result into the proper scan key.
*
* Note: the result of the eval could be a pass-by-ref value that's
* stored in the outer scan's tuple, not in
* econtext->ecxt_per_tuple_memory. We assume that the outer tuple
* will stay put throughout our scan. If this is wrong, we could copy
* the result into our context explicitly, but I think that's not
* necessary...
*/
scanvalue = ExecEvalExprSwitchContext(key_expr,
econtext,
&isNull,
NULL);
scan_key->sk_argument = scanvalue;
if (isNull)
scan_key->sk_flags |= SK_ISNULL;
else
scan_key->sk_flags &= ~SK_ISNULL;
}
}
/*
* ExecIndexEvalArrayKeys
* Evaluate any array key values, and set up to iterate through arrays.
*
* Returns TRUE if there are array elements to consider; FALSE means there
* is at least one null or empty array, so no match is possible. On TRUE
* result, the scankeys are initialized with the first elements of the arrays.
*/
bool
ExecIndexEvalArrayKeys(ExprContext *econtext,
IndexArrayKeyInfo *arrayKeys, int numArrayKeys)
{
bool result = true;
int j;
MemoryContext oldContext;
/* We want to keep the arrays in per-tuple memory */
oldContext = MemoryContextSwitchTo(econtext->ecxt_per_tuple_memory);
for (j = 0; j < numArrayKeys; j++)
{
ScanKey scan_key = arrayKeys[j].scan_key;
ExprState *array_expr = arrayKeys[j].array_expr;
Datum arraydatum;
bool isNull;
ArrayType *arrayval;
int16 elmlen;
bool elmbyval;
char elmalign;
int num_elems;
Datum *elem_values;
bool *elem_nulls;
/*
* Compute and deconstruct the array expression.
* (Notes in ExecIndexEvalRuntimeKeys() apply here too.)
*/
arraydatum = ExecEvalExpr(array_expr,
econtext,
&isNull,
NULL);
if (isNull)
{
result = false;
break; /* no point in evaluating more */
}
arrayval = DatumGetArrayTypeP(arraydatum);
/* We could cache this data, but not clear it's worth it */
get_typlenbyvalalign(ARR_ELEMTYPE(arrayval),
&elmlen, &elmbyval, &elmalign);
deconstruct_array(arrayval,
ARR_ELEMTYPE(arrayval),
elmlen, elmbyval, elmalign,
&elem_values, &elem_nulls, &num_elems);
if (num_elems <= 0)
{
result = false;
break; /* no point in evaluating more */
}
/*
* Note: we expect the previous array data, if any, to be automatically
* freed by resetting the per-tuple context; hence no pfree's here.
*/
arrayKeys[j].elem_values = elem_values;
arrayKeys[j].elem_nulls = elem_nulls;
arrayKeys[j].num_elems = num_elems;
scan_key->sk_argument = elem_values[0];
if (elem_nulls[0])
scan_key->sk_flags |= SK_ISNULL;
else
scan_key->sk_flags &= ~SK_ISNULL;
arrayKeys[j].next_elem = 1;
}
MemoryContextSwitchTo(oldContext);
return result;
}
/*
* ExecIndexAdvanceArrayKeys
* Advance to the next set of array key values, if any.
*
* Returns TRUE if there is another set of values to consider, FALSE if not.
* On TRUE result, the scankeys are initialized with the next set of values.
*/
bool
ExecIndexAdvanceArrayKeys(IndexArrayKeyInfo *arrayKeys, int numArrayKeys)
{
bool found = false;
int j;
for (j = 0; j < numArrayKeys; j++)
{
ScanKey scan_key = arrayKeys[j].scan_key;
int next_elem = arrayKeys[j].next_elem;
int num_elems = arrayKeys[j].num_elems;
Datum *elem_values = arrayKeys[j].elem_values;
bool *elem_nulls = arrayKeys[j].elem_nulls;
if (next_elem >= num_elems)
{
next_elem = 0;
found = false; /* need to advance next array key */
}
else
found = true;
scan_key->sk_argument = elem_values[next_elem];
if (elem_nulls[next_elem])
scan_key->sk_flags |= SK_ISNULL;
else
scan_key->sk_flags &= ~SK_ISNULL;
arrayKeys[j].next_elem = next_elem + 1;
if (found)
break;
}
return found;
}
/* ----------------------------------------------------------------
* ExecEndIndexScan
* ----------------------------------------------------------------
*/
void
ExecEndIndexScan(IndexScanState *node)
{
Relation indexRelationDesc;
IndexScanDesc indexScanDesc;
Relation relation;
/*
* extract information from the node
*/
indexRelationDesc = node->iss_RelationDesc;
indexScanDesc = node->iss_ScanDesc;
relation = node->ss.ss_currentRelation;
/*
* Free the exprcontext(s) ... now dead code, see ExecFreeExprContext
*/
#ifdef NOT_USED
ExecFreeExprContext(&node->ss.ps);
if (node->iss_RuntimeContext)
FreeExprContext(node->iss_RuntimeContext);
#endif
/*
* clear out tuple table slots
*/
ExecClearTuple(node->ss.ps.ps_ResultTupleSlot);
ExecClearTuple(node->ss.ss_ScanTupleSlot);
/*
* close the index relation
*/
index_endscan(indexScanDesc);
index_close(indexRelationDesc, NoLock);
/*
* close the heap relation.
*/
ExecCloseScanRelation(relation);
}
/* ----------------------------------------------------------------
* ExecIndexMarkPos
* ----------------------------------------------------------------
*/
void
ExecIndexMarkPos(IndexScanState *node)
{
index_markpos(node->iss_ScanDesc);
}
/* ----------------------------------------------------------------
* ExecIndexRestrPos
* ----------------------------------------------------------------
*/
void
ExecIndexRestrPos(IndexScanState *node)
{
index_restrpos(node->iss_ScanDesc);
}
/* ----------------------------------------------------------------
* ExecInitIndexScan
*
* Initializes the index scan's state information, creates
* scan keys, and opens the base and index relations.
*
* Note: index scans have 2 sets of state information because
* we have to keep track of the base relation and the
* index relation.
* ----------------------------------------------------------------
*/
IndexScanState *
ExecInitIndexScan(IndexScan *node, EState *estate, int eflags)
{
IndexScanState *indexstate;
Relation currentRelation;
bool relistarget;
/*
* create state structure
*/
indexstate = makeNode(IndexScanState);
indexstate->ss.ps.plan = (Plan *) node;
indexstate->ss.ps.state = estate;
/*
* Miscellaneous initialization
*
* create expression context for node
*/
ExecAssignExprContext(estate, &indexstate->ss.ps);
/*
* initialize child expressions
*
* Note: we don't initialize all of the indexqual expression, only the
* sub-parts corresponding to runtime keys (see below). The indexqualorig
* expression is always initialized even though it will only be used in
* some uncommon cases --- would be nice to improve that. (Problem is
* that any SubPlans present in the expression must be found now...)
*/
indexstate->ss.ps.targetlist = (List *)
ExecInitExpr((Expr *) node->scan.plan.targetlist,
(PlanState *) indexstate);
indexstate->ss.ps.qual = (List *)
ExecInitExpr((Expr *) node->scan.plan.qual,
(PlanState *) indexstate);
indexstate->indexqualorig = (List *)
ExecInitExpr((Expr *) node->indexqualorig,
(PlanState *) indexstate);
#define INDEXSCAN_NSLOTS 2
/*
* tuple table initialization
*/
ExecInitResultTupleSlot(estate, &indexstate->ss.ps);
ExecInitScanTupleSlot(estate, &indexstate->ss);
/*
* open the base relation and acquire appropriate lock on it.
*/
currentRelation = ExecOpenScanRelation(estate, node->scan.scanrelid);
indexstate->ss.ss_currentRelation = currentRelation;
indexstate->ss.ss_currentScanDesc = NULL; /* no heap scan here */
/*
* get the scan type from the relation descriptor.
*/
ExecAssignScanType(&indexstate->ss, RelationGetDescr(currentRelation));
/*
* Open the index relation.
*
* If the parent table is one of the target relations of the query, then
* InitPlan already opened and write-locked the index, so we can avoid
* taking another lock here. Otherwise we need a normal reader's lock.
*/
relistarget = ExecRelationIsTargetRelation(estate, node->scan.scanrelid);
indexstate->iss_RelationDesc = index_open(node->indexid,
relistarget ? NoLock : AccessShareLock);
/*
* Initialize index-specific scan state
*/
indexstate->iss_RuntimeKeysReady = false;
/*
* build the index scan keys from the index qualification
*/
ExecIndexBuildScanKeys((PlanState *) indexstate,
indexstate->iss_RelationDesc,
node->indexqual,
node->indexstrategy,
node->indexsubtype,
&indexstate->iss_ScanKeys,
&indexstate->iss_NumScanKeys,
&indexstate->iss_RuntimeKeys,
&indexstate->iss_NumRuntimeKeys,
NULL, /* no ArrayKeys */
NULL);
/*
* If we have runtime keys, we need an ExprContext to evaluate them. The
* node's standard context won't do because we want to reset that context
* for every tuple. So, build another context just like the other one...
* -tgl 7/11/00
*/
if (indexstate->iss_NumRuntimeKeys != 0)
{
ExprContext *stdecontext = indexstate->ss.ps.ps_ExprContext;
ExecAssignExprContext(estate, &indexstate->ss.ps);
indexstate->iss_RuntimeContext = indexstate->ss.ps.ps_ExprContext;
indexstate->ss.ps.ps_ExprContext = stdecontext;
}
else
{
indexstate->iss_RuntimeContext = NULL;
}
/*
* Initialize scan descriptor.
*/
indexstate->iss_ScanDesc = index_beginscan(currentRelation,
indexstate->iss_RelationDesc,
estate->es_snapshot,
indexstate->iss_NumScanKeys,
indexstate->iss_ScanKeys);
/*
* Initialize result tuple type and projection info.
*/
ExecAssignResultTypeFromTL(&indexstate->ss.ps);
ExecAssignScanProjectionInfo(&indexstate->ss);
/*
* all done.
*/
return indexstate;
}
/*
* ExecIndexBuildScanKeys
* Build the index scan keys from the index qualification expressions
*
* The index quals are passed to the index AM in the form of a ScanKey array.
* This routine sets up the ScanKeys, fills in all constant fields of the
* ScanKeys, and prepares information about the keys that have non-constant
* comparison values. We divide index qual expressions into four types:
*
* 1. Simple operator with constant comparison value ("indexkey op constant").
* For these, we just fill in a ScanKey containing the constant value.
*
* 2. Simple operator with non-constant value ("indexkey op expression").
* For these, we create a ScanKey with everything filled in except the
* expression value, and set up an IndexRuntimeKeyInfo struct to drive
* evaluation of the expression at the right times.
*
* 3. RowCompareExpr ("(indexkey, indexkey, ...) op (expr, expr, ...)").
* For these, we create a header ScanKey plus a subsidiary ScanKey array,
* as specified in access/skey.h. The elements of the row comparison
* can have either constant or non-constant comparison values.
*
* 4. ScalarArrayOpExpr ("indexkey op ANY (array-expression)"). For these,
* we create a ScanKey with everything filled in except the comparison value,
* and set up an IndexArrayKeyInfo struct to drive processing of the qual.
* (Note that we treat all array-expressions as requiring runtime evaluation,
* even if they happen to be constants.)
*
* Input params are:
*
* planstate: executor state node we are working for
* index: the index we are building scan keys for
* quals: indexquals expressions
* strategies: associated operator strategy numbers
* subtypes: associated operator subtype OIDs
*
* (Any elements of the strategies and subtypes lists that correspond to
* RowCompareExpr quals are not used here; instead we look up the info
* afresh.)
*
* Output params are:
*
* *scanKeys: receives ptr to array of ScanKeys
* *numScanKeys: receives number of scankeys
* *runtimeKeys: receives ptr to array of IndexRuntimeKeyInfos, or NULL if none
* *numRuntimeKeys: receives number of runtime keys
* *arrayKeys: receives ptr to array of IndexArrayKeyInfos, or NULL if none
* *numArrayKeys: receives number of array keys
*
* Caller may pass NULL for arrayKeys and numArrayKeys to indicate that
* ScalarArrayOpExpr quals are not supported.
*/
void
ExecIndexBuildScanKeys(PlanState *planstate, Relation index,
List *quals, List *strategies, List *subtypes,
ScanKey *scanKeys, int *numScanKeys,
IndexRuntimeKeyInfo **runtimeKeys, int *numRuntimeKeys,
IndexArrayKeyInfo **arrayKeys, int *numArrayKeys)
{
ListCell *qual_cell;
ListCell *strategy_cell;
ListCell *subtype_cell;
ScanKey scan_keys;
IndexRuntimeKeyInfo *runtime_keys;
IndexArrayKeyInfo *array_keys;
int n_scan_keys;
int extra_scan_keys;
int n_runtime_keys;
int n_array_keys;
int j;
/*
* If there are any RowCompareExpr quals, we need extra ScanKey entries
* for them, and possibly extra runtime-key entries. Count up what's
* needed. (The subsidiary ScanKey arrays for the RowCompareExprs could
* be allocated as separate chunks, but we have to count anyway to make
* runtime_keys large enough, so might as well just do one palloc.)
*/
n_scan_keys = list_length(quals);
extra_scan_keys = 0;
foreach(qual_cell, quals)
{
if (IsA(lfirst(qual_cell), RowCompareExpr))
extra_scan_keys +=
list_length(((RowCompareExpr *) lfirst(qual_cell))->opnos);
}
scan_keys = (ScanKey)
palloc((n_scan_keys + extra_scan_keys) * sizeof(ScanKeyData));
/* Allocate these arrays as large as they could possibly need to be */
runtime_keys = (IndexRuntimeKeyInfo *)
palloc((n_scan_keys + extra_scan_keys) * sizeof(IndexRuntimeKeyInfo));
array_keys = (IndexArrayKeyInfo *)
palloc0(n_scan_keys * sizeof(IndexArrayKeyInfo));
n_runtime_keys = 0;
n_array_keys = 0;
/*
* Below here, extra_scan_keys is index of first cell to use for next
* RowCompareExpr
*/
extra_scan_keys = n_scan_keys;
/*
* for each opclause in the given qual, convert each qual's opclause into
* a single scan key
*/
qual_cell = list_head(quals);
strategy_cell = list_head(strategies);
subtype_cell = list_head(subtypes);
for (j = 0; j < n_scan_keys; j++)
{
ScanKey this_scan_key = &scan_keys[j];
Expr *clause; /* one clause of index qual */
RegProcedure opfuncid; /* operator proc id used in scan */
StrategyNumber strategy; /* op's strategy number */
Oid subtype; /* op's strategy subtype */
Expr *leftop; /* expr on lhs of operator */
Expr *rightop; /* expr on rhs ... */
AttrNumber varattno; /* att number used in scan */
/*
* extract clause information from the qualification
*/
clause = (Expr *) lfirst(qual_cell);
qual_cell = lnext(qual_cell);
strategy = lfirst_int(strategy_cell);
strategy_cell = lnext(strategy_cell);
subtype = lfirst_oid(subtype_cell);
subtype_cell = lnext(subtype_cell);
if (IsA(clause, OpExpr))
{
/* indexkey op const or indexkey op expression */
int flags = 0;
Datum scanvalue;
opfuncid = ((OpExpr *) clause)->opfuncid;
/*
* leftop should be the index key Var, possibly relabeled
*/
leftop = (Expr *) get_leftop(clause);
if (leftop && IsA(leftop, RelabelType))
leftop = ((RelabelType *) leftop)->arg;
Assert(leftop != NULL);
if (!(IsA(leftop, Var) &&
var_is_rel((Var *) leftop)))
elog(ERROR, "indexqual doesn't have key on left side");
varattno = ((Var *) leftop)->varattno;
/*
* rightop is the constant or variable comparison value
*/
rightop = (Expr *) get_rightop(clause);
if (rightop && IsA(rightop, RelabelType))
rightop = ((RelabelType *) rightop)->arg;
Assert(rightop != NULL);
if (IsA(rightop, Const))
{
/* OK, simple constant comparison value */
scanvalue = ((Const *) rightop)->constvalue;
if (((Const *) rightop)->constisnull)
flags |= SK_ISNULL;
}
else
{
/* Need to treat this one as a runtime key */
runtime_keys[n_runtime_keys].scan_key = this_scan_key;
runtime_keys[n_runtime_keys].key_expr =
ExecInitExpr(rightop, planstate);
n_runtime_keys++;
scanvalue = (Datum) 0;
}
/*
* initialize the scan key's fields appropriately
*/
ScanKeyEntryInitialize(this_scan_key,
flags,
varattno, /* attribute number to scan */
strategy, /* op's strategy */
subtype, /* strategy subtype */
opfuncid, /* reg proc to use */
scanvalue); /* constant */
}
else if (IsA(clause, RowCompareExpr))
{
/* (indexkey, indexkey, ...) op (expression, expression, ...) */
RowCompareExpr *rc = (RowCompareExpr *) clause;
ListCell *largs_cell = list_head(rc->largs);
ListCell *rargs_cell = list_head(rc->rargs);
ListCell *opnos_cell = list_head(rc->opnos);
ScanKey first_sub_key = &scan_keys[extra_scan_keys];
/* Scan RowCompare columns and generate subsidiary ScanKey items */
while (opnos_cell != NULL)
{
ScanKey this_sub_key = &scan_keys[extra_scan_keys];
int flags = SK_ROW_MEMBER;
Datum scanvalue;
Oid opno;
Oid opclass;
int op_strategy;
Oid op_subtype;
bool op_recheck;
/*
* leftop should be the index key Var, possibly relabeled
*/
leftop = (Expr *) lfirst(largs_cell);
largs_cell = lnext(largs_cell);
if (leftop && IsA(leftop, RelabelType))
leftop = ((RelabelType *) leftop)->arg;
Assert(leftop != NULL);
if (!(IsA(leftop, Var) &&
var_is_rel((Var *) leftop)))
elog(ERROR, "indexqual doesn't have key on left side");
varattno = ((Var *) leftop)->varattno;
/*
* rightop is the constant or variable comparison value
*/
rightop = (Expr *) lfirst(rargs_cell);
rargs_cell = lnext(rargs_cell);
if (rightop && IsA(rightop, RelabelType))
rightop = ((RelabelType *) rightop)->arg;
Assert(rightop != NULL);
if (IsA(rightop, Const))
{
/* OK, simple constant comparison value */
scanvalue = ((Const *) rightop)->constvalue;
if (((Const *) rightop)->constisnull)
flags |= SK_ISNULL;
}
else
{
/* Need to treat this one as a runtime key */
runtime_keys[n_runtime_keys].scan_key = this_sub_key;
runtime_keys[n_runtime_keys].key_expr =
ExecInitExpr(rightop, planstate);
n_runtime_keys++;
scanvalue = (Datum) 0;
}
/*
* We have to look up the operator's associated btree support
* function
*/
opno = lfirst_oid(opnos_cell);
opnos_cell = lnext(opnos_cell);
if (index->rd_rel->relam != BTREE_AM_OID ||
varattno < 1 || varattno > index->rd_index->indnatts)
elog(ERROR, "bogus RowCompare index qualification");
opclass = index->rd_indclass->values[varattno - 1];
get_op_opclass_properties(opno, opclass,
&op_strategy, &op_subtype, &op_recheck);
if (op_strategy != rc->rctype)
elog(ERROR, "RowCompare index qualification contains wrong operator");
opfuncid = get_opclass_proc(opclass, op_subtype, BTORDER_PROC);
/*
* initialize the subsidiary scan key's fields appropriately
*/
ScanKeyEntryInitialize(this_sub_key,
flags,
varattno, /* attribute number */
op_strategy, /* op's strategy */
op_subtype, /* strategy subtype */
opfuncid, /* reg proc to use */
scanvalue); /* constant */
extra_scan_keys++;
}
/* Mark the last subsidiary scankey correctly */
scan_keys[extra_scan_keys - 1].sk_flags |= SK_ROW_END;
/*
* We don't use ScanKeyEntryInitialize for the header because
* it isn't going to contain a valid sk_func pointer.
*/
MemSet(this_scan_key, 0, sizeof(ScanKeyData));
this_scan_key->sk_flags = SK_ROW_HEADER;
this_scan_key->sk_attno = first_sub_key->sk_attno;
this_scan_key->sk_strategy = rc->rctype;
/* sk_subtype, sk_func not used in a header */
this_scan_key->sk_argument = PointerGetDatum(first_sub_key);
}
else if (IsA(clause, ScalarArrayOpExpr))
{
/* indexkey op ANY (array-expression) */
ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) clause;
Assert(saop->useOr);
opfuncid = saop->opfuncid;
/*
* leftop should be the index key Var, possibly relabeled
*/
leftop = (Expr *) linitial(saop->args);
if (leftop && IsA(leftop, RelabelType))
leftop = ((RelabelType *) leftop)->arg;
Assert(leftop != NULL);
if (!(IsA(leftop, Var) &&
var_is_rel((Var *) leftop)))
elog(ERROR, "indexqual doesn't have key on left side");
varattno = ((Var *) leftop)->varattno;
/*
* rightop is the constant or variable array value
*/
rightop = (Expr *) lsecond(saop->args);
if (rightop && IsA(rightop, RelabelType))
rightop = ((RelabelType *) rightop)->arg;
Assert(rightop != NULL);
array_keys[n_array_keys].scan_key = this_scan_key;
array_keys[n_array_keys].array_expr =
ExecInitExpr(rightop, planstate);
/* the remaining fields were zeroed by palloc0 */
n_array_keys++;
/*
* initialize the scan key's fields appropriately
*/
ScanKeyEntryInitialize(this_scan_key,
0, /* flags */
varattno, /* attribute number to scan */
strategy, /* op's strategy */
subtype, /* strategy subtype */
opfuncid, /* reg proc to use */
(Datum) 0); /* constant */
}
else
elog(ERROR, "unsupported indexqual type: %d",
(int) nodeTag(clause));
}
/* Get rid of any unused arrays */
if (n_runtime_keys == 0)
{
pfree(runtime_keys);
runtime_keys = NULL;
}
if (n_array_keys == 0)
{
pfree(array_keys);
array_keys = NULL;
}
/*
* Return info to our caller.
*/
*scanKeys = scan_keys;
*numScanKeys = n_scan_keys;
*runtimeKeys = runtime_keys;
*numRuntimeKeys = n_runtime_keys;
if (arrayKeys)
{
*arrayKeys = array_keys;
*numArrayKeys = n_array_keys;
}
else if (n_array_keys != 0)
elog(ERROR, "ScalarArrayOpExpr index qual found where not allowed");
}
int
ExecCountSlotsIndexScan(IndexScan *node)
{
return ExecCountSlotsNode(outerPlan((Plan *) node)) +
ExecCountSlotsNode(innerPlan((Plan *) node)) + INDEXSCAN_NSLOTS;
}