mirror of
https://github.com/postgres/postgres.git
synced 2025-04-24 10:47:04 +03:00
This is numbered take 7, and addresses a set of issues with code comments, variable names and unreferenced variables. Author: Alexander Lakhin Discussion: https://postgr.es/m/dff75442-2468-f74f-568c-6006e141062f@gmail.com
4863 lines
120 KiB
C
4863 lines
120 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* datetime.c
|
|
* Support functions for date/time types.
|
|
*
|
|
* Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
|
*
|
|
*
|
|
* IDENTIFICATION
|
|
* src/backend/utils/adt/datetime.c
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
#include "postgres.h"
|
|
|
|
#include <ctype.h>
|
|
#include <limits.h>
|
|
#include <math.h>
|
|
|
|
#include "access/htup_details.h"
|
|
#include "access/xact.h"
|
|
#include "catalog/pg_type.h"
|
|
#include "common/string.h"
|
|
#include "funcapi.h"
|
|
#include "miscadmin.h"
|
|
#include "nodes/nodeFuncs.h"
|
|
#include "utils/builtins.h"
|
|
#include "utils/date.h"
|
|
#include "utils/datetime.h"
|
|
#include "utils/memutils.h"
|
|
#include "utils/tzparser.h"
|
|
|
|
|
|
static int DecodeNumber(int flen, char *field, bool haveTextMonth,
|
|
int fmask, int *tmask,
|
|
struct pg_tm *tm, fsec_t *fsec, bool *is2digits);
|
|
static int DecodeNumberField(int len, char *str,
|
|
int fmask, int *tmask,
|
|
struct pg_tm *tm, fsec_t *fsec, bool *is2digits);
|
|
static int DecodeTime(char *str, int fmask, int range,
|
|
int *tmask, struct pg_tm *tm, fsec_t *fsec);
|
|
static const datetkn *datebsearch(const char *key, const datetkn *base, int nel);
|
|
static int DecodeDate(char *str, int fmask, int *tmask, bool *is2digits,
|
|
struct pg_tm *tm);
|
|
static char *AppendSeconds(char *cp, int sec, fsec_t fsec,
|
|
int precision, bool fillzeros);
|
|
static void AdjustFractSeconds(double frac, struct pg_tm *tm, fsec_t *fsec,
|
|
int scale);
|
|
static void AdjustFractDays(double frac, struct pg_tm *tm, fsec_t *fsec,
|
|
int scale);
|
|
static int DetermineTimeZoneOffsetInternal(struct pg_tm *tm, pg_tz *tzp,
|
|
pg_time_t *tp);
|
|
static bool DetermineTimeZoneAbbrevOffsetInternal(pg_time_t t,
|
|
const char *abbr, pg_tz *tzp,
|
|
int *offset, int *isdst);
|
|
static pg_tz *FetchDynamicTimeZone(TimeZoneAbbrevTable *tbl, const datetkn *tp);
|
|
|
|
|
|
const int day_tab[2][13] =
|
|
{
|
|
{31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31, 0},
|
|
{31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31, 0}
|
|
};
|
|
|
|
const char *const months[] = {"Jan", "Feb", "Mar", "Apr", "May", "Jun",
|
|
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec", NULL};
|
|
|
|
const char *const days[] = {"Sunday", "Monday", "Tuesday", "Wednesday",
|
|
"Thursday", "Friday", "Saturday", NULL};
|
|
|
|
|
|
/*****************************************************************************
|
|
* PRIVATE ROUTINES *
|
|
*****************************************************************************/
|
|
|
|
/*
|
|
* datetktbl holds date/time keywords.
|
|
*
|
|
* Note that this table must be strictly alphabetically ordered to allow an
|
|
* O(ln(N)) search algorithm to be used.
|
|
*
|
|
* The token field must be NUL-terminated; we truncate entries to TOKMAXLEN
|
|
* characters to fit.
|
|
*
|
|
* The static table contains no TZ, DTZ, or DYNTZ entries; rather those
|
|
* are loaded from configuration files and stored in zoneabbrevtbl, whose
|
|
* abbrevs[] field has the same format as the static datetktbl.
|
|
*/
|
|
static const datetkn datetktbl[] = {
|
|
/* token, type, value */
|
|
{EARLY, RESERV, DTK_EARLY}, /* "-infinity" reserved for "early time" */
|
|
{DA_D, ADBC, AD}, /* "ad" for years > 0 */
|
|
{"allballs", RESERV, DTK_ZULU}, /* 00:00:00 */
|
|
{"am", AMPM, AM},
|
|
{"apr", MONTH, 4},
|
|
{"april", MONTH, 4},
|
|
{"at", IGNORE_DTF, 0}, /* "at" (throwaway) */
|
|
{"aug", MONTH, 8},
|
|
{"august", MONTH, 8},
|
|
{DB_C, ADBC, BC}, /* "bc" for years <= 0 */
|
|
{"d", UNITS, DTK_DAY}, /* "day of month" for ISO input */
|
|
{"dec", MONTH, 12},
|
|
{"december", MONTH, 12},
|
|
{"dow", UNITS, DTK_DOW}, /* day of week */
|
|
{"doy", UNITS, DTK_DOY}, /* day of year */
|
|
{"dst", DTZMOD, SECS_PER_HOUR},
|
|
{EPOCH, RESERV, DTK_EPOCH}, /* "epoch" reserved for system epoch time */
|
|
{"feb", MONTH, 2},
|
|
{"february", MONTH, 2},
|
|
{"fri", DOW, 5},
|
|
{"friday", DOW, 5},
|
|
{"h", UNITS, DTK_HOUR}, /* "hour" */
|
|
{LATE, RESERV, DTK_LATE}, /* "infinity" reserved for "late time" */
|
|
{"isodow", UNITS, DTK_ISODOW}, /* ISO day of week, Sunday == 7 */
|
|
{"isoyear", UNITS, DTK_ISOYEAR}, /* year in terms of the ISO week date */
|
|
{"j", UNITS, DTK_JULIAN},
|
|
{"jan", MONTH, 1},
|
|
{"january", MONTH, 1},
|
|
{"jd", UNITS, DTK_JULIAN},
|
|
{"jul", MONTH, 7},
|
|
{"julian", UNITS, DTK_JULIAN},
|
|
{"july", MONTH, 7},
|
|
{"jun", MONTH, 6},
|
|
{"june", MONTH, 6},
|
|
{"m", UNITS, DTK_MONTH}, /* "month" for ISO input */
|
|
{"mar", MONTH, 3},
|
|
{"march", MONTH, 3},
|
|
{"may", MONTH, 5},
|
|
{"mm", UNITS, DTK_MINUTE}, /* "minute" for ISO input */
|
|
{"mon", DOW, 1},
|
|
{"monday", DOW, 1},
|
|
{"nov", MONTH, 11},
|
|
{"november", MONTH, 11},
|
|
{NOW, RESERV, DTK_NOW}, /* current transaction time */
|
|
{"oct", MONTH, 10},
|
|
{"october", MONTH, 10},
|
|
{"on", IGNORE_DTF, 0}, /* "on" (throwaway) */
|
|
{"pm", AMPM, PM},
|
|
{"s", UNITS, DTK_SECOND}, /* "seconds" for ISO input */
|
|
{"sat", DOW, 6},
|
|
{"saturday", DOW, 6},
|
|
{"sep", MONTH, 9},
|
|
{"sept", MONTH, 9},
|
|
{"september", MONTH, 9},
|
|
{"sun", DOW, 0},
|
|
{"sunday", DOW, 0},
|
|
{"t", ISOTIME, DTK_TIME}, /* Filler for ISO time fields */
|
|
{"thu", DOW, 4},
|
|
{"thur", DOW, 4},
|
|
{"thurs", DOW, 4},
|
|
{"thursday", DOW, 4},
|
|
{TODAY, RESERV, DTK_TODAY}, /* midnight */
|
|
{TOMORROW, RESERV, DTK_TOMORROW}, /* tomorrow midnight */
|
|
{"tue", DOW, 2},
|
|
{"tues", DOW, 2},
|
|
{"tuesday", DOW, 2},
|
|
{"wed", DOW, 3},
|
|
{"wednesday", DOW, 3},
|
|
{"weds", DOW, 3},
|
|
{"y", UNITS, DTK_YEAR}, /* "year" for ISO input */
|
|
{YESTERDAY, RESERV, DTK_YESTERDAY} /* yesterday midnight */
|
|
};
|
|
|
|
static const int szdatetktbl = sizeof datetktbl / sizeof datetktbl[0];
|
|
|
|
/*
|
|
* deltatktbl: same format as datetktbl, but holds keywords used to represent
|
|
* time units (eg, for intervals, and for EXTRACT).
|
|
*/
|
|
static const datetkn deltatktbl[] = {
|
|
/* token, type, value */
|
|
{"@", IGNORE_DTF, 0}, /* postgres relative prefix */
|
|
{DAGO, AGO, 0}, /* "ago" indicates negative time offset */
|
|
{"c", UNITS, DTK_CENTURY}, /* "century" relative */
|
|
{"cent", UNITS, DTK_CENTURY}, /* "century" relative */
|
|
{"centuries", UNITS, DTK_CENTURY}, /* "centuries" relative */
|
|
{DCENTURY, UNITS, DTK_CENTURY}, /* "century" relative */
|
|
{"d", UNITS, DTK_DAY}, /* "day" relative */
|
|
{DDAY, UNITS, DTK_DAY}, /* "day" relative */
|
|
{"days", UNITS, DTK_DAY}, /* "days" relative */
|
|
{"dec", UNITS, DTK_DECADE}, /* "decade" relative */
|
|
{DDECADE, UNITS, DTK_DECADE}, /* "decade" relative */
|
|
{"decades", UNITS, DTK_DECADE}, /* "decades" relative */
|
|
{"decs", UNITS, DTK_DECADE}, /* "decades" relative */
|
|
{"h", UNITS, DTK_HOUR}, /* "hour" relative */
|
|
{DHOUR, UNITS, DTK_HOUR}, /* "hour" relative */
|
|
{"hours", UNITS, DTK_HOUR}, /* "hours" relative */
|
|
{"hr", UNITS, DTK_HOUR}, /* "hour" relative */
|
|
{"hrs", UNITS, DTK_HOUR}, /* "hours" relative */
|
|
{"m", UNITS, DTK_MINUTE}, /* "minute" relative */
|
|
{"microsecon", UNITS, DTK_MICROSEC}, /* "microsecond" relative */
|
|
{"mil", UNITS, DTK_MILLENNIUM}, /* "millennium" relative */
|
|
{"millennia", UNITS, DTK_MILLENNIUM}, /* "millennia" relative */
|
|
{DMILLENNIUM, UNITS, DTK_MILLENNIUM}, /* "millennium" relative */
|
|
{"millisecon", UNITS, DTK_MILLISEC}, /* relative */
|
|
{"mils", UNITS, DTK_MILLENNIUM}, /* "millennia" relative */
|
|
{"min", UNITS, DTK_MINUTE}, /* "minute" relative */
|
|
{"mins", UNITS, DTK_MINUTE}, /* "minutes" relative */
|
|
{DMINUTE, UNITS, DTK_MINUTE}, /* "minute" relative */
|
|
{"minutes", UNITS, DTK_MINUTE}, /* "minutes" relative */
|
|
{"mon", UNITS, DTK_MONTH}, /* "months" relative */
|
|
{"mons", UNITS, DTK_MONTH}, /* "months" relative */
|
|
{DMONTH, UNITS, DTK_MONTH}, /* "month" relative */
|
|
{"months", UNITS, DTK_MONTH},
|
|
{"ms", UNITS, DTK_MILLISEC},
|
|
{"msec", UNITS, DTK_MILLISEC},
|
|
{DMILLISEC, UNITS, DTK_MILLISEC},
|
|
{"mseconds", UNITS, DTK_MILLISEC},
|
|
{"msecs", UNITS, DTK_MILLISEC},
|
|
{"qtr", UNITS, DTK_QUARTER}, /* "quarter" relative */
|
|
{DQUARTER, UNITS, DTK_QUARTER}, /* "quarter" relative */
|
|
{"s", UNITS, DTK_SECOND},
|
|
{"sec", UNITS, DTK_SECOND},
|
|
{DSECOND, UNITS, DTK_SECOND},
|
|
{"seconds", UNITS, DTK_SECOND},
|
|
{"secs", UNITS, DTK_SECOND},
|
|
{DTIMEZONE, UNITS, DTK_TZ}, /* "timezone" time offset */
|
|
{"timezone_h", UNITS, DTK_TZ_HOUR}, /* timezone hour units */
|
|
{"timezone_m", UNITS, DTK_TZ_MINUTE}, /* timezone minutes units */
|
|
{"us", UNITS, DTK_MICROSEC}, /* "microsecond" relative */
|
|
{"usec", UNITS, DTK_MICROSEC}, /* "microsecond" relative */
|
|
{DMICROSEC, UNITS, DTK_MICROSEC}, /* "microsecond" relative */
|
|
{"useconds", UNITS, DTK_MICROSEC}, /* "microseconds" relative */
|
|
{"usecs", UNITS, DTK_MICROSEC}, /* "microseconds" relative */
|
|
{"w", UNITS, DTK_WEEK}, /* "week" relative */
|
|
{DWEEK, UNITS, DTK_WEEK}, /* "week" relative */
|
|
{"weeks", UNITS, DTK_WEEK}, /* "weeks" relative */
|
|
{"y", UNITS, DTK_YEAR}, /* "year" relative */
|
|
{DYEAR, UNITS, DTK_YEAR}, /* "year" relative */
|
|
{"years", UNITS, DTK_YEAR}, /* "years" relative */
|
|
{"yr", UNITS, DTK_YEAR}, /* "year" relative */
|
|
{"yrs", UNITS, DTK_YEAR} /* "years" relative */
|
|
};
|
|
|
|
static const int szdeltatktbl = sizeof deltatktbl / sizeof deltatktbl[0];
|
|
|
|
static TimeZoneAbbrevTable *zoneabbrevtbl = NULL;
|
|
|
|
/* Caches of recent lookup results in the above tables */
|
|
|
|
static const datetkn *datecache[MAXDATEFIELDS] = {NULL};
|
|
|
|
static const datetkn *deltacache[MAXDATEFIELDS] = {NULL};
|
|
|
|
static const datetkn *abbrevcache[MAXDATEFIELDS] = {NULL};
|
|
|
|
|
|
/*
|
|
* Calendar time to Julian date conversions.
|
|
* Julian date is commonly used in astronomical applications,
|
|
* since it is numerically accurate and computationally simple.
|
|
* The algorithms here will accurately convert between Julian day
|
|
* and calendar date for all non-negative Julian days
|
|
* (i.e. from Nov 24, -4713 on).
|
|
*
|
|
* Rewritten to eliminate overflow problems. This now allows the
|
|
* routines to work correctly for all Julian day counts from
|
|
* 0 to 2147483647 (Nov 24, -4713 to Jun 3, 5874898) assuming
|
|
* a 32-bit integer. Longer types should also work to the limits
|
|
* of their precision.
|
|
*
|
|
* Actually, date2j() will work sanely, in the sense of producing
|
|
* valid negative Julian dates, significantly before Nov 24, -4713.
|
|
* We rely on it to do so back to Nov 1, -4713; see IS_VALID_JULIAN()
|
|
* and associated commentary in timestamp.h.
|
|
*/
|
|
|
|
int
|
|
date2j(int y, int m, int d)
|
|
{
|
|
int julian;
|
|
int century;
|
|
|
|
if (m > 2)
|
|
{
|
|
m += 1;
|
|
y += 4800;
|
|
}
|
|
else
|
|
{
|
|
m += 13;
|
|
y += 4799;
|
|
}
|
|
|
|
century = y / 100;
|
|
julian = y * 365 - 32167;
|
|
julian += y / 4 - century + century / 4;
|
|
julian += 7834 * m / 256 + d;
|
|
|
|
return julian;
|
|
} /* date2j() */
|
|
|
|
void
|
|
j2date(int jd, int *year, int *month, int *day)
|
|
{
|
|
unsigned int julian;
|
|
unsigned int quad;
|
|
unsigned int extra;
|
|
int y;
|
|
|
|
julian = jd;
|
|
julian += 32044;
|
|
quad = julian / 146097;
|
|
extra = (julian - quad * 146097) * 4 + 3;
|
|
julian += 60 + quad * 3 + extra / 146097;
|
|
quad = julian / 1461;
|
|
julian -= quad * 1461;
|
|
y = julian * 4 / 1461;
|
|
julian = ((y != 0) ? ((julian + 305) % 365) : ((julian + 306) % 366))
|
|
+ 123;
|
|
y += quad * 4;
|
|
*year = y - 4800;
|
|
quad = julian * 2141 / 65536;
|
|
*day = julian - 7834 * quad / 256;
|
|
*month = (quad + 10) % MONTHS_PER_YEAR + 1;
|
|
|
|
return;
|
|
} /* j2date() */
|
|
|
|
|
|
/*
|
|
* j2day - convert Julian date to day-of-week (0..6 == Sun..Sat)
|
|
*
|
|
* Note: various places use the locution j2day(date - 1) to produce a
|
|
* result according to the convention 0..6 = Mon..Sun. This is a bit of
|
|
* a crock, but will work as long as the computation here is just a modulo.
|
|
*/
|
|
int
|
|
j2day(int date)
|
|
{
|
|
date += 1;
|
|
date %= 7;
|
|
/* Cope if division truncates towards zero, as it probably does */
|
|
if (date < 0)
|
|
date += 7;
|
|
|
|
return date;
|
|
} /* j2day() */
|
|
|
|
|
|
/*
|
|
* GetCurrentDateTime()
|
|
*
|
|
* Get the transaction start time ("now()") broken down as a struct pg_tm.
|
|
*/
|
|
void
|
|
GetCurrentDateTime(struct pg_tm *tm)
|
|
{
|
|
int tz;
|
|
fsec_t fsec;
|
|
|
|
timestamp2tm(GetCurrentTransactionStartTimestamp(), &tz, tm, &fsec,
|
|
NULL, NULL);
|
|
/* Note: don't pass NULL tzp to timestamp2tm; affects behavior */
|
|
}
|
|
|
|
/*
|
|
* GetCurrentTimeUsec()
|
|
*
|
|
* Get the transaction start time ("now()") broken down as a struct pg_tm,
|
|
* including fractional seconds and timezone offset.
|
|
*/
|
|
void
|
|
GetCurrentTimeUsec(struct pg_tm *tm, fsec_t *fsec, int *tzp)
|
|
{
|
|
int tz;
|
|
|
|
timestamp2tm(GetCurrentTransactionStartTimestamp(), &tz, tm, fsec,
|
|
NULL, NULL);
|
|
/* Note: don't pass NULL tzp to timestamp2tm; affects behavior */
|
|
if (tzp != NULL)
|
|
*tzp = tz;
|
|
}
|
|
|
|
|
|
/*
|
|
* Append seconds and fractional seconds (if any) at *cp.
|
|
*
|
|
* precision is the max number of fraction digits, fillzeros says to
|
|
* pad to two integral-seconds digits.
|
|
*
|
|
* Returns a pointer to the new end of string. No NUL terminator is put
|
|
* there; callers are responsible for NUL terminating str themselves.
|
|
*
|
|
* Note that any sign is stripped from the input seconds values.
|
|
*/
|
|
static char *
|
|
AppendSeconds(char *cp, int sec, fsec_t fsec, int precision, bool fillzeros)
|
|
{
|
|
Assert(precision >= 0);
|
|
|
|
if (fillzeros)
|
|
cp = pg_ltostr_zeropad(cp, Abs(sec), 2);
|
|
else
|
|
cp = pg_ltostr(cp, Abs(sec));
|
|
|
|
/* fsec_t is just an int32 */
|
|
if (fsec != 0)
|
|
{
|
|
int32 value = Abs(fsec);
|
|
char *end = &cp[precision + 1];
|
|
bool gotnonzero = false;
|
|
|
|
*cp++ = '.';
|
|
|
|
/*
|
|
* Append the fractional seconds part. Note that we don't want any
|
|
* trailing zeros here, so since we're building the number in reverse
|
|
* we'll skip appending zeros until we've output a non-zero digit.
|
|
*/
|
|
while (precision--)
|
|
{
|
|
int32 oldval = value;
|
|
int32 remainder;
|
|
|
|
value /= 10;
|
|
remainder = oldval - value * 10;
|
|
|
|
/* check if we got a non-zero */
|
|
if (remainder)
|
|
gotnonzero = true;
|
|
|
|
if (gotnonzero)
|
|
cp[precision] = '0' + remainder;
|
|
else
|
|
end = &cp[precision];
|
|
}
|
|
|
|
/*
|
|
* If we still have a non-zero value then precision must have not been
|
|
* enough to print the number. We punt the problem to pg_ltostr(),
|
|
* which will generate a correct answer in the minimum valid width.
|
|
*/
|
|
if (value)
|
|
return pg_ltostr(cp, Abs(fsec));
|
|
|
|
return end;
|
|
}
|
|
else
|
|
return cp;
|
|
}
|
|
|
|
|
|
/*
|
|
* Variant of above that's specialized to timestamp case.
|
|
*
|
|
* Returns a pointer to the new end of string. No NUL terminator is put
|
|
* there; callers are responsible for NUL terminating str themselves.
|
|
*/
|
|
static char *
|
|
AppendTimestampSeconds(char *cp, struct pg_tm *tm, fsec_t fsec)
|
|
{
|
|
return AppendSeconds(cp, tm->tm_sec, fsec, MAX_TIMESTAMP_PRECISION, true);
|
|
}
|
|
|
|
/*
|
|
* Multiply frac by scale (to produce seconds) and add to *tm & *fsec.
|
|
* We assume the input frac is less than 1 so overflow is not an issue.
|
|
*/
|
|
static void
|
|
AdjustFractSeconds(double frac, struct pg_tm *tm, fsec_t *fsec, int scale)
|
|
{
|
|
int sec;
|
|
|
|
if (frac == 0)
|
|
return;
|
|
frac *= scale;
|
|
sec = (int) frac;
|
|
tm->tm_sec += sec;
|
|
frac -= sec;
|
|
*fsec += rint(frac * 1000000);
|
|
}
|
|
|
|
/* As above, but initial scale produces days */
|
|
static void
|
|
AdjustFractDays(double frac, struct pg_tm *tm, fsec_t *fsec, int scale)
|
|
{
|
|
int extra_days;
|
|
|
|
if (frac == 0)
|
|
return;
|
|
frac *= scale;
|
|
extra_days = (int) frac;
|
|
tm->tm_mday += extra_days;
|
|
frac -= extra_days;
|
|
AdjustFractSeconds(frac, tm, fsec, SECS_PER_DAY);
|
|
}
|
|
|
|
/* Fetch a fractional-second value with suitable error checking */
|
|
static int
|
|
ParseFractionalSecond(char *cp, fsec_t *fsec)
|
|
{
|
|
double frac;
|
|
|
|
/* Caller should always pass the start of the fraction part */
|
|
Assert(*cp == '.');
|
|
errno = 0;
|
|
frac = strtod(cp, &cp);
|
|
/* check for parse failure */
|
|
if (*cp != '\0' || errno != 0)
|
|
return DTERR_BAD_FORMAT;
|
|
*fsec = rint(frac * 1000000);
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* ParseDateTime()
|
|
* Break string into tokens based on a date/time context.
|
|
* Returns 0 if successful, DTERR code if bogus input detected.
|
|
*
|
|
* timestr - the input string
|
|
* workbuf - workspace for field string storage. This must be
|
|
* larger than the largest legal input for this datetime type --
|
|
* some additional space will be needed to NUL terminate fields.
|
|
* buflen - the size of workbuf
|
|
* field[] - pointers to field strings are returned in this array
|
|
* ftype[] - field type indicators are returned in this array
|
|
* maxfields - dimensions of the above two arrays
|
|
* *numfields - set to the actual number of fields detected
|
|
*
|
|
* The fields extracted from the input are stored as separate,
|
|
* null-terminated strings in the workspace at workbuf. Any text is
|
|
* converted to lower case.
|
|
*
|
|
* Several field types are assigned:
|
|
* DTK_NUMBER - digits and (possibly) a decimal point
|
|
* DTK_DATE - digits and two delimiters, or digits and text
|
|
* DTK_TIME - digits, colon delimiters, and possibly a decimal point
|
|
* DTK_STRING - text (no digits or punctuation)
|
|
* DTK_SPECIAL - leading "+" or "-" followed by text
|
|
* DTK_TZ - leading "+" or "-" followed by digits (also eats ':', '.', '-')
|
|
*
|
|
* Note that some field types can hold unexpected items:
|
|
* DTK_NUMBER can hold date fields (yy.ddd)
|
|
* DTK_STRING can hold months (January) and time zones (PST)
|
|
* DTK_DATE can hold time zone names (America/New_York, GMT-8)
|
|
*/
|
|
int
|
|
ParseDateTime(const char *timestr, char *workbuf, size_t buflen,
|
|
char **field, int *ftype, int maxfields, int *numfields)
|
|
{
|
|
int nf = 0;
|
|
const char *cp = timestr;
|
|
char *bufp = workbuf;
|
|
const char *bufend = workbuf + buflen;
|
|
|
|
/*
|
|
* Set the character pointed-to by "bufptr" to "newchar", and increment
|
|
* "bufptr". "end" gives the end of the buffer -- we return an error if
|
|
* there is no space left to append a character to the buffer. Note that
|
|
* "bufptr" is evaluated twice.
|
|
*/
|
|
#define APPEND_CHAR(bufptr, end, newchar) \
|
|
do \
|
|
{ \
|
|
if (((bufptr) + 1) >= (end)) \
|
|
return DTERR_BAD_FORMAT; \
|
|
*(bufptr)++ = newchar; \
|
|
} while (0)
|
|
|
|
/* outer loop through fields */
|
|
while (*cp != '\0')
|
|
{
|
|
/* Ignore spaces between fields */
|
|
if (isspace((unsigned char) *cp))
|
|
{
|
|
cp++;
|
|
continue;
|
|
}
|
|
|
|
/* Record start of current field */
|
|
if (nf >= maxfields)
|
|
return DTERR_BAD_FORMAT;
|
|
field[nf] = bufp;
|
|
|
|
/* leading digit? then date or time */
|
|
if (isdigit((unsigned char) *cp))
|
|
{
|
|
APPEND_CHAR(bufp, bufend, *cp++);
|
|
while (isdigit((unsigned char) *cp))
|
|
APPEND_CHAR(bufp, bufend, *cp++);
|
|
|
|
/* time field? */
|
|
if (*cp == ':')
|
|
{
|
|
ftype[nf] = DTK_TIME;
|
|
APPEND_CHAR(bufp, bufend, *cp++);
|
|
while (isdigit((unsigned char) *cp) ||
|
|
(*cp == ':') || (*cp == '.'))
|
|
APPEND_CHAR(bufp, bufend, *cp++);
|
|
}
|
|
/* date field? allow embedded text month */
|
|
else if (*cp == '-' || *cp == '/' || *cp == '.')
|
|
{
|
|
/* save delimiting character to use later */
|
|
char delim = *cp;
|
|
|
|
APPEND_CHAR(bufp, bufend, *cp++);
|
|
/* second field is all digits? then no embedded text month */
|
|
if (isdigit((unsigned char) *cp))
|
|
{
|
|
ftype[nf] = ((delim == '.') ? DTK_NUMBER : DTK_DATE);
|
|
while (isdigit((unsigned char) *cp))
|
|
APPEND_CHAR(bufp, bufend, *cp++);
|
|
|
|
/*
|
|
* insist that the delimiters match to get a three-field
|
|
* date.
|
|
*/
|
|
if (*cp == delim)
|
|
{
|
|
ftype[nf] = DTK_DATE;
|
|
APPEND_CHAR(bufp, bufend, *cp++);
|
|
while (isdigit((unsigned char) *cp) || *cp == delim)
|
|
APPEND_CHAR(bufp, bufend, *cp++);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
ftype[nf] = DTK_DATE;
|
|
while (isalnum((unsigned char) *cp) || *cp == delim)
|
|
APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* otherwise, number only and will determine year, month, day, or
|
|
* concatenated fields later...
|
|
*/
|
|
else
|
|
ftype[nf] = DTK_NUMBER;
|
|
}
|
|
/* Leading decimal point? Then fractional seconds... */
|
|
else if (*cp == '.')
|
|
{
|
|
APPEND_CHAR(bufp, bufend, *cp++);
|
|
while (isdigit((unsigned char) *cp))
|
|
APPEND_CHAR(bufp, bufend, *cp++);
|
|
|
|
ftype[nf] = DTK_NUMBER;
|
|
}
|
|
|
|
/*
|
|
* text? then date string, month, day of week, special, or timezone
|
|
*/
|
|
else if (isalpha((unsigned char) *cp))
|
|
{
|
|
bool is_date;
|
|
|
|
ftype[nf] = DTK_STRING;
|
|
APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++));
|
|
while (isalpha((unsigned char) *cp))
|
|
APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++));
|
|
|
|
/*
|
|
* Dates can have embedded '-', '/', or '.' separators. It could
|
|
* also be a timezone name containing embedded '/', '+', '-', '_',
|
|
* or ':' (but '_' or ':' can't be the first punctuation). If the
|
|
* next character is a digit or '+', we need to check whether what
|
|
* we have so far is a recognized non-timezone keyword --- if so,
|
|
* don't believe that this is the start of a timezone.
|
|
*/
|
|
is_date = false;
|
|
if (*cp == '-' || *cp == '/' || *cp == '.')
|
|
is_date = true;
|
|
else if (*cp == '+' || isdigit((unsigned char) *cp))
|
|
{
|
|
*bufp = '\0'; /* null-terminate current field value */
|
|
/* we need search only the core token table, not TZ names */
|
|
if (datebsearch(field[nf], datetktbl, szdatetktbl) == NULL)
|
|
is_date = true;
|
|
}
|
|
if (is_date)
|
|
{
|
|
ftype[nf] = DTK_DATE;
|
|
do
|
|
{
|
|
APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++));
|
|
} while (*cp == '+' || *cp == '-' ||
|
|
*cp == '/' || *cp == '_' ||
|
|
*cp == '.' || *cp == ':' ||
|
|
isalnum((unsigned char) *cp));
|
|
}
|
|
}
|
|
/* sign? then special or numeric timezone */
|
|
else if (*cp == '+' || *cp == '-')
|
|
{
|
|
APPEND_CHAR(bufp, bufend, *cp++);
|
|
/* soak up leading whitespace */
|
|
while (isspace((unsigned char) *cp))
|
|
cp++;
|
|
/* numeric timezone? */
|
|
/* note that "DTK_TZ" could also be a signed float or yyyy-mm */
|
|
if (isdigit((unsigned char) *cp))
|
|
{
|
|
ftype[nf] = DTK_TZ;
|
|
APPEND_CHAR(bufp, bufend, *cp++);
|
|
while (isdigit((unsigned char) *cp) ||
|
|
*cp == ':' || *cp == '.' || *cp == '-')
|
|
APPEND_CHAR(bufp, bufend, *cp++);
|
|
}
|
|
/* special? */
|
|
else if (isalpha((unsigned char) *cp))
|
|
{
|
|
ftype[nf] = DTK_SPECIAL;
|
|
APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++));
|
|
while (isalpha((unsigned char) *cp))
|
|
APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++));
|
|
}
|
|
/* otherwise something wrong... */
|
|
else
|
|
return DTERR_BAD_FORMAT;
|
|
}
|
|
/* ignore other punctuation but use as delimiter */
|
|
else if (ispunct((unsigned char) *cp))
|
|
{
|
|
cp++;
|
|
continue;
|
|
}
|
|
/* otherwise, something is not right... */
|
|
else
|
|
return DTERR_BAD_FORMAT;
|
|
|
|
/* force in a delimiter after each field */
|
|
*bufp++ = '\0';
|
|
nf++;
|
|
}
|
|
|
|
*numfields = nf;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* DecodeDateTime()
|
|
* Interpret previously parsed fields for general date and time.
|
|
* Return 0 if full date, 1 if only time, and negative DTERR code if problems.
|
|
* (Currently, all callers treat 1 as an error return too.)
|
|
*
|
|
* External format(s):
|
|
* "<weekday> <month>-<day>-<year> <hour>:<minute>:<second>"
|
|
* "Fri Feb-7-1997 15:23:27"
|
|
* "Feb-7-1997 15:23:27"
|
|
* "2-7-1997 15:23:27"
|
|
* "1997-2-7 15:23:27"
|
|
* "1997.038 15:23:27" (day of year 1-366)
|
|
* Also supports input in compact time:
|
|
* "970207 152327"
|
|
* "97038 152327"
|
|
* "20011225T040506.789-07"
|
|
*
|
|
* Use the system-provided functions to get the current time zone
|
|
* if not specified in the input string.
|
|
*
|
|
* If the date is outside the range of pg_time_t (in practice that could only
|
|
* happen if pg_time_t is just 32 bits), then assume UTC time zone - thomas
|
|
* 1997-05-27
|
|
*/
|
|
int
|
|
DecodeDateTime(char **field, int *ftype, int nf,
|
|
int *dtype, struct pg_tm *tm, fsec_t *fsec, int *tzp)
|
|
{
|
|
int fmask = 0,
|
|
tmask,
|
|
type;
|
|
int ptype = 0; /* "prefix type" for ISO y2001m02d04 format */
|
|
int i;
|
|
int val;
|
|
int dterr;
|
|
int mer = HR24;
|
|
bool haveTextMonth = false;
|
|
bool isjulian = false;
|
|
bool is2digits = false;
|
|
bool bc = false;
|
|
pg_tz *namedTz = NULL;
|
|
pg_tz *abbrevTz = NULL;
|
|
pg_tz *valtz;
|
|
char *abbrev = NULL;
|
|
struct pg_tm cur_tm;
|
|
|
|
/*
|
|
* We'll insist on at least all of the date fields, but initialize the
|
|
* remaining fields in case they are not set later...
|
|
*/
|
|
*dtype = DTK_DATE;
|
|
tm->tm_hour = 0;
|
|
tm->tm_min = 0;
|
|
tm->tm_sec = 0;
|
|
*fsec = 0;
|
|
/* don't know daylight savings time status apriori */
|
|
tm->tm_isdst = -1;
|
|
if (tzp != NULL)
|
|
*tzp = 0;
|
|
|
|
for (i = 0; i < nf; i++)
|
|
{
|
|
switch (ftype[i])
|
|
{
|
|
case DTK_DATE:
|
|
|
|
/*
|
|
* Integral julian day with attached time zone? All other
|
|
* forms with JD will be separated into distinct fields, so we
|
|
* handle just this case here.
|
|
*/
|
|
if (ptype == DTK_JULIAN)
|
|
{
|
|
char *cp;
|
|
int val;
|
|
|
|
if (tzp == NULL)
|
|
return DTERR_BAD_FORMAT;
|
|
|
|
errno = 0;
|
|
val = strtoint(field[i], &cp, 10);
|
|
if (errno == ERANGE || val < 0)
|
|
return DTERR_FIELD_OVERFLOW;
|
|
|
|
j2date(val, &tm->tm_year, &tm->tm_mon, &tm->tm_mday);
|
|
isjulian = true;
|
|
|
|
/* Get the time zone from the end of the string */
|
|
dterr = DecodeTimezone(cp, tzp);
|
|
if (dterr)
|
|
return dterr;
|
|
|
|
tmask = DTK_DATE_M | DTK_TIME_M | DTK_M(TZ);
|
|
ptype = 0;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Already have a date? Then this might be a time zone name
|
|
* with embedded punctuation (e.g. "America/New_York") or a
|
|
* run-together time with trailing time zone (e.g. hhmmss-zz).
|
|
* - thomas 2001-12-25
|
|
*
|
|
* We consider it a time zone if we already have month & day.
|
|
* This is to allow the form "mmm dd hhmmss tz year", which
|
|
* we've historically accepted.
|
|
*/
|
|
else if (ptype != 0 ||
|
|
((fmask & (DTK_M(MONTH) | DTK_M(DAY))) ==
|
|
(DTK_M(MONTH) | DTK_M(DAY))))
|
|
{
|
|
/* No time zone accepted? Then quit... */
|
|
if (tzp == NULL)
|
|
return DTERR_BAD_FORMAT;
|
|
|
|
if (isdigit((unsigned char) *field[i]) || ptype != 0)
|
|
{
|
|
char *cp;
|
|
|
|
if (ptype != 0)
|
|
{
|
|
/* Sanity check; should not fail this test */
|
|
if (ptype != DTK_TIME)
|
|
return DTERR_BAD_FORMAT;
|
|
ptype = 0;
|
|
}
|
|
|
|
/*
|
|
* Starts with a digit but we already have a time
|
|
* field? Then we are in trouble with a date and time
|
|
* already...
|
|
*/
|
|
if ((fmask & DTK_TIME_M) == DTK_TIME_M)
|
|
return DTERR_BAD_FORMAT;
|
|
|
|
if ((cp = strchr(field[i], '-')) == NULL)
|
|
return DTERR_BAD_FORMAT;
|
|
|
|
/* Get the time zone from the end of the string */
|
|
dterr = DecodeTimezone(cp, tzp);
|
|
if (dterr)
|
|
return dterr;
|
|
*cp = '\0';
|
|
|
|
/*
|
|
* Then read the rest of the field as a concatenated
|
|
* time
|
|
*/
|
|
dterr = DecodeNumberField(strlen(field[i]), field[i],
|
|
fmask,
|
|
&tmask, tm,
|
|
fsec, &is2digits);
|
|
if (dterr < 0)
|
|
return dterr;
|
|
|
|
/*
|
|
* modify tmask after returning from
|
|
* DecodeNumberField()
|
|
*/
|
|
tmask |= DTK_M(TZ);
|
|
}
|
|
else
|
|
{
|
|
namedTz = pg_tzset(field[i]);
|
|
if (!namedTz)
|
|
{
|
|
/*
|
|
* We should return an error code instead of
|
|
* ereport'ing directly, but then there is no way
|
|
* to report the bad time zone name.
|
|
*/
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
|
|
errmsg("time zone \"%s\" not recognized",
|
|
field[i])));
|
|
}
|
|
/* we'll apply the zone setting below */
|
|
tmask = DTK_M(TZ);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
dterr = DecodeDate(field[i], fmask,
|
|
&tmask, &is2digits, tm);
|
|
if (dterr)
|
|
return dterr;
|
|
}
|
|
break;
|
|
|
|
case DTK_TIME:
|
|
|
|
/*
|
|
* This might be an ISO time following a "t" field.
|
|
*/
|
|
if (ptype != 0)
|
|
{
|
|
/* Sanity check; should not fail this test */
|
|
if (ptype != DTK_TIME)
|
|
return DTERR_BAD_FORMAT;
|
|
ptype = 0;
|
|
}
|
|
dterr = DecodeTime(field[i], fmask, INTERVAL_FULL_RANGE,
|
|
&tmask, tm, fsec);
|
|
if (dterr)
|
|
return dterr;
|
|
|
|
/*
|
|
* Check upper limit on hours; other limits checked in
|
|
* DecodeTime()
|
|
*/
|
|
/* test for > 24:00:00 */
|
|
if (tm->tm_hour > HOURS_PER_DAY ||
|
|
(tm->tm_hour == HOURS_PER_DAY &&
|
|
(tm->tm_min > 0 || tm->tm_sec > 0 || *fsec > 0)))
|
|
return DTERR_FIELD_OVERFLOW;
|
|
break;
|
|
|
|
case DTK_TZ:
|
|
{
|
|
int tz;
|
|
|
|
if (tzp == NULL)
|
|
return DTERR_BAD_FORMAT;
|
|
|
|
dterr = DecodeTimezone(field[i], &tz);
|
|
if (dterr)
|
|
return dterr;
|
|
*tzp = tz;
|
|
tmask = DTK_M(TZ);
|
|
}
|
|
break;
|
|
|
|
case DTK_NUMBER:
|
|
|
|
/*
|
|
* Was this an "ISO date" with embedded field labels? An
|
|
* example is "y2001m02d04" - thomas 2001-02-04
|
|
*/
|
|
if (ptype != 0)
|
|
{
|
|
char *cp;
|
|
int val;
|
|
|
|
errno = 0;
|
|
val = strtoint(field[i], &cp, 10);
|
|
if (errno == ERANGE)
|
|
return DTERR_FIELD_OVERFLOW;
|
|
|
|
/*
|
|
* only a few kinds are allowed to have an embedded
|
|
* decimal
|
|
*/
|
|
if (*cp == '.')
|
|
switch (ptype)
|
|
{
|
|
case DTK_JULIAN:
|
|
case DTK_TIME:
|
|
case DTK_SECOND:
|
|
break;
|
|
default:
|
|
return DTERR_BAD_FORMAT;
|
|
break;
|
|
}
|
|
else if (*cp != '\0')
|
|
return DTERR_BAD_FORMAT;
|
|
|
|
switch (ptype)
|
|
{
|
|
case DTK_YEAR:
|
|
tm->tm_year = val;
|
|
tmask = DTK_M(YEAR);
|
|
break;
|
|
|
|
case DTK_MONTH:
|
|
|
|
/*
|
|
* already have a month and hour? then assume
|
|
* minutes
|
|
*/
|
|
if ((fmask & DTK_M(MONTH)) != 0 &&
|
|
(fmask & DTK_M(HOUR)) != 0)
|
|
{
|
|
tm->tm_min = val;
|
|
tmask = DTK_M(MINUTE);
|
|
}
|
|
else
|
|
{
|
|
tm->tm_mon = val;
|
|
tmask = DTK_M(MONTH);
|
|
}
|
|
break;
|
|
|
|
case DTK_DAY:
|
|
tm->tm_mday = val;
|
|
tmask = DTK_M(DAY);
|
|
break;
|
|
|
|
case DTK_HOUR:
|
|
tm->tm_hour = val;
|
|
tmask = DTK_M(HOUR);
|
|
break;
|
|
|
|
case DTK_MINUTE:
|
|
tm->tm_min = val;
|
|
tmask = DTK_M(MINUTE);
|
|
break;
|
|
|
|
case DTK_SECOND:
|
|
tm->tm_sec = val;
|
|
tmask = DTK_M(SECOND);
|
|
if (*cp == '.')
|
|
{
|
|
dterr = ParseFractionalSecond(cp, fsec);
|
|
if (dterr)
|
|
return dterr;
|
|
tmask = DTK_ALL_SECS_M;
|
|
}
|
|
break;
|
|
|
|
case DTK_TZ:
|
|
tmask = DTK_M(TZ);
|
|
dterr = DecodeTimezone(field[i], tzp);
|
|
if (dterr)
|
|
return dterr;
|
|
break;
|
|
|
|
case DTK_JULIAN:
|
|
/* previous field was a label for "julian date" */
|
|
if (val < 0)
|
|
return DTERR_FIELD_OVERFLOW;
|
|
tmask = DTK_DATE_M;
|
|
j2date(val, &tm->tm_year, &tm->tm_mon, &tm->tm_mday);
|
|
isjulian = true;
|
|
|
|
/* fractional Julian Day? */
|
|
if (*cp == '.')
|
|
{
|
|
double time;
|
|
|
|
errno = 0;
|
|
time = strtod(cp, &cp);
|
|
if (*cp != '\0' || errno != 0)
|
|
return DTERR_BAD_FORMAT;
|
|
time *= USECS_PER_DAY;
|
|
dt2time(time,
|
|
&tm->tm_hour, &tm->tm_min,
|
|
&tm->tm_sec, fsec);
|
|
tmask |= DTK_TIME_M;
|
|
}
|
|
break;
|
|
|
|
case DTK_TIME:
|
|
/* previous field was "t" for ISO time */
|
|
dterr = DecodeNumberField(strlen(field[i]), field[i],
|
|
(fmask | DTK_DATE_M),
|
|
&tmask, tm,
|
|
fsec, &is2digits);
|
|
if (dterr < 0)
|
|
return dterr;
|
|
if (tmask != DTK_TIME_M)
|
|
return DTERR_BAD_FORMAT;
|
|
break;
|
|
|
|
default:
|
|
return DTERR_BAD_FORMAT;
|
|
break;
|
|
}
|
|
|
|
ptype = 0;
|
|
*dtype = DTK_DATE;
|
|
}
|
|
else
|
|
{
|
|
char *cp;
|
|
int flen;
|
|
|
|
flen = strlen(field[i]);
|
|
cp = strchr(field[i], '.');
|
|
|
|
/* Embedded decimal and no date yet? */
|
|
if (cp != NULL && !(fmask & DTK_DATE_M))
|
|
{
|
|
dterr = DecodeDate(field[i], fmask,
|
|
&tmask, &is2digits, tm);
|
|
if (dterr)
|
|
return dterr;
|
|
}
|
|
/* embedded decimal and several digits before? */
|
|
else if (cp != NULL && flen - strlen(cp) > 2)
|
|
{
|
|
/*
|
|
* Interpret as a concatenated date or time Set the
|
|
* type field to allow decoding other fields later.
|
|
* Example: 20011223 or 040506
|
|
*/
|
|
dterr = DecodeNumberField(flen, field[i], fmask,
|
|
&tmask, tm,
|
|
fsec, &is2digits);
|
|
if (dterr < 0)
|
|
return dterr;
|
|
}
|
|
|
|
/*
|
|
* Is this a YMD or HMS specification, or a year number?
|
|
* YMD and HMS are required to be six digits or more, so
|
|
* if it is 5 digits, it is a year. If it is six or more
|
|
* digits, we assume it is YMD or HMS unless no date and
|
|
* no time values have been specified. This forces 6+
|
|
* digit years to be at the end of the string, or to use
|
|
* the ISO date specification.
|
|
*/
|
|
else if (flen >= 6 && (!(fmask & DTK_DATE_M) ||
|
|
!(fmask & DTK_TIME_M)))
|
|
{
|
|
dterr = DecodeNumberField(flen, field[i], fmask,
|
|
&tmask, tm,
|
|
fsec, &is2digits);
|
|
if (dterr < 0)
|
|
return dterr;
|
|
}
|
|
/* otherwise it is a single date/time field... */
|
|
else
|
|
{
|
|
dterr = DecodeNumber(flen, field[i],
|
|
haveTextMonth, fmask,
|
|
&tmask, tm,
|
|
fsec, &is2digits);
|
|
if (dterr)
|
|
return dterr;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case DTK_STRING:
|
|
case DTK_SPECIAL:
|
|
/* timezone abbrevs take precedence over built-in tokens */
|
|
type = DecodeTimezoneAbbrev(i, field[i], &val, &valtz);
|
|
if (type == UNKNOWN_FIELD)
|
|
type = DecodeSpecial(i, field[i], &val);
|
|
if (type == IGNORE_DTF)
|
|
continue;
|
|
|
|
tmask = DTK_M(type);
|
|
switch (type)
|
|
{
|
|
case RESERV:
|
|
switch (val)
|
|
{
|
|
case DTK_NOW:
|
|
tmask = (DTK_DATE_M | DTK_TIME_M | DTK_M(TZ));
|
|
*dtype = DTK_DATE;
|
|
GetCurrentTimeUsec(tm, fsec, tzp);
|
|
break;
|
|
|
|
case DTK_YESTERDAY:
|
|
tmask = DTK_DATE_M;
|
|
*dtype = DTK_DATE;
|
|
GetCurrentDateTime(&cur_tm);
|
|
j2date(date2j(cur_tm.tm_year, cur_tm.tm_mon, cur_tm.tm_mday) - 1,
|
|
&tm->tm_year, &tm->tm_mon, &tm->tm_mday);
|
|
break;
|
|
|
|
case DTK_TODAY:
|
|
tmask = DTK_DATE_M;
|
|
*dtype = DTK_DATE;
|
|
GetCurrentDateTime(&cur_tm);
|
|
tm->tm_year = cur_tm.tm_year;
|
|
tm->tm_mon = cur_tm.tm_mon;
|
|
tm->tm_mday = cur_tm.tm_mday;
|
|
break;
|
|
|
|
case DTK_TOMORROW:
|
|
tmask = DTK_DATE_M;
|
|
*dtype = DTK_DATE;
|
|
GetCurrentDateTime(&cur_tm);
|
|
j2date(date2j(cur_tm.tm_year, cur_tm.tm_mon, cur_tm.tm_mday) + 1,
|
|
&tm->tm_year, &tm->tm_mon, &tm->tm_mday);
|
|
break;
|
|
|
|
case DTK_ZULU:
|
|
tmask = (DTK_TIME_M | DTK_M(TZ));
|
|
*dtype = DTK_DATE;
|
|
tm->tm_hour = 0;
|
|
tm->tm_min = 0;
|
|
tm->tm_sec = 0;
|
|
if (tzp != NULL)
|
|
*tzp = 0;
|
|
break;
|
|
|
|
default:
|
|
*dtype = val;
|
|
}
|
|
|
|
break;
|
|
|
|
case MONTH:
|
|
|
|
/*
|
|
* already have a (numeric) month? then see if we can
|
|
* substitute...
|
|
*/
|
|
if ((fmask & DTK_M(MONTH)) && !haveTextMonth &&
|
|
!(fmask & DTK_M(DAY)) && tm->tm_mon >= 1 &&
|
|
tm->tm_mon <= 31)
|
|
{
|
|
tm->tm_mday = tm->tm_mon;
|
|
tmask = DTK_M(DAY);
|
|
}
|
|
haveTextMonth = true;
|
|
tm->tm_mon = val;
|
|
break;
|
|
|
|
case DTZMOD:
|
|
|
|
/*
|
|
* daylight savings time modifier (solves "MET DST"
|
|
* syntax)
|
|
*/
|
|
tmask |= DTK_M(DTZ);
|
|
tm->tm_isdst = 1;
|
|
if (tzp == NULL)
|
|
return DTERR_BAD_FORMAT;
|
|
*tzp -= val;
|
|
break;
|
|
|
|
case DTZ:
|
|
|
|
/*
|
|
* set mask for TZ here _or_ check for DTZ later when
|
|
* getting default timezone
|
|
*/
|
|
tmask |= DTK_M(TZ);
|
|
tm->tm_isdst = 1;
|
|
if (tzp == NULL)
|
|
return DTERR_BAD_FORMAT;
|
|
*tzp = -val;
|
|
break;
|
|
|
|
case TZ:
|
|
tm->tm_isdst = 0;
|
|
if (tzp == NULL)
|
|
return DTERR_BAD_FORMAT;
|
|
*tzp = -val;
|
|
break;
|
|
|
|
case DYNTZ:
|
|
tmask |= DTK_M(TZ);
|
|
if (tzp == NULL)
|
|
return DTERR_BAD_FORMAT;
|
|
/* we'll determine the actual offset later */
|
|
abbrevTz = valtz;
|
|
abbrev = field[i];
|
|
break;
|
|
|
|
case AMPM:
|
|
mer = val;
|
|
break;
|
|
|
|
case ADBC:
|
|
bc = (val == BC);
|
|
break;
|
|
|
|
case DOW:
|
|
tm->tm_wday = val;
|
|
break;
|
|
|
|
case UNITS:
|
|
tmask = 0;
|
|
ptype = val;
|
|
break;
|
|
|
|
case ISOTIME:
|
|
|
|
/*
|
|
* This is a filler field "t" indicating that the next
|
|
* field is time. Try to verify that this is sensible.
|
|
*/
|
|
tmask = 0;
|
|
|
|
/* No preceding date? Then quit... */
|
|
if ((fmask & DTK_DATE_M) != DTK_DATE_M)
|
|
return DTERR_BAD_FORMAT;
|
|
|
|
/***
|
|
* We will need one of the following fields:
|
|
* DTK_NUMBER should be hhmmss.fff
|
|
* DTK_TIME should be hh:mm:ss.fff
|
|
* DTK_DATE should be hhmmss-zz
|
|
***/
|
|
if (i >= nf - 1 ||
|
|
(ftype[i + 1] != DTK_NUMBER &&
|
|
ftype[i + 1] != DTK_TIME &&
|
|
ftype[i + 1] != DTK_DATE))
|
|
return DTERR_BAD_FORMAT;
|
|
|
|
ptype = val;
|
|
break;
|
|
|
|
case UNKNOWN_FIELD:
|
|
|
|
/*
|
|
* Before giving up and declaring error, check to see
|
|
* if it is an all-alpha timezone name.
|
|
*/
|
|
namedTz = pg_tzset(field[i]);
|
|
if (!namedTz)
|
|
return DTERR_BAD_FORMAT;
|
|
/* we'll apply the zone setting below */
|
|
tmask = DTK_M(TZ);
|
|
break;
|
|
|
|
default:
|
|
return DTERR_BAD_FORMAT;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
return DTERR_BAD_FORMAT;
|
|
}
|
|
|
|
if (tmask & fmask)
|
|
return DTERR_BAD_FORMAT;
|
|
fmask |= tmask;
|
|
} /* end loop over fields */
|
|
|
|
/* do final checking/adjustment of Y/M/D fields */
|
|
dterr = ValidateDate(fmask, isjulian, is2digits, bc, tm);
|
|
if (dterr)
|
|
return dterr;
|
|
|
|
/* handle AM/PM */
|
|
if (mer != HR24 && tm->tm_hour > HOURS_PER_DAY / 2)
|
|
return DTERR_FIELD_OVERFLOW;
|
|
if (mer == AM && tm->tm_hour == HOURS_PER_DAY / 2)
|
|
tm->tm_hour = 0;
|
|
else if (mer == PM && tm->tm_hour != HOURS_PER_DAY / 2)
|
|
tm->tm_hour += HOURS_PER_DAY / 2;
|
|
|
|
/* do additional checking for full date specs... */
|
|
if (*dtype == DTK_DATE)
|
|
{
|
|
if ((fmask & DTK_DATE_M) != DTK_DATE_M)
|
|
{
|
|
if ((fmask & DTK_TIME_M) == DTK_TIME_M)
|
|
return 1;
|
|
return DTERR_BAD_FORMAT;
|
|
}
|
|
|
|
/*
|
|
* If we had a full timezone spec, compute the offset (we could not do
|
|
* it before, because we need the date to resolve DST status).
|
|
*/
|
|
if (namedTz != NULL)
|
|
{
|
|
/* daylight savings time modifier disallowed with full TZ */
|
|
if (fmask & DTK_M(DTZMOD))
|
|
return DTERR_BAD_FORMAT;
|
|
|
|
*tzp = DetermineTimeZoneOffset(tm, namedTz);
|
|
}
|
|
|
|
/*
|
|
* Likewise, if we had a dynamic timezone abbreviation, resolve it
|
|
* now.
|
|
*/
|
|
if (abbrevTz != NULL)
|
|
{
|
|
/* daylight savings time modifier disallowed with dynamic TZ */
|
|
if (fmask & DTK_M(DTZMOD))
|
|
return DTERR_BAD_FORMAT;
|
|
|
|
*tzp = DetermineTimeZoneAbbrevOffset(tm, abbrev, abbrevTz);
|
|
}
|
|
|
|
/* timezone not specified? then use session timezone */
|
|
if (tzp != NULL && !(fmask & DTK_M(TZ)))
|
|
{
|
|
/*
|
|
* daylight savings time modifier but no standard timezone? then
|
|
* error
|
|
*/
|
|
if (fmask & DTK_M(DTZMOD))
|
|
return DTERR_BAD_FORMAT;
|
|
|
|
*tzp = DetermineTimeZoneOffset(tm, session_timezone);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* DetermineTimeZoneOffset()
|
|
*
|
|
* Given a struct pg_tm in which tm_year, tm_mon, tm_mday, tm_hour, tm_min,
|
|
* and tm_sec fields are set, and a zic-style time zone definition, determine
|
|
* the applicable GMT offset and daylight-savings status at that time.
|
|
* Set the struct pg_tm's tm_isdst field accordingly, and return the GMT
|
|
* offset as the function result.
|
|
*
|
|
* Note: if the date is out of the range we can deal with, we return zero
|
|
* as the GMT offset and set tm_isdst = 0. We don't throw an error here,
|
|
* though probably some higher-level code will.
|
|
*/
|
|
int
|
|
DetermineTimeZoneOffset(struct pg_tm *tm, pg_tz *tzp)
|
|
{
|
|
pg_time_t t;
|
|
|
|
return DetermineTimeZoneOffsetInternal(tm, tzp, &t);
|
|
}
|
|
|
|
|
|
/* DetermineTimeZoneOffsetInternal()
|
|
*
|
|
* As above, but also return the actual UTC time imputed to the date/time
|
|
* into *tp.
|
|
*
|
|
* In event of an out-of-range date, we punt by returning zero into *tp.
|
|
* This is okay for the immediate callers but is a good reason for not
|
|
* exposing this worker function globally.
|
|
*
|
|
* Note: it might seem that we should use mktime() for this, but bitter
|
|
* experience teaches otherwise. This code is much faster than most versions
|
|
* of mktime(), anyway.
|
|
*/
|
|
static int
|
|
DetermineTimeZoneOffsetInternal(struct pg_tm *tm, pg_tz *tzp, pg_time_t *tp)
|
|
{
|
|
int date,
|
|
sec;
|
|
pg_time_t day,
|
|
mytime,
|
|
prevtime,
|
|
boundary,
|
|
beforetime,
|
|
aftertime;
|
|
long int before_gmtoff,
|
|
after_gmtoff;
|
|
int before_isdst,
|
|
after_isdst;
|
|
int res;
|
|
|
|
/*
|
|
* First, generate the pg_time_t value corresponding to the given
|
|
* y/m/d/h/m/s taken as GMT time. If this overflows, punt and decide the
|
|
* timezone is GMT. (For a valid Julian date, integer overflow should be
|
|
* impossible with 64-bit pg_time_t, but let's check for safety.)
|
|
*/
|
|
if (!IS_VALID_JULIAN(tm->tm_year, tm->tm_mon, tm->tm_mday))
|
|
goto overflow;
|
|
date = date2j(tm->tm_year, tm->tm_mon, tm->tm_mday) - UNIX_EPOCH_JDATE;
|
|
|
|
day = ((pg_time_t) date) * SECS_PER_DAY;
|
|
if (day / SECS_PER_DAY != date)
|
|
goto overflow;
|
|
sec = tm->tm_sec + (tm->tm_min + tm->tm_hour * MINS_PER_HOUR) * SECS_PER_MINUTE;
|
|
mytime = day + sec;
|
|
/* since sec >= 0, overflow could only be from +day to -mytime */
|
|
if (mytime < 0 && day > 0)
|
|
goto overflow;
|
|
|
|
/*
|
|
* Find the DST time boundary just before or following the target time. We
|
|
* assume that all zones have GMT offsets less than 24 hours, and that DST
|
|
* boundaries can't be closer together than 48 hours, so backing up 24
|
|
* hours and finding the "next" boundary will work.
|
|
*/
|
|
prevtime = mytime - SECS_PER_DAY;
|
|
if (mytime < 0 && prevtime > 0)
|
|
goto overflow;
|
|
|
|
res = pg_next_dst_boundary(&prevtime,
|
|
&before_gmtoff, &before_isdst,
|
|
&boundary,
|
|
&after_gmtoff, &after_isdst,
|
|
tzp);
|
|
if (res < 0)
|
|
goto overflow; /* failure? */
|
|
|
|
if (res == 0)
|
|
{
|
|
/* Non-DST zone, life is simple */
|
|
tm->tm_isdst = before_isdst;
|
|
*tp = mytime - before_gmtoff;
|
|
return -(int) before_gmtoff;
|
|
}
|
|
|
|
/*
|
|
* Form the candidate pg_time_t values with local-time adjustment
|
|
*/
|
|
beforetime = mytime - before_gmtoff;
|
|
if ((before_gmtoff > 0 &&
|
|
mytime < 0 && beforetime > 0) ||
|
|
(before_gmtoff <= 0 &&
|
|
mytime > 0 && beforetime < 0))
|
|
goto overflow;
|
|
aftertime = mytime - after_gmtoff;
|
|
if ((after_gmtoff > 0 &&
|
|
mytime < 0 && aftertime > 0) ||
|
|
(after_gmtoff <= 0 &&
|
|
mytime > 0 && aftertime < 0))
|
|
goto overflow;
|
|
|
|
/*
|
|
* If both before or both after the boundary time, we know what to do. The
|
|
* boundary time itself is considered to be after the transition, which
|
|
* means we can accept aftertime == boundary in the second case.
|
|
*/
|
|
if (beforetime < boundary && aftertime < boundary)
|
|
{
|
|
tm->tm_isdst = before_isdst;
|
|
*tp = beforetime;
|
|
return -(int) before_gmtoff;
|
|
}
|
|
if (beforetime > boundary && aftertime >= boundary)
|
|
{
|
|
tm->tm_isdst = after_isdst;
|
|
*tp = aftertime;
|
|
return -(int) after_gmtoff;
|
|
}
|
|
|
|
/*
|
|
* It's an invalid or ambiguous time due to timezone transition. In a
|
|
* spring-forward transition, prefer the "before" interpretation; in a
|
|
* fall-back transition, prefer "after". (We used to define and implement
|
|
* this test as "prefer the standard-time interpretation", but that rule
|
|
* does not help to resolve the behavior when both times are reported as
|
|
* standard time; which does happen, eg Europe/Moscow in Oct 2014. Also,
|
|
* in some zones such as Europe/Dublin, there is widespread confusion
|
|
* about which time offset is "standard" time, so it's fortunate that our
|
|
* behavior doesn't depend on that.)
|
|
*/
|
|
if (beforetime > aftertime)
|
|
{
|
|
tm->tm_isdst = before_isdst;
|
|
*tp = beforetime;
|
|
return -(int) before_gmtoff;
|
|
}
|
|
tm->tm_isdst = after_isdst;
|
|
*tp = aftertime;
|
|
return -(int) after_gmtoff;
|
|
|
|
overflow:
|
|
/* Given date is out of range, so assume UTC */
|
|
tm->tm_isdst = 0;
|
|
*tp = 0;
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* DetermineTimeZoneAbbrevOffset()
|
|
*
|
|
* Determine the GMT offset and DST flag to be attributed to a dynamic
|
|
* time zone abbreviation, that is one whose meaning has changed over time.
|
|
* *tm contains the local time at which the meaning should be determined,
|
|
* and tm->tm_isdst receives the DST flag.
|
|
*
|
|
* This differs from the behavior of DetermineTimeZoneOffset() in that a
|
|
* standard-time or daylight-time abbreviation forces use of the corresponding
|
|
* GMT offset even when the zone was then in DS or standard time respectively.
|
|
* (However, that happens only if we can match the given abbreviation to some
|
|
* abbreviation that appears in the IANA timezone data. Otherwise, we fall
|
|
* back to doing DetermineTimeZoneOffset().)
|
|
*/
|
|
int
|
|
DetermineTimeZoneAbbrevOffset(struct pg_tm *tm, const char *abbr, pg_tz *tzp)
|
|
{
|
|
pg_time_t t;
|
|
int zone_offset;
|
|
int abbr_offset;
|
|
int abbr_isdst;
|
|
|
|
/*
|
|
* Compute the UTC time we want to probe at. (In event of overflow, we'll
|
|
* probe at the epoch, which is a bit random but probably doesn't matter.)
|
|
*/
|
|
zone_offset = DetermineTimeZoneOffsetInternal(tm, tzp, &t);
|
|
|
|
/*
|
|
* Try to match the abbreviation to something in the zone definition.
|
|
*/
|
|
if (DetermineTimeZoneAbbrevOffsetInternal(t, abbr, tzp,
|
|
&abbr_offset, &abbr_isdst))
|
|
{
|
|
/* Success, so use the abbrev-specific answers. */
|
|
tm->tm_isdst = abbr_isdst;
|
|
return abbr_offset;
|
|
}
|
|
|
|
/*
|
|
* No match, so use the answers we already got from
|
|
* DetermineTimeZoneOffsetInternal.
|
|
*/
|
|
return zone_offset;
|
|
}
|
|
|
|
|
|
/* DetermineTimeZoneAbbrevOffsetTS()
|
|
*
|
|
* As above but the probe time is specified as a TimestampTz (hence, UTC time),
|
|
* and DST status is returned into *isdst rather than into tm->tm_isdst.
|
|
*/
|
|
int
|
|
DetermineTimeZoneAbbrevOffsetTS(TimestampTz ts, const char *abbr,
|
|
pg_tz *tzp, int *isdst)
|
|
{
|
|
pg_time_t t = timestamptz_to_time_t(ts);
|
|
int zone_offset;
|
|
int abbr_offset;
|
|
int tz;
|
|
struct pg_tm tm;
|
|
fsec_t fsec;
|
|
|
|
/*
|
|
* If the abbrev matches anything in the zone data, this is pretty easy.
|
|
*/
|
|
if (DetermineTimeZoneAbbrevOffsetInternal(t, abbr, tzp,
|
|
&abbr_offset, isdst))
|
|
return abbr_offset;
|
|
|
|
/*
|
|
* Else, break down the timestamp so we can use DetermineTimeZoneOffset.
|
|
*/
|
|
if (timestamp2tm(ts, &tz, &tm, &fsec, NULL, tzp) != 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
|
|
errmsg("timestamp out of range")));
|
|
|
|
zone_offset = DetermineTimeZoneOffset(&tm, tzp);
|
|
*isdst = tm.tm_isdst;
|
|
return zone_offset;
|
|
}
|
|
|
|
|
|
/* DetermineTimeZoneAbbrevOffsetInternal()
|
|
*
|
|
* Workhorse for above two functions: work from a pg_time_t probe instant.
|
|
* On success, return GMT offset and DST status into *offset and *isdst.
|
|
*/
|
|
static bool
|
|
DetermineTimeZoneAbbrevOffsetInternal(pg_time_t t, const char *abbr, pg_tz *tzp,
|
|
int *offset, int *isdst)
|
|
{
|
|
char upabbr[TZ_STRLEN_MAX + 1];
|
|
unsigned char *p;
|
|
long int gmtoff;
|
|
|
|
/* We need to force the abbrev to upper case */
|
|
strlcpy(upabbr, abbr, sizeof(upabbr));
|
|
for (p = (unsigned char *) upabbr; *p; p++)
|
|
*p = pg_toupper(*p);
|
|
|
|
/* Look up the abbrev's meaning at this time in this zone */
|
|
if (pg_interpret_timezone_abbrev(upabbr,
|
|
&t,
|
|
&gmtoff,
|
|
isdst,
|
|
tzp))
|
|
{
|
|
/* Change sign to agree with DetermineTimeZoneOffset() */
|
|
*offset = (int) -gmtoff;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
/* DecodeTimeOnly()
|
|
* Interpret parsed string as time fields only.
|
|
* Returns 0 if successful, DTERR code if bogus input detected.
|
|
*
|
|
* Note that support for time zone is here for
|
|
* SQL TIME WITH TIME ZONE, but it reveals
|
|
* bogosity with SQL date/time standards, since
|
|
* we must infer a time zone from current time.
|
|
* - thomas 2000-03-10
|
|
* Allow specifying date to get a better time zone,
|
|
* if time zones are allowed. - thomas 2001-12-26
|
|
*/
|
|
int
|
|
DecodeTimeOnly(char **field, int *ftype, int nf,
|
|
int *dtype, struct pg_tm *tm, fsec_t *fsec, int *tzp)
|
|
{
|
|
int fmask = 0,
|
|
tmask,
|
|
type;
|
|
int ptype = 0; /* "prefix type" for ISO h04mm05s06 format */
|
|
int i;
|
|
int val;
|
|
int dterr;
|
|
bool isjulian = false;
|
|
bool is2digits = false;
|
|
bool bc = false;
|
|
int mer = HR24;
|
|
pg_tz *namedTz = NULL;
|
|
pg_tz *abbrevTz = NULL;
|
|
char *abbrev = NULL;
|
|
pg_tz *valtz;
|
|
|
|
*dtype = DTK_TIME;
|
|
tm->tm_hour = 0;
|
|
tm->tm_min = 0;
|
|
tm->tm_sec = 0;
|
|
*fsec = 0;
|
|
/* don't know daylight savings time status apriori */
|
|
tm->tm_isdst = -1;
|
|
|
|
if (tzp != NULL)
|
|
*tzp = 0;
|
|
|
|
for (i = 0; i < nf; i++)
|
|
{
|
|
switch (ftype[i])
|
|
{
|
|
case DTK_DATE:
|
|
|
|
/*
|
|
* Time zone not allowed? Then should not accept dates or time
|
|
* zones no matter what else!
|
|
*/
|
|
if (tzp == NULL)
|
|
return DTERR_BAD_FORMAT;
|
|
|
|
/* Under limited circumstances, we will accept a date... */
|
|
if (i == 0 && nf >= 2 &&
|
|
(ftype[nf - 1] == DTK_DATE || ftype[1] == DTK_TIME))
|
|
{
|
|
dterr = DecodeDate(field[i], fmask,
|
|
&tmask, &is2digits, tm);
|
|
if (dterr)
|
|
return dterr;
|
|
}
|
|
/* otherwise, this is a time and/or time zone */
|
|
else
|
|
{
|
|
if (isdigit((unsigned char) *field[i]))
|
|
{
|
|
char *cp;
|
|
|
|
/*
|
|
* Starts with a digit but we already have a time
|
|
* field? Then we are in trouble with time already...
|
|
*/
|
|
if ((fmask & DTK_TIME_M) == DTK_TIME_M)
|
|
return DTERR_BAD_FORMAT;
|
|
|
|
/*
|
|
* Should not get here and fail. Sanity check only...
|
|
*/
|
|
if ((cp = strchr(field[i], '-')) == NULL)
|
|
return DTERR_BAD_FORMAT;
|
|
|
|
/* Get the time zone from the end of the string */
|
|
dterr = DecodeTimezone(cp, tzp);
|
|
if (dterr)
|
|
return dterr;
|
|
*cp = '\0';
|
|
|
|
/*
|
|
* Then read the rest of the field as a concatenated
|
|
* time
|
|
*/
|
|
dterr = DecodeNumberField(strlen(field[i]), field[i],
|
|
(fmask | DTK_DATE_M),
|
|
&tmask, tm,
|
|
fsec, &is2digits);
|
|
if (dterr < 0)
|
|
return dterr;
|
|
ftype[i] = dterr;
|
|
|
|
tmask |= DTK_M(TZ);
|
|
}
|
|
else
|
|
{
|
|
namedTz = pg_tzset(field[i]);
|
|
if (!namedTz)
|
|
{
|
|
/*
|
|
* We should return an error code instead of
|
|
* ereport'ing directly, but then there is no way
|
|
* to report the bad time zone name.
|
|
*/
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
|
|
errmsg("time zone \"%s\" not recognized",
|
|
field[i])));
|
|
}
|
|
/* we'll apply the zone setting below */
|
|
ftype[i] = DTK_TZ;
|
|
tmask = DTK_M(TZ);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case DTK_TIME:
|
|
dterr = DecodeTime(field[i], (fmask | DTK_DATE_M),
|
|
INTERVAL_FULL_RANGE,
|
|
&tmask, tm, fsec);
|
|
if (dterr)
|
|
return dterr;
|
|
break;
|
|
|
|
case DTK_TZ:
|
|
{
|
|
int tz;
|
|
|
|
if (tzp == NULL)
|
|
return DTERR_BAD_FORMAT;
|
|
|
|
dterr = DecodeTimezone(field[i], &tz);
|
|
if (dterr)
|
|
return dterr;
|
|
*tzp = tz;
|
|
tmask = DTK_M(TZ);
|
|
}
|
|
break;
|
|
|
|
case DTK_NUMBER:
|
|
|
|
/*
|
|
* Was this an "ISO time" with embedded field labels? An
|
|
* example is "h04mm05s06" - thomas 2001-02-04
|
|
*/
|
|
if (ptype != 0)
|
|
{
|
|
char *cp;
|
|
int val;
|
|
|
|
/* Only accept a date under limited circumstances */
|
|
switch (ptype)
|
|
{
|
|
case DTK_JULIAN:
|
|
case DTK_YEAR:
|
|
case DTK_MONTH:
|
|
case DTK_DAY:
|
|
if (tzp == NULL)
|
|
return DTERR_BAD_FORMAT;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
errno = 0;
|
|
val = strtoint(field[i], &cp, 10);
|
|
if (errno == ERANGE)
|
|
return DTERR_FIELD_OVERFLOW;
|
|
|
|
/*
|
|
* only a few kinds are allowed to have an embedded
|
|
* decimal
|
|
*/
|
|
if (*cp == '.')
|
|
switch (ptype)
|
|
{
|
|
case DTK_JULIAN:
|
|
case DTK_TIME:
|
|
case DTK_SECOND:
|
|
break;
|
|
default:
|
|
return DTERR_BAD_FORMAT;
|
|
break;
|
|
}
|
|
else if (*cp != '\0')
|
|
return DTERR_BAD_FORMAT;
|
|
|
|
switch (ptype)
|
|
{
|
|
case DTK_YEAR:
|
|
tm->tm_year = val;
|
|
tmask = DTK_M(YEAR);
|
|
break;
|
|
|
|
case DTK_MONTH:
|
|
|
|
/*
|
|
* already have a month and hour? then assume
|
|
* minutes
|
|
*/
|
|
if ((fmask & DTK_M(MONTH)) != 0 &&
|
|
(fmask & DTK_M(HOUR)) != 0)
|
|
{
|
|
tm->tm_min = val;
|
|
tmask = DTK_M(MINUTE);
|
|
}
|
|
else
|
|
{
|
|
tm->tm_mon = val;
|
|
tmask = DTK_M(MONTH);
|
|
}
|
|
break;
|
|
|
|
case DTK_DAY:
|
|
tm->tm_mday = val;
|
|
tmask = DTK_M(DAY);
|
|
break;
|
|
|
|
case DTK_HOUR:
|
|
tm->tm_hour = val;
|
|
tmask = DTK_M(HOUR);
|
|
break;
|
|
|
|
case DTK_MINUTE:
|
|
tm->tm_min = val;
|
|
tmask = DTK_M(MINUTE);
|
|
break;
|
|
|
|
case DTK_SECOND:
|
|
tm->tm_sec = val;
|
|
tmask = DTK_M(SECOND);
|
|
if (*cp == '.')
|
|
{
|
|
dterr = ParseFractionalSecond(cp, fsec);
|
|
if (dterr)
|
|
return dterr;
|
|
tmask = DTK_ALL_SECS_M;
|
|
}
|
|
break;
|
|
|
|
case DTK_TZ:
|
|
tmask = DTK_M(TZ);
|
|
dterr = DecodeTimezone(field[i], tzp);
|
|
if (dterr)
|
|
return dterr;
|
|
break;
|
|
|
|
case DTK_JULIAN:
|
|
/* previous field was a label for "julian date" */
|
|
if (val < 0)
|
|
return DTERR_FIELD_OVERFLOW;
|
|
tmask = DTK_DATE_M;
|
|
j2date(val, &tm->tm_year, &tm->tm_mon, &tm->tm_mday);
|
|
isjulian = true;
|
|
|
|
if (*cp == '.')
|
|
{
|
|
double time;
|
|
|
|
errno = 0;
|
|
time = strtod(cp, &cp);
|
|
if (*cp != '\0' || errno != 0)
|
|
return DTERR_BAD_FORMAT;
|
|
time *= USECS_PER_DAY;
|
|
dt2time(time,
|
|
&tm->tm_hour, &tm->tm_min,
|
|
&tm->tm_sec, fsec);
|
|
tmask |= DTK_TIME_M;
|
|
}
|
|
break;
|
|
|
|
case DTK_TIME:
|
|
/* previous field was "t" for ISO time */
|
|
dterr = DecodeNumberField(strlen(field[i]), field[i],
|
|
(fmask | DTK_DATE_M),
|
|
&tmask, tm,
|
|
fsec, &is2digits);
|
|
if (dterr < 0)
|
|
return dterr;
|
|
ftype[i] = dterr;
|
|
|
|
if (tmask != DTK_TIME_M)
|
|
return DTERR_BAD_FORMAT;
|
|
break;
|
|
|
|
default:
|
|
return DTERR_BAD_FORMAT;
|
|
break;
|
|
}
|
|
|
|
ptype = 0;
|
|
*dtype = DTK_DATE;
|
|
}
|
|
else
|
|
{
|
|
char *cp;
|
|
int flen;
|
|
|
|
flen = strlen(field[i]);
|
|
cp = strchr(field[i], '.');
|
|
|
|
/* Embedded decimal? */
|
|
if (cp != NULL)
|
|
{
|
|
/*
|
|
* Under limited circumstances, we will accept a
|
|
* date...
|
|
*/
|
|
if (i == 0 && nf >= 2 && ftype[nf - 1] == DTK_DATE)
|
|
{
|
|
dterr = DecodeDate(field[i], fmask,
|
|
&tmask, &is2digits, tm);
|
|
if (dterr)
|
|
return dterr;
|
|
}
|
|
/* embedded decimal and several digits before? */
|
|
else if (flen - strlen(cp) > 2)
|
|
{
|
|
/*
|
|
* Interpret as a concatenated date or time Set
|
|
* the type field to allow decoding other fields
|
|
* later. Example: 20011223 or 040506
|
|
*/
|
|
dterr = DecodeNumberField(flen, field[i],
|
|
(fmask | DTK_DATE_M),
|
|
&tmask, tm,
|
|
fsec, &is2digits);
|
|
if (dterr < 0)
|
|
return dterr;
|
|
ftype[i] = dterr;
|
|
}
|
|
else
|
|
return DTERR_BAD_FORMAT;
|
|
}
|
|
else if (flen > 4)
|
|
{
|
|
dterr = DecodeNumberField(flen, field[i],
|
|
(fmask | DTK_DATE_M),
|
|
&tmask, tm,
|
|
fsec, &is2digits);
|
|
if (dterr < 0)
|
|
return dterr;
|
|
ftype[i] = dterr;
|
|
}
|
|
/* otherwise it is a single date/time field... */
|
|
else
|
|
{
|
|
dterr = DecodeNumber(flen, field[i],
|
|
false,
|
|
(fmask | DTK_DATE_M),
|
|
&tmask, tm,
|
|
fsec, &is2digits);
|
|
if (dterr)
|
|
return dterr;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case DTK_STRING:
|
|
case DTK_SPECIAL:
|
|
/* timezone abbrevs take precedence over built-in tokens */
|
|
type = DecodeTimezoneAbbrev(i, field[i], &val, &valtz);
|
|
if (type == UNKNOWN_FIELD)
|
|
type = DecodeSpecial(i, field[i], &val);
|
|
if (type == IGNORE_DTF)
|
|
continue;
|
|
|
|
tmask = DTK_M(type);
|
|
switch (type)
|
|
{
|
|
case RESERV:
|
|
switch (val)
|
|
{
|
|
case DTK_NOW:
|
|
tmask = DTK_TIME_M;
|
|
*dtype = DTK_TIME;
|
|
GetCurrentTimeUsec(tm, fsec, NULL);
|
|
break;
|
|
|
|
case DTK_ZULU:
|
|
tmask = (DTK_TIME_M | DTK_M(TZ));
|
|
*dtype = DTK_TIME;
|
|
tm->tm_hour = 0;
|
|
tm->tm_min = 0;
|
|
tm->tm_sec = 0;
|
|
tm->tm_isdst = 0;
|
|
break;
|
|
|
|
default:
|
|
return DTERR_BAD_FORMAT;
|
|
}
|
|
|
|
break;
|
|
|
|
case DTZMOD:
|
|
|
|
/*
|
|
* daylight savings time modifier (solves "MET DST"
|
|
* syntax)
|
|
*/
|
|
tmask |= DTK_M(DTZ);
|
|
tm->tm_isdst = 1;
|
|
if (tzp == NULL)
|
|
return DTERR_BAD_FORMAT;
|
|
*tzp -= val;
|
|
break;
|
|
|
|
case DTZ:
|
|
|
|
/*
|
|
* set mask for TZ here _or_ check for DTZ later when
|
|
* getting default timezone
|
|
*/
|
|
tmask |= DTK_M(TZ);
|
|
tm->tm_isdst = 1;
|
|
if (tzp == NULL)
|
|
return DTERR_BAD_FORMAT;
|
|
*tzp = -val;
|
|
ftype[i] = DTK_TZ;
|
|
break;
|
|
|
|
case TZ:
|
|
tm->tm_isdst = 0;
|
|
if (tzp == NULL)
|
|
return DTERR_BAD_FORMAT;
|
|
*tzp = -val;
|
|
ftype[i] = DTK_TZ;
|
|
break;
|
|
|
|
case DYNTZ:
|
|
tmask |= DTK_M(TZ);
|
|
if (tzp == NULL)
|
|
return DTERR_BAD_FORMAT;
|
|
/* we'll determine the actual offset later */
|
|
abbrevTz = valtz;
|
|
abbrev = field[i];
|
|
ftype[i] = DTK_TZ;
|
|
break;
|
|
|
|
case AMPM:
|
|
mer = val;
|
|
break;
|
|
|
|
case ADBC:
|
|
bc = (val == BC);
|
|
break;
|
|
|
|
case UNITS:
|
|
tmask = 0;
|
|
ptype = val;
|
|
break;
|
|
|
|
case ISOTIME:
|
|
tmask = 0;
|
|
|
|
/***
|
|
* We will need one of the following fields:
|
|
* DTK_NUMBER should be hhmmss.fff
|
|
* DTK_TIME should be hh:mm:ss.fff
|
|
* DTK_DATE should be hhmmss-zz
|
|
***/
|
|
if (i >= nf - 1 ||
|
|
(ftype[i + 1] != DTK_NUMBER &&
|
|
ftype[i + 1] != DTK_TIME &&
|
|
ftype[i + 1] != DTK_DATE))
|
|
return DTERR_BAD_FORMAT;
|
|
|
|
ptype = val;
|
|
break;
|
|
|
|
case UNKNOWN_FIELD:
|
|
|
|
/*
|
|
* Before giving up and declaring error, check to see
|
|
* if it is an all-alpha timezone name.
|
|
*/
|
|
namedTz = pg_tzset(field[i]);
|
|
if (!namedTz)
|
|
return DTERR_BAD_FORMAT;
|
|
/* we'll apply the zone setting below */
|
|
tmask = DTK_M(TZ);
|
|
break;
|
|
|
|
default:
|
|
return DTERR_BAD_FORMAT;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
return DTERR_BAD_FORMAT;
|
|
}
|
|
|
|
if (tmask & fmask)
|
|
return DTERR_BAD_FORMAT;
|
|
fmask |= tmask;
|
|
} /* end loop over fields */
|
|
|
|
/* do final checking/adjustment of Y/M/D fields */
|
|
dterr = ValidateDate(fmask, isjulian, is2digits, bc, tm);
|
|
if (dterr)
|
|
return dterr;
|
|
|
|
/* handle AM/PM */
|
|
if (mer != HR24 && tm->tm_hour > HOURS_PER_DAY / 2)
|
|
return DTERR_FIELD_OVERFLOW;
|
|
if (mer == AM && tm->tm_hour == HOURS_PER_DAY / 2)
|
|
tm->tm_hour = 0;
|
|
else if (mer == PM && tm->tm_hour != HOURS_PER_DAY / 2)
|
|
tm->tm_hour += HOURS_PER_DAY / 2;
|
|
|
|
/*
|
|
* This should match the checks in make_timestamp_internal
|
|
*/
|
|
if (tm->tm_hour < 0 || tm->tm_min < 0 || tm->tm_min > MINS_PER_HOUR - 1 ||
|
|
tm->tm_sec < 0 || tm->tm_sec > SECS_PER_MINUTE ||
|
|
tm->tm_hour > HOURS_PER_DAY ||
|
|
/* test for > 24:00:00 */
|
|
(tm->tm_hour == HOURS_PER_DAY &&
|
|
(tm->tm_min > 0 || tm->tm_sec > 0 || *fsec > 0)) ||
|
|
*fsec < INT64CONST(0) || *fsec > USECS_PER_SEC)
|
|
return DTERR_FIELD_OVERFLOW;
|
|
|
|
if ((fmask & DTK_TIME_M) != DTK_TIME_M)
|
|
return DTERR_BAD_FORMAT;
|
|
|
|
/*
|
|
* If we had a full timezone spec, compute the offset (we could not do it
|
|
* before, because we may need the date to resolve DST status).
|
|
*/
|
|
if (namedTz != NULL)
|
|
{
|
|
long int gmtoff;
|
|
|
|
/* daylight savings time modifier disallowed with full TZ */
|
|
if (fmask & DTK_M(DTZMOD))
|
|
return DTERR_BAD_FORMAT;
|
|
|
|
/* if non-DST zone, we do not need to know the date */
|
|
if (pg_get_timezone_offset(namedTz, &gmtoff))
|
|
{
|
|
*tzp = -(int) gmtoff;
|
|
}
|
|
else
|
|
{
|
|
/* a date has to be specified */
|
|
if ((fmask & DTK_DATE_M) != DTK_DATE_M)
|
|
return DTERR_BAD_FORMAT;
|
|
*tzp = DetermineTimeZoneOffset(tm, namedTz);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Likewise, if we had a dynamic timezone abbreviation, resolve it now.
|
|
*/
|
|
if (abbrevTz != NULL)
|
|
{
|
|
struct pg_tm tt,
|
|
*tmp = &tt;
|
|
|
|
/*
|
|
* daylight savings time modifier but no standard timezone? then error
|
|
*/
|
|
if (fmask & DTK_M(DTZMOD))
|
|
return DTERR_BAD_FORMAT;
|
|
|
|
if ((fmask & DTK_DATE_M) == 0)
|
|
GetCurrentDateTime(tmp);
|
|
else
|
|
{
|
|
tmp->tm_year = tm->tm_year;
|
|
tmp->tm_mon = tm->tm_mon;
|
|
tmp->tm_mday = tm->tm_mday;
|
|
}
|
|
tmp->tm_hour = tm->tm_hour;
|
|
tmp->tm_min = tm->tm_min;
|
|
tmp->tm_sec = tm->tm_sec;
|
|
*tzp = DetermineTimeZoneAbbrevOffset(tmp, abbrev, abbrevTz);
|
|
tm->tm_isdst = tmp->tm_isdst;
|
|
}
|
|
|
|
/* timezone not specified? then use session timezone */
|
|
if (tzp != NULL && !(fmask & DTK_M(TZ)))
|
|
{
|
|
struct pg_tm tt,
|
|
*tmp = &tt;
|
|
|
|
/*
|
|
* daylight savings time modifier but no standard timezone? then error
|
|
*/
|
|
if (fmask & DTK_M(DTZMOD))
|
|
return DTERR_BAD_FORMAT;
|
|
|
|
if ((fmask & DTK_DATE_M) == 0)
|
|
GetCurrentDateTime(tmp);
|
|
else
|
|
{
|
|
tmp->tm_year = tm->tm_year;
|
|
tmp->tm_mon = tm->tm_mon;
|
|
tmp->tm_mday = tm->tm_mday;
|
|
}
|
|
tmp->tm_hour = tm->tm_hour;
|
|
tmp->tm_min = tm->tm_min;
|
|
tmp->tm_sec = tm->tm_sec;
|
|
*tzp = DetermineTimeZoneOffset(tmp, session_timezone);
|
|
tm->tm_isdst = tmp->tm_isdst;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* DecodeDate()
|
|
* Decode date string which includes delimiters.
|
|
* Return 0 if okay, a DTERR code if not.
|
|
*
|
|
* str: field to be parsed
|
|
* fmask: bitmask for field types already seen
|
|
* *tmask: receives bitmask for fields found here
|
|
* *is2digits: set to true if we find 2-digit year
|
|
* *tm: field values are stored into appropriate members of this struct
|
|
*/
|
|
static int
|
|
DecodeDate(char *str, int fmask, int *tmask, bool *is2digits,
|
|
struct pg_tm *tm)
|
|
{
|
|
fsec_t fsec;
|
|
int nf = 0;
|
|
int i,
|
|
len;
|
|
int dterr;
|
|
bool haveTextMonth = false;
|
|
int type,
|
|
val,
|
|
dmask = 0;
|
|
char *field[MAXDATEFIELDS];
|
|
|
|
*tmask = 0;
|
|
|
|
/* parse this string... */
|
|
while (*str != '\0' && nf < MAXDATEFIELDS)
|
|
{
|
|
/* skip field separators */
|
|
while (*str != '\0' && !isalnum((unsigned char) *str))
|
|
str++;
|
|
|
|
if (*str == '\0')
|
|
return DTERR_BAD_FORMAT; /* end of string after separator */
|
|
|
|
field[nf] = str;
|
|
if (isdigit((unsigned char) *str))
|
|
{
|
|
while (isdigit((unsigned char) *str))
|
|
str++;
|
|
}
|
|
else if (isalpha((unsigned char) *str))
|
|
{
|
|
while (isalpha((unsigned char) *str))
|
|
str++;
|
|
}
|
|
|
|
/* Just get rid of any non-digit, non-alpha characters... */
|
|
if (*str != '\0')
|
|
*str++ = '\0';
|
|
nf++;
|
|
}
|
|
|
|
/* look first for text fields, since that will be unambiguous month */
|
|
for (i = 0; i < nf; i++)
|
|
{
|
|
if (isalpha((unsigned char) *field[i]))
|
|
{
|
|
type = DecodeSpecial(i, field[i], &val);
|
|
if (type == IGNORE_DTF)
|
|
continue;
|
|
|
|
dmask = DTK_M(type);
|
|
switch (type)
|
|
{
|
|
case MONTH:
|
|
tm->tm_mon = val;
|
|
haveTextMonth = true;
|
|
break;
|
|
|
|
default:
|
|
return DTERR_BAD_FORMAT;
|
|
}
|
|
if (fmask & dmask)
|
|
return DTERR_BAD_FORMAT;
|
|
|
|
fmask |= dmask;
|
|
*tmask |= dmask;
|
|
|
|
/* mark this field as being completed */
|
|
field[i] = NULL;
|
|
}
|
|
}
|
|
|
|
/* now pick up remaining numeric fields */
|
|
for (i = 0; i < nf; i++)
|
|
{
|
|
if (field[i] == NULL)
|
|
continue;
|
|
|
|
if ((len = strlen(field[i])) <= 0)
|
|
return DTERR_BAD_FORMAT;
|
|
|
|
dterr = DecodeNumber(len, field[i], haveTextMonth, fmask,
|
|
&dmask, tm,
|
|
&fsec, is2digits);
|
|
if (dterr)
|
|
return dterr;
|
|
|
|
if (fmask & dmask)
|
|
return DTERR_BAD_FORMAT;
|
|
|
|
fmask |= dmask;
|
|
*tmask |= dmask;
|
|
}
|
|
|
|
if ((fmask & ~(DTK_M(DOY) | DTK_M(TZ))) != DTK_DATE_M)
|
|
return DTERR_BAD_FORMAT;
|
|
|
|
/* validation of the field values must wait until ValidateDate() */
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* ValidateDate()
|
|
* Check valid year/month/day values, handle BC and DOY cases
|
|
* Return 0 if okay, a DTERR code if not.
|
|
*/
|
|
int
|
|
ValidateDate(int fmask, bool isjulian, bool is2digits, bool bc,
|
|
struct pg_tm *tm)
|
|
{
|
|
if (fmask & DTK_M(YEAR))
|
|
{
|
|
if (isjulian)
|
|
{
|
|
/* tm_year is correct and should not be touched */
|
|
}
|
|
else if (bc)
|
|
{
|
|
/* there is no year zero in AD/BC notation */
|
|
if (tm->tm_year <= 0)
|
|
return DTERR_FIELD_OVERFLOW;
|
|
/* internally, we represent 1 BC as year zero, 2 BC as -1, etc */
|
|
tm->tm_year = -(tm->tm_year - 1);
|
|
}
|
|
else if (is2digits)
|
|
{
|
|
/* process 1 or 2-digit input as 1970-2069 AD, allow '0' and '00' */
|
|
if (tm->tm_year < 0) /* just paranoia */
|
|
return DTERR_FIELD_OVERFLOW;
|
|
if (tm->tm_year < 70)
|
|
tm->tm_year += 2000;
|
|
else if (tm->tm_year < 100)
|
|
tm->tm_year += 1900;
|
|
}
|
|
else
|
|
{
|
|
/* there is no year zero in AD/BC notation */
|
|
if (tm->tm_year <= 0)
|
|
return DTERR_FIELD_OVERFLOW;
|
|
}
|
|
}
|
|
|
|
/* now that we have correct year, decode DOY */
|
|
if (fmask & DTK_M(DOY))
|
|
{
|
|
j2date(date2j(tm->tm_year, 1, 1) + tm->tm_yday - 1,
|
|
&tm->tm_year, &tm->tm_mon, &tm->tm_mday);
|
|
}
|
|
|
|
/* check for valid month */
|
|
if (fmask & DTK_M(MONTH))
|
|
{
|
|
if (tm->tm_mon < 1 || tm->tm_mon > MONTHS_PER_YEAR)
|
|
return DTERR_MD_FIELD_OVERFLOW;
|
|
}
|
|
|
|
/* minimal check for valid day */
|
|
if (fmask & DTK_M(DAY))
|
|
{
|
|
if (tm->tm_mday < 1 || tm->tm_mday > 31)
|
|
return DTERR_MD_FIELD_OVERFLOW;
|
|
}
|
|
|
|
if ((fmask & DTK_DATE_M) == DTK_DATE_M)
|
|
{
|
|
/*
|
|
* Check for valid day of month, now that we know for sure the month
|
|
* and year. Note we don't use MD_FIELD_OVERFLOW here, since it seems
|
|
* unlikely that "Feb 29" is a YMD-order error.
|
|
*/
|
|
if (tm->tm_mday > day_tab[isleap(tm->tm_year)][tm->tm_mon - 1])
|
|
return DTERR_FIELD_OVERFLOW;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* DecodeTime()
|
|
* Decode time string which includes delimiters.
|
|
* Return 0 if okay, a DTERR code if not.
|
|
*
|
|
* Only check the lower limit on hours, since this same code can be
|
|
* used to represent time spans.
|
|
*/
|
|
static int
|
|
DecodeTime(char *str, int fmask, int range,
|
|
int *tmask, struct pg_tm *tm, fsec_t *fsec)
|
|
{
|
|
char *cp;
|
|
int dterr;
|
|
|
|
*tmask = DTK_TIME_M;
|
|
|
|
errno = 0;
|
|
tm->tm_hour = strtoint(str, &cp, 10);
|
|
if (errno == ERANGE)
|
|
return DTERR_FIELD_OVERFLOW;
|
|
if (*cp != ':')
|
|
return DTERR_BAD_FORMAT;
|
|
errno = 0;
|
|
tm->tm_min = strtoint(cp + 1, &cp, 10);
|
|
if (errno == ERANGE)
|
|
return DTERR_FIELD_OVERFLOW;
|
|
if (*cp == '\0')
|
|
{
|
|
tm->tm_sec = 0;
|
|
*fsec = 0;
|
|
/* If it's a MINUTE TO SECOND interval, take 2 fields as being mm:ss */
|
|
if (range == (INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND)))
|
|
{
|
|
tm->tm_sec = tm->tm_min;
|
|
tm->tm_min = tm->tm_hour;
|
|
tm->tm_hour = 0;
|
|
}
|
|
}
|
|
else if (*cp == '.')
|
|
{
|
|
/* always assume mm:ss.sss is MINUTE TO SECOND */
|
|
dterr = ParseFractionalSecond(cp, fsec);
|
|
if (dterr)
|
|
return dterr;
|
|
tm->tm_sec = tm->tm_min;
|
|
tm->tm_min = tm->tm_hour;
|
|
tm->tm_hour = 0;
|
|
}
|
|
else if (*cp == ':')
|
|
{
|
|
errno = 0;
|
|
tm->tm_sec = strtoint(cp + 1, &cp, 10);
|
|
if (errno == ERANGE)
|
|
return DTERR_FIELD_OVERFLOW;
|
|
if (*cp == '\0')
|
|
*fsec = 0;
|
|
else if (*cp == '.')
|
|
{
|
|
dterr = ParseFractionalSecond(cp, fsec);
|
|
if (dterr)
|
|
return dterr;
|
|
}
|
|
else
|
|
return DTERR_BAD_FORMAT;
|
|
}
|
|
else
|
|
return DTERR_BAD_FORMAT;
|
|
|
|
/* do a sanity check */
|
|
if (tm->tm_hour < 0 || tm->tm_min < 0 || tm->tm_min > MINS_PER_HOUR - 1 ||
|
|
tm->tm_sec < 0 || tm->tm_sec > SECS_PER_MINUTE ||
|
|
*fsec < INT64CONST(0) ||
|
|
*fsec > USECS_PER_SEC)
|
|
return DTERR_FIELD_OVERFLOW;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* DecodeNumber()
|
|
* Interpret plain numeric field as a date value in context.
|
|
* Return 0 if okay, a DTERR code if not.
|
|
*/
|
|
static int
|
|
DecodeNumber(int flen, char *str, bool haveTextMonth, int fmask,
|
|
int *tmask, struct pg_tm *tm, fsec_t *fsec, bool *is2digits)
|
|
{
|
|
int val;
|
|
char *cp;
|
|
int dterr;
|
|
|
|
*tmask = 0;
|
|
|
|
errno = 0;
|
|
val = strtoint(str, &cp, 10);
|
|
if (errno == ERANGE)
|
|
return DTERR_FIELD_OVERFLOW;
|
|
if (cp == str)
|
|
return DTERR_BAD_FORMAT;
|
|
|
|
if (*cp == '.')
|
|
{
|
|
/*
|
|
* More than two digits before decimal point? Then could be a date or
|
|
* a run-together time: 2001.360 20011225 040506.789
|
|
*/
|
|
if (cp - str > 2)
|
|
{
|
|
dterr = DecodeNumberField(flen, str,
|
|
(fmask | DTK_DATE_M),
|
|
tmask, tm,
|
|
fsec, is2digits);
|
|
if (dterr < 0)
|
|
return dterr;
|
|
return 0;
|
|
}
|
|
|
|
dterr = ParseFractionalSecond(cp, fsec);
|
|
if (dterr)
|
|
return dterr;
|
|
}
|
|
else if (*cp != '\0')
|
|
return DTERR_BAD_FORMAT;
|
|
|
|
/* Special case for day of year */
|
|
if (flen == 3 && (fmask & DTK_DATE_M) == DTK_M(YEAR) && val >= 1 &&
|
|
val <= 366)
|
|
{
|
|
*tmask = (DTK_M(DOY) | DTK_M(MONTH) | DTK_M(DAY));
|
|
tm->tm_yday = val;
|
|
/* tm_mon and tm_mday can't actually be set yet ... */
|
|
return 0;
|
|
}
|
|
|
|
/* Switch based on what we have so far */
|
|
switch (fmask & DTK_DATE_M)
|
|
{
|
|
case 0:
|
|
|
|
/*
|
|
* Nothing so far; make a decision about what we think the input
|
|
* is. There used to be lots of heuristics here, but the
|
|
* consensus now is to be paranoid. It *must* be either
|
|
* YYYY-MM-DD (with a more-than-two-digit year field), or the
|
|
* field order defined by DateOrder.
|
|
*/
|
|
if (flen >= 3 || DateOrder == DATEORDER_YMD)
|
|
{
|
|
*tmask = DTK_M(YEAR);
|
|
tm->tm_year = val;
|
|
}
|
|
else if (DateOrder == DATEORDER_DMY)
|
|
{
|
|
*tmask = DTK_M(DAY);
|
|
tm->tm_mday = val;
|
|
}
|
|
else
|
|
{
|
|
*tmask = DTK_M(MONTH);
|
|
tm->tm_mon = val;
|
|
}
|
|
break;
|
|
|
|
case (DTK_M(YEAR)):
|
|
/* Must be at second field of YY-MM-DD */
|
|
*tmask = DTK_M(MONTH);
|
|
tm->tm_mon = val;
|
|
break;
|
|
|
|
case (DTK_M(MONTH)):
|
|
if (haveTextMonth)
|
|
{
|
|
/*
|
|
* We are at the first numeric field of a date that included a
|
|
* textual month name. We want to support the variants
|
|
* MON-DD-YYYY, DD-MON-YYYY, and YYYY-MON-DD as unambiguous
|
|
* inputs. We will also accept MON-DD-YY or DD-MON-YY in
|
|
* either DMY or MDY modes, as well as YY-MON-DD in YMD mode.
|
|
*/
|
|
if (flen >= 3 || DateOrder == DATEORDER_YMD)
|
|
{
|
|
*tmask = DTK_M(YEAR);
|
|
tm->tm_year = val;
|
|
}
|
|
else
|
|
{
|
|
*tmask = DTK_M(DAY);
|
|
tm->tm_mday = val;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Must be at second field of MM-DD-YY */
|
|
*tmask = DTK_M(DAY);
|
|
tm->tm_mday = val;
|
|
}
|
|
break;
|
|
|
|
case (DTK_M(YEAR) | DTK_M(MONTH)):
|
|
if (haveTextMonth)
|
|
{
|
|
/* Need to accept DD-MON-YYYY even in YMD mode */
|
|
if (flen >= 3 && *is2digits)
|
|
{
|
|
/* Guess that first numeric field is day was wrong */
|
|
*tmask = DTK_M(DAY); /* YEAR is already set */
|
|
tm->tm_mday = tm->tm_year;
|
|
tm->tm_year = val;
|
|
*is2digits = false;
|
|
}
|
|
else
|
|
{
|
|
*tmask = DTK_M(DAY);
|
|
tm->tm_mday = val;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Must be at third field of YY-MM-DD */
|
|
*tmask = DTK_M(DAY);
|
|
tm->tm_mday = val;
|
|
}
|
|
break;
|
|
|
|
case (DTK_M(DAY)):
|
|
/* Must be at second field of DD-MM-YY */
|
|
*tmask = DTK_M(MONTH);
|
|
tm->tm_mon = val;
|
|
break;
|
|
|
|
case (DTK_M(MONTH) | DTK_M(DAY)):
|
|
/* Must be at third field of DD-MM-YY or MM-DD-YY */
|
|
*tmask = DTK_M(YEAR);
|
|
tm->tm_year = val;
|
|
break;
|
|
|
|
case (DTK_M(YEAR) | DTK_M(MONTH) | DTK_M(DAY)):
|
|
/* we have all the date, so it must be a time field */
|
|
dterr = DecodeNumberField(flen, str, fmask,
|
|
tmask, tm,
|
|
fsec, is2digits);
|
|
if (dterr < 0)
|
|
return dterr;
|
|
return 0;
|
|
|
|
default:
|
|
/* Anything else is bogus input */
|
|
return DTERR_BAD_FORMAT;
|
|
}
|
|
|
|
/*
|
|
* When processing a year field, mark it for adjustment if it's only one
|
|
* or two digits.
|
|
*/
|
|
if (*tmask == DTK_M(YEAR))
|
|
*is2digits = (flen <= 2);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* DecodeNumberField()
|
|
* Interpret numeric string as a concatenated date or time field.
|
|
* Return a DTK token (>= 0) if successful, a DTERR code (< 0) if not.
|
|
*
|
|
* Use the context of previously decoded fields to help with
|
|
* the interpretation.
|
|
*/
|
|
static int
|
|
DecodeNumberField(int len, char *str, int fmask,
|
|
int *tmask, struct pg_tm *tm, fsec_t *fsec, bool *is2digits)
|
|
{
|
|
char *cp;
|
|
|
|
/*
|
|
* Have a decimal point? Then this is a date or something with a seconds
|
|
* field...
|
|
*/
|
|
if ((cp = strchr(str, '.')) != NULL)
|
|
{
|
|
/*
|
|
* Can we use ParseFractionalSecond here? Not clear whether trailing
|
|
* junk should be rejected ...
|
|
*/
|
|
double frac;
|
|
|
|
errno = 0;
|
|
frac = strtod(cp, NULL);
|
|
if (errno != 0)
|
|
return DTERR_BAD_FORMAT;
|
|
*fsec = rint(frac * 1000000);
|
|
/* Now truncate off the fraction for further processing */
|
|
*cp = '\0';
|
|
len = strlen(str);
|
|
}
|
|
/* No decimal point and no complete date yet? */
|
|
else if ((fmask & DTK_DATE_M) != DTK_DATE_M)
|
|
{
|
|
if (len >= 6)
|
|
{
|
|
*tmask = DTK_DATE_M;
|
|
|
|
/*
|
|
* Start from end and consider first 2 as Day, next 2 as Month,
|
|
* and the rest as Year.
|
|
*/
|
|
tm->tm_mday = atoi(str + (len - 2));
|
|
*(str + (len - 2)) = '\0';
|
|
tm->tm_mon = atoi(str + (len - 4));
|
|
*(str + (len - 4)) = '\0';
|
|
tm->tm_year = atoi(str);
|
|
if ((len - 4) == 2)
|
|
*is2digits = true;
|
|
|
|
return DTK_DATE;
|
|
}
|
|
}
|
|
|
|
/* not all time fields are specified? */
|
|
if ((fmask & DTK_TIME_M) != DTK_TIME_M)
|
|
{
|
|
/* hhmmss */
|
|
if (len == 6)
|
|
{
|
|
*tmask = DTK_TIME_M;
|
|
tm->tm_sec = atoi(str + 4);
|
|
*(str + 4) = '\0';
|
|
tm->tm_min = atoi(str + 2);
|
|
*(str + 2) = '\0';
|
|
tm->tm_hour = atoi(str);
|
|
|
|
return DTK_TIME;
|
|
}
|
|
/* hhmm? */
|
|
else if (len == 4)
|
|
{
|
|
*tmask = DTK_TIME_M;
|
|
tm->tm_sec = 0;
|
|
tm->tm_min = atoi(str + 2);
|
|
*(str + 2) = '\0';
|
|
tm->tm_hour = atoi(str);
|
|
|
|
return DTK_TIME;
|
|
}
|
|
}
|
|
|
|
return DTERR_BAD_FORMAT;
|
|
}
|
|
|
|
|
|
/* DecodeTimezone()
|
|
* Interpret string as a numeric timezone.
|
|
*
|
|
* Return 0 if okay (and set *tzp), a DTERR code if not okay.
|
|
*/
|
|
int
|
|
DecodeTimezone(char *str, int *tzp)
|
|
{
|
|
int tz;
|
|
int hr,
|
|
min,
|
|
sec = 0;
|
|
char *cp;
|
|
|
|
/* leading character must be "+" or "-" */
|
|
if (*str != '+' && *str != '-')
|
|
return DTERR_BAD_FORMAT;
|
|
|
|
errno = 0;
|
|
hr = strtoint(str + 1, &cp, 10);
|
|
if (errno == ERANGE)
|
|
return DTERR_TZDISP_OVERFLOW;
|
|
|
|
/* explicit delimiter? */
|
|
if (*cp == ':')
|
|
{
|
|
errno = 0;
|
|
min = strtoint(cp + 1, &cp, 10);
|
|
if (errno == ERANGE)
|
|
return DTERR_TZDISP_OVERFLOW;
|
|
if (*cp == ':')
|
|
{
|
|
errno = 0;
|
|
sec = strtoint(cp + 1, &cp, 10);
|
|
if (errno == ERANGE)
|
|
return DTERR_TZDISP_OVERFLOW;
|
|
}
|
|
}
|
|
/* otherwise, might have run things together... */
|
|
else if (*cp == '\0' && strlen(str) > 3)
|
|
{
|
|
min = hr % 100;
|
|
hr = hr / 100;
|
|
/* we could, but don't, support a run-together hhmmss format */
|
|
}
|
|
else
|
|
min = 0;
|
|
|
|
/* Range-check the values; see notes in datatype/timestamp.h */
|
|
if (hr < 0 || hr > MAX_TZDISP_HOUR)
|
|
return DTERR_TZDISP_OVERFLOW;
|
|
if (min < 0 || min >= MINS_PER_HOUR)
|
|
return DTERR_TZDISP_OVERFLOW;
|
|
if (sec < 0 || sec >= SECS_PER_MINUTE)
|
|
return DTERR_TZDISP_OVERFLOW;
|
|
|
|
tz = (hr * MINS_PER_HOUR + min) * SECS_PER_MINUTE + sec;
|
|
if (*str == '-')
|
|
tz = -tz;
|
|
|
|
*tzp = -tz;
|
|
|
|
if (*cp != '\0')
|
|
return DTERR_BAD_FORMAT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* DecodeTimezoneAbbrev()
|
|
* Interpret string as a timezone abbreviation, if possible.
|
|
*
|
|
* Returns an abbreviation type (TZ, DTZ, or DYNTZ), or UNKNOWN_FIELD if
|
|
* string is not any known abbreviation. On success, set *offset and *tz to
|
|
* represent the UTC offset (for TZ or DTZ) or underlying zone (for DYNTZ).
|
|
* Note that full timezone names (such as America/New_York) are not handled
|
|
* here, mostly for historical reasons.
|
|
*
|
|
* Given string must be lowercased already.
|
|
*
|
|
* Implement a cache lookup since it is likely that dates
|
|
* will be related in format.
|
|
*/
|
|
int
|
|
DecodeTimezoneAbbrev(int field, char *lowtoken,
|
|
int *offset, pg_tz **tz)
|
|
{
|
|
int type;
|
|
const datetkn *tp;
|
|
|
|
tp = abbrevcache[field];
|
|
/* use strncmp so that we match truncated tokens */
|
|
if (tp == NULL || strncmp(lowtoken, tp->token, TOKMAXLEN) != 0)
|
|
{
|
|
if (zoneabbrevtbl)
|
|
tp = datebsearch(lowtoken, zoneabbrevtbl->abbrevs,
|
|
zoneabbrevtbl->numabbrevs);
|
|
else
|
|
tp = NULL;
|
|
}
|
|
if (tp == NULL)
|
|
{
|
|
type = UNKNOWN_FIELD;
|
|
*offset = 0;
|
|
*tz = NULL;
|
|
}
|
|
else
|
|
{
|
|
abbrevcache[field] = tp;
|
|
type = tp->type;
|
|
if (type == DYNTZ)
|
|
{
|
|
*offset = 0;
|
|
*tz = FetchDynamicTimeZone(zoneabbrevtbl, tp);
|
|
}
|
|
else
|
|
{
|
|
*offset = tp->value;
|
|
*tz = NULL;
|
|
}
|
|
}
|
|
|
|
return type;
|
|
}
|
|
|
|
|
|
/* DecodeSpecial()
|
|
* Decode text string using lookup table.
|
|
*
|
|
* Recognizes the keywords listed in datetktbl.
|
|
* Note: at one time this would also recognize timezone abbreviations,
|
|
* but no more; use DecodeTimezoneAbbrev for that.
|
|
*
|
|
* Given string must be lowercased already.
|
|
*
|
|
* Implement a cache lookup since it is likely that dates
|
|
* will be related in format.
|
|
*/
|
|
int
|
|
DecodeSpecial(int field, char *lowtoken, int *val)
|
|
{
|
|
int type;
|
|
const datetkn *tp;
|
|
|
|
tp = datecache[field];
|
|
/* use strncmp so that we match truncated tokens */
|
|
if (tp == NULL || strncmp(lowtoken, tp->token, TOKMAXLEN) != 0)
|
|
{
|
|
tp = datebsearch(lowtoken, datetktbl, szdatetktbl);
|
|
}
|
|
if (tp == NULL)
|
|
{
|
|
type = UNKNOWN_FIELD;
|
|
*val = 0;
|
|
}
|
|
else
|
|
{
|
|
datecache[field] = tp;
|
|
type = tp->type;
|
|
*val = tp->value;
|
|
}
|
|
|
|
return type;
|
|
}
|
|
|
|
|
|
/* ClearPgTm
|
|
*
|
|
* Zero out a pg_tm and associated fsec_t
|
|
*/
|
|
static inline void
|
|
ClearPgTm(struct pg_tm *tm, fsec_t *fsec)
|
|
{
|
|
tm->tm_year = 0;
|
|
tm->tm_mon = 0;
|
|
tm->tm_mday = 0;
|
|
tm->tm_hour = 0;
|
|
tm->tm_min = 0;
|
|
tm->tm_sec = 0;
|
|
*fsec = 0;
|
|
}
|
|
|
|
|
|
/* DecodeInterval()
|
|
* Interpret previously parsed fields for general time interval.
|
|
* Returns 0 if successful, DTERR code if bogus input detected.
|
|
* dtype, tm, fsec are output parameters.
|
|
*
|
|
* Allow "date" field DTK_DATE since this could be just
|
|
* an unsigned floating point number. - thomas 1997-11-16
|
|
*
|
|
* Allow ISO-style time span, with implicit units on number of days
|
|
* preceding an hh:mm:ss field. - thomas 1998-04-30
|
|
*/
|
|
int
|
|
DecodeInterval(char **field, int *ftype, int nf, int range,
|
|
int *dtype, struct pg_tm *tm, fsec_t *fsec)
|
|
{
|
|
bool is_before = false;
|
|
char *cp;
|
|
int fmask = 0,
|
|
tmask,
|
|
type;
|
|
int i;
|
|
int dterr;
|
|
int val;
|
|
double fval;
|
|
|
|
*dtype = DTK_DELTA;
|
|
type = IGNORE_DTF;
|
|
ClearPgTm(tm, fsec);
|
|
|
|
/* read through list backwards to pick up units before values */
|
|
for (i = nf - 1; i >= 0; i--)
|
|
{
|
|
switch (ftype[i])
|
|
{
|
|
case DTK_TIME:
|
|
dterr = DecodeTime(field[i], fmask, range,
|
|
&tmask, tm, fsec);
|
|
if (dterr)
|
|
return dterr;
|
|
type = DTK_DAY;
|
|
break;
|
|
|
|
case DTK_TZ:
|
|
|
|
/*
|
|
* Timezone means a token with a leading sign character and at
|
|
* least one digit; there could be ':', '.', '-' embedded in
|
|
* it as well.
|
|
*/
|
|
Assert(*field[i] == '-' || *field[i] == '+');
|
|
|
|
/*
|
|
* Check for signed hh:mm or hh:mm:ss. If so, process exactly
|
|
* like DTK_TIME case above, plus handling the sign.
|
|
*/
|
|
if (strchr(field[i] + 1, ':') != NULL &&
|
|
DecodeTime(field[i] + 1, fmask, range,
|
|
&tmask, tm, fsec) == 0)
|
|
{
|
|
if (*field[i] == '-')
|
|
{
|
|
/* flip the sign on all fields */
|
|
tm->tm_hour = -tm->tm_hour;
|
|
tm->tm_min = -tm->tm_min;
|
|
tm->tm_sec = -tm->tm_sec;
|
|
*fsec = -(*fsec);
|
|
}
|
|
|
|
/*
|
|
* Set the next type to be a day, if units are not
|
|
* specified. This handles the case of '1 +02:03' since we
|
|
* are reading right to left.
|
|
*/
|
|
type = DTK_DAY;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Otherwise, fall through to DTK_NUMBER case, which can
|
|
* handle signed float numbers and signed year-month values.
|
|
*/
|
|
|
|
/* FALLTHROUGH */
|
|
|
|
case DTK_DATE:
|
|
case DTK_NUMBER:
|
|
if (type == IGNORE_DTF)
|
|
{
|
|
/* use typmod to decide what rightmost field is */
|
|
switch (range)
|
|
{
|
|
case INTERVAL_MASK(YEAR):
|
|
type = DTK_YEAR;
|
|
break;
|
|
case INTERVAL_MASK(MONTH):
|
|
case INTERVAL_MASK(YEAR) | INTERVAL_MASK(MONTH):
|
|
type = DTK_MONTH;
|
|
break;
|
|
case INTERVAL_MASK(DAY):
|
|
type = DTK_DAY;
|
|
break;
|
|
case INTERVAL_MASK(HOUR):
|
|
case INTERVAL_MASK(DAY) | INTERVAL_MASK(HOUR):
|
|
type = DTK_HOUR;
|
|
break;
|
|
case INTERVAL_MASK(MINUTE):
|
|
case INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE):
|
|
case INTERVAL_MASK(DAY) | INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE):
|
|
type = DTK_MINUTE;
|
|
break;
|
|
case INTERVAL_MASK(SECOND):
|
|
case INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND):
|
|
case INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND):
|
|
case INTERVAL_MASK(DAY) | INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND):
|
|
type = DTK_SECOND;
|
|
break;
|
|
default:
|
|
type = DTK_SECOND;
|
|
break;
|
|
}
|
|
}
|
|
|
|
errno = 0;
|
|
val = strtoint(field[i], &cp, 10);
|
|
if (errno == ERANGE)
|
|
return DTERR_FIELD_OVERFLOW;
|
|
|
|
if (*cp == '-')
|
|
{
|
|
/* SQL "years-months" syntax */
|
|
int val2;
|
|
|
|
val2 = strtoint(cp + 1, &cp, 10);
|
|
if (errno == ERANGE || val2 < 0 || val2 >= MONTHS_PER_YEAR)
|
|
return DTERR_FIELD_OVERFLOW;
|
|
if (*cp != '\0')
|
|
return DTERR_BAD_FORMAT;
|
|
type = DTK_MONTH;
|
|
if (*field[i] == '-')
|
|
val2 = -val2;
|
|
if (((double) val * MONTHS_PER_YEAR + val2) > INT_MAX ||
|
|
((double) val * MONTHS_PER_YEAR + val2) < INT_MIN)
|
|
return DTERR_FIELD_OVERFLOW;
|
|
val = val * MONTHS_PER_YEAR + val2;
|
|
fval = 0;
|
|
}
|
|
else if (*cp == '.')
|
|
{
|
|
errno = 0;
|
|
fval = strtod(cp, &cp);
|
|
if (*cp != '\0' || errno != 0)
|
|
return DTERR_BAD_FORMAT;
|
|
|
|
if (*field[i] == '-')
|
|
fval = -fval;
|
|
}
|
|
else if (*cp == '\0')
|
|
fval = 0;
|
|
else
|
|
return DTERR_BAD_FORMAT;
|
|
|
|
tmask = 0; /* DTK_M(type); */
|
|
|
|
switch (type)
|
|
{
|
|
case DTK_MICROSEC:
|
|
*fsec += rint(val + fval);
|
|
tmask = DTK_M(MICROSECOND);
|
|
break;
|
|
|
|
case DTK_MILLISEC:
|
|
/* avoid overflowing the fsec field */
|
|
tm->tm_sec += val / 1000;
|
|
val -= (val / 1000) * 1000;
|
|
*fsec += rint((val + fval) * 1000);
|
|
tmask = DTK_M(MILLISECOND);
|
|
break;
|
|
|
|
case DTK_SECOND:
|
|
tm->tm_sec += val;
|
|
*fsec += rint(fval * 1000000);
|
|
|
|
/*
|
|
* If any subseconds were specified, consider this
|
|
* microsecond and millisecond input as well.
|
|
*/
|
|
if (fval == 0)
|
|
tmask = DTK_M(SECOND);
|
|
else
|
|
tmask = DTK_ALL_SECS_M;
|
|
break;
|
|
|
|
case DTK_MINUTE:
|
|
tm->tm_min += val;
|
|
AdjustFractSeconds(fval, tm, fsec, SECS_PER_MINUTE);
|
|
tmask = DTK_M(MINUTE);
|
|
break;
|
|
|
|
case DTK_HOUR:
|
|
tm->tm_hour += val;
|
|
AdjustFractSeconds(fval, tm, fsec, SECS_PER_HOUR);
|
|
tmask = DTK_M(HOUR);
|
|
type = DTK_DAY; /* set for next field */
|
|
break;
|
|
|
|
case DTK_DAY:
|
|
tm->tm_mday += val;
|
|
AdjustFractSeconds(fval, tm, fsec, SECS_PER_DAY);
|
|
tmask = DTK_M(DAY);
|
|
break;
|
|
|
|
case DTK_WEEK:
|
|
tm->tm_mday += val * 7;
|
|
AdjustFractDays(fval, tm, fsec, 7);
|
|
tmask = DTK_M(WEEK);
|
|
break;
|
|
|
|
case DTK_MONTH:
|
|
tm->tm_mon += val;
|
|
AdjustFractDays(fval, tm, fsec, DAYS_PER_MONTH);
|
|
tmask = DTK_M(MONTH);
|
|
break;
|
|
|
|
case DTK_YEAR:
|
|
tm->tm_year += val;
|
|
if (fval != 0)
|
|
tm->tm_mon += fval * MONTHS_PER_YEAR;
|
|
tmask = DTK_M(YEAR);
|
|
break;
|
|
|
|
case DTK_DECADE:
|
|
tm->tm_year += val * 10;
|
|
if (fval != 0)
|
|
tm->tm_mon += fval * MONTHS_PER_YEAR * 10;
|
|
tmask = DTK_M(DECADE);
|
|
break;
|
|
|
|
case DTK_CENTURY:
|
|
tm->tm_year += val * 100;
|
|
if (fval != 0)
|
|
tm->tm_mon += fval * MONTHS_PER_YEAR * 100;
|
|
tmask = DTK_M(CENTURY);
|
|
break;
|
|
|
|
case DTK_MILLENNIUM:
|
|
tm->tm_year += val * 1000;
|
|
if (fval != 0)
|
|
tm->tm_mon += fval * MONTHS_PER_YEAR * 1000;
|
|
tmask = DTK_M(MILLENNIUM);
|
|
break;
|
|
|
|
default:
|
|
return DTERR_BAD_FORMAT;
|
|
}
|
|
break;
|
|
|
|
case DTK_STRING:
|
|
case DTK_SPECIAL:
|
|
type = DecodeUnits(i, field[i], &val);
|
|
if (type == IGNORE_DTF)
|
|
continue;
|
|
|
|
tmask = 0; /* DTK_M(type); */
|
|
switch (type)
|
|
{
|
|
case UNITS:
|
|
type = val;
|
|
break;
|
|
|
|
case AGO:
|
|
is_before = true;
|
|
type = val;
|
|
break;
|
|
|
|
case RESERV:
|
|
tmask = (DTK_DATE_M | DTK_TIME_M);
|
|
*dtype = val;
|
|
break;
|
|
|
|
default:
|
|
return DTERR_BAD_FORMAT;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
return DTERR_BAD_FORMAT;
|
|
}
|
|
|
|
if (tmask & fmask)
|
|
return DTERR_BAD_FORMAT;
|
|
fmask |= tmask;
|
|
}
|
|
|
|
/* ensure that at least one time field has been found */
|
|
if (fmask == 0)
|
|
return DTERR_BAD_FORMAT;
|
|
|
|
/* ensure fractional seconds are fractional */
|
|
if (*fsec != 0)
|
|
{
|
|
int sec;
|
|
|
|
sec = *fsec / USECS_PER_SEC;
|
|
*fsec -= sec * USECS_PER_SEC;
|
|
tm->tm_sec += sec;
|
|
}
|
|
|
|
/*----------
|
|
* The SQL standard defines the interval literal
|
|
* '-1 1:00:00'
|
|
* to mean "negative 1 days and negative 1 hours", while Postgres
|
|
* traditionally treats this as meaning "negative 1 days and positive
|
|
* 1 hours". In SQL_STANDARD intervalstyle, we apply the leading sign
|
|
* to all fields if there are no other explicit signs.
|
|
*
|
|
* We leave the signs alone if there are additional explicit signs.
|
|
* This protects us against misinterpreting postgres-style dump output,
|
|
* since the postgres-style output code has always put an explicit sign on
|
|
* all fields following a negative field. But note that SQL-spec output
|
|
* is ambiguous and can be misinterpreted on load! (So it's best practice
|
|
* to dump in postgres style, not SQL style.)
|
|
*----------
|
|
*/
|
|
if (IntervalStyle == INTSTYLE_SQL_STANDARD && *field[0] == '-')
|
|
{
|
|
/* Check for additional explicit signs */
|
|
bool more_signs = false;
|
|
|
|
for (i = 1; i < nf; i++)
|
|
{
|
|
if (*field[i] == '-' || *field[i] == '+')
|
|
{
|
|
more_signs = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!more_signs)
|
|
{
|
|
/*
|
|
* Rather than re-determining which field was field[0], just force
|
|
* 'em all negative.
|
|
*/
|
|
if (*fsec > 0)
|
|
*fsec = -(*fsec);
|
|
if (tm->tm_sec > 0)
|
|
tm->tm_sec = -tm->tm_sec;
|
|
if (tm->tm_min > 0)
|
|
tm->tm_min = -tm->tm_min;
|
|
if (tm->tm_hour > 0)
|
|
tm->tm_hour = -tm->tm_hour;
|
|
if (tm->tm_mday > 0)
|
|
tm->tm_mday = -tm->tm_mday;
|
|
if (tm->tm_mon > 0)
|
|
tm->tm_mon = -tm->tm_mon;
|
|
if (tm->tm_year > 0)
|
|
tm->tm_year = -tm->tm_year;
|
|
}
|
|
}
|
|
|
|
/* finally, AGO negates everything */
|
|
if (is_before)
|
|
{
|
|
*fsec = -(*fsec);
|
|
tm->tm_sec = -tm->tm_sec;
|
|
tm->tm_min = -tm->tm_min;
|
|
tm->tm_hour = -tm->tm_hour;
|
|
tm->tm_mday = -tm->tm_mday;
|
|
tm->tm_mon = -tm->tm_mon;
|
|
tm->tm_year = -tm->tm_year;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Helper functions to avoid duplicated code in DecodeISO8601Interval.
|
|
*
|
|
* Parse a decimal value and break it into integer and fractional parts.
|
|
* Returns 0 or DTERR code.
|
|
*/
|
|
static int
|
|
ParseISO8601Number(char *str, char **endptr, int *ipart, double *fpart)
|
|
{
|
|
double val;
|
|
|
|
if (!(isdigit((unsigned char) *str) || *str == '-' || *str == '.'))
|
|
return DTERR_BAD_FORMAT;
|
|
errno = 0;
|
|
val = strtod(str, endptr);
|
|
/* did we not see anything that looks like a double? */
|
|
if (*endptr == str || errno != 0)
|
|
return DTERR_BAD_FORMAT;
|
|
/* watch out for overflow */
|
|
if (val < INT_MIN || val > INT_MAX)
|
|
return DTERR_FIELD_OVERFLOW;
|
|
/* be very sure we truncate towards zero (cf dtrunc()) */
|
|
if (val >= 0)
|
|
*ipart = (int) floor(val);
|
|
else
|
|
*ipart = (int) -floor(-val);
|
|
*fpart = val - *ipart;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Determine number of integral digits in a valid ISO 8601 number field
|
|
* (we should ignore sign and any fraction part)
|
|
*/
|
|
static int
|
|
ISO8601IntegerWidth(char *fieldstart)
|
|
{
|
|
/* We might have had a leading '-' */
|
|
if (*fieldstart == '-')
|
|
fieldstart++;
|
|
return strspn(fieldstart, "0123456789");
|
|
}
|
|
|
|
|
|
/* DecodeISO8601Interval()
|
|
* Decode an ISO 8601 time interval of the "format with designators"
|
|
* (section 4.4.3.2) or "alternative format" (section 4.4.3.3)
|
|
* Examples: P1D for 1 day
|
|
* PT1H for 1 hour
|
|
* P2Y6M7DT1H30M for 2 years, 6 months, 7 days 1 hour 30 min
|
|
* P0002-06-07T01:30:00 the same value in alternative format
|
|
*
|
|
* Returns 0 if successful, DTERR code if bogus input detected.
|
|
* Note: error code should be DTERR_BAD_FORMAT if input doesn't look like
|
|
* ISO8601, otherwise this could cause unexpected error messages.
|
|
* dtype, tm, fsec are output parameters.
|
|
*
|
|
* A couple exceptions from the spec:
|
|
* - a week field ('W') may coexist with other units
|
|
* - allows decimals in fields other than the least significant unit.
|
|
*/
|
|
int
|
|
DecodeISO8601Interval(char *str,
|
|
int *dtype, struct pg_tm *tm, fsec_t *fsec)
|
|
{
|
|
bool datepart = true;
|
|
bool havefield = false;
|
|
|
|
*dtype = DTK_DELTA;
|
|
ClearPgTm(tm, fsec);
|
|
|
|
if (strlen(str) < 2 || str[0] != 'P')
|
|
return DTERR_BAD_FORMAT;
|
|
|
|
str++;
|
|
while (*str)
|
|
{
|
|
char *fieldstart;
|
|
int val;
|
|
double fval;
|
|
char unit;
|
|
int dterr;
|
|
|
|
if (*str == 'T') /* T indicates the beginning of the time part */
|
|
{
|
|
datepart = false;
|
|
havefield = false;
|
|
str++;
|
|
continue;
|
|
}
|
|
|
|
fieldstart = str;
|
|
dterr = ParseISO8601Number(str, &str, &val, &fval);
|
|
if (dterr)
|
|
return dterr;
|
|
|
|
/*
|
|
* Note: we could step off the end of the string here. Code below
|
|
* *must* exit the loop if unit == '\0'.
|
|
*/
|
|
unit = *str++;
|
|
|
|
if (datepart)
|
|
{
|
|
switch (unit) /* before T: Y M W D */
|
|
{
|
|
case 'Y':
|
|
tm->tm_year += val;
|
|
tm->tm_mon += (fval * MONTHS_PER_YEAR);
|
|
break;
|
|
case 'M':
|
|
tm->tm_mon += val;
|
|
AdjustFractDays(fval, tm, fsec, DAYS_PER_MONTH);
|
|
break;
|
|
case 'W':
|
|
tm->tm_mday += val * 7;
|
|
AdjustFractDays(fval, tm, fsec, 7);
|
|
break;
|
|
case 'D':
|
|
tm->tm_mday += val;
|
|
AdjustFractSeconds(fval, tm, fsec, SECS_PER_DAY);
|
|
break;
|
|
case 'T': /* ISO 8601 4.4.3.3 Alternative Format / Basic */
|
|
case '\0':
|
|
if (ISO8601IntegerWidth(fieldstart) == 8 && !havefield)
|
|
{
|
|
tm->tm_year += val / 10000;
|
|
tm->tm_mon += (val / 100) % 100;
|
|
tm->tm_mday += val % 100;
|
|
AdjustFractSeconds(fval, tm, fsec, SECS_PER_DAY);
|
|
if (unit == '\0')
|
|
return 0;
|
|
datepart = false;
|
|
havefield = false;
|
|
continue;
|
|
}
|
|
/* Else fall through to extended alternative format */
|
|
/* FALLTHROUGH */
|
|
case '-': /* ISO 8601 4.4.3.3 Alternative Format,
|
|
* Extended */
|
|
if (havefield)
|
|
return DTERR_BAD_FORMAT;
|
|
|
|
tm->tm_year += val;
|
|
tm->tm_mon += (fval * MONTHS_PER_YEAR);
|
|
if (unit == '\0')
|
|
return 0;
|
|
if (unit == 'T')
|
|
{
|
|
datepart = false;
|
|
havefield = false;
|
|
continue;
|
|
}
|
|
|
|
dterr = ParseISO8601Number(str, &str, &val, &fval);
|
|
if (dterr)
|
|
return dterr;
|
|
tm->tm_mon += val;
|
|
AdjustFractDays(fval, tm, fsec, DAYS_PER_MONTH);
|
|
if (*str == '\0')
|
|
return 0;
|
|
if (*str == 'T')
|
|
{
|
|
datepart = false;
|
|
havefield = false;
|
|
continue;
|
|
}
|
|
if (*str != '-')
|
|
return DTERR_BAD_FORMAT;
|
|
str++;
|
|
|
|
dterr = ParseISO8601Number(str, &str, &val, &fval);
|
|
if (dterr)
|
|
return dterr;
|
|
tm->tm_mday += val;
|
|
AdjustFractSeconds(fval, tm, fsec, SECS_PER_DAY);
|
|
if (*str == '\0')
|
|
return 0;
|
|
if (*str == 'T')
|
|
{
|
|
datepart = false;
|
|
havefield = false;
|
|
continue;
|
|
}
|
|
return DTERR_BAD_FORMAT;
|
|
default:
|
|
/* not a valid date unit suffix */
|
|
return DTERR_BAD_FORMAT;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
switch (unit) /* after T: H M S */
|
|
{
|
|
case 'H':
|
|
tm->tm_hour += val;
|
|
AdjustFractSeconds(fval, tm, fsec, SECS_PER_HOUR);
|
|
break;
|
|
case 'M':
|
|
tm->tm_min += val;
|
|
AdjustFractSeconds(fval, tm, fsec, SECS_PER_MINUTE);
|
|
break;
|
|
case 'S':
|
|
tm->tm_sec += val;
|
|
AdjustFractSeconds(fval, tm, fsec, 1);
|
|
break;
|
|
case '\0': /* ISO 8601 4.4.3.3 Alternative Format */
|
|
if (ISO8601IntegerWidth(fieldstart) == 6 && !havefield)
|
|
{
|
|
tm->tm_hour += val / 10000;
|
|
tm->tm_min += (val / 100) % 100;
|
|
tm->tm_sec += val % 100;
|
|
AdjustFractSeconds(fval, tm, fsec, 1);
|
|
return 0;
|
|
}
|
|
/* Else fall through to extended alternative format */
|
|
/* FALLTHROUGH */
|
|
case ':': /* ISO 8601 4.4.3.3 Alternative Format,
|
|
* Extended */
|
|
if (havefield)
|
|
return DTERR_BAD_FORMAT;
|
|
|
|
tm->tm_hour += val;
|
|
AdjustFractSeconds(fval, tm, fsec, SECS_PER_HOUR);
|
|
if (unit == '\0')
|
|
return 0;
|
|
|
|
dterr = ParseISO8601Number(str, &str, &val, &fval);
|
|
if (dterr)
|
|
return dterr;
|
|
tm->tm_min += val;
|
|
AdjustFractSeconds(fval, tm, fsec, SECS_PER_MINUTE);
|
|
if (*str == '\0')
|
|
return 0;
|
|
if (*str != ':')
|
|
return DTERR_BAD_FORMAT;
|
|
str++;
|
|
|
|
dterr = ParseISO8601Number(str, &str, &val, &fval);
|
|
if (dterr)
|
|
return dterr;
|
|
tm->tm_sec += val;
|
|
AdjustFractSeconds(fval, tm, fsec, 1);
|
|
if (*str == '\0')
|
|
return 0;
|
|
return DTERR_BAD_FORMAT;
|
|
|
|
default:
|
|
/* not a valid time unit suffix */
|
|
return DTERR_BAD_FORMAT;
|
|
}
|
|
}
|
|
|
|
havefield = true;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* DecodeUnits()
|
|
* Decode text string using lookup table.
|
|
*
|
|
* This routine recognizes keywords associated with time interval units.
|
|
*
|
|
* Given string must be lowercased already.
|
|
*
|
|
* Implement a cache lookup since it is likely that dates
|
|
* will be related in format.
|
|
*/
|
|
int
|
|
DecodeUnits(int field, char *lowtoken, int *val)
|
|
{
|
|
int type;
|
|
const datetkn *tp;
|
|
|
|
tp = deltacache[field];
|
|
/* use strncmp so that we match truncated tokens */
|
|
if (tp == NULL || strncmp(lowtoken, tp->token, TOKMAXLEN) != 0)
|
|
{
|
|
tp = datebsearch(lowtoken, deltatktbl, szdeltatktbl);
|
|
}
|
|
if (tp == NULL)
|
|
{
|
|
type = UNKNOWN_FIELD;
|
|
*val = 0;
|
|
}
|
|
else
|
|
{
|
|
deltacache[field] = tp;
|
|
type = tp->type;
|
|
*val = tp->value;
|
|
}
|
|
|
|
return type;
|
|
} /* DecodeUnits() */
|
|
|
|
/*
|
|
* Report an error detected by one of the datetime input processing routines.
|
|
*
|
|
* dterr is the error code, str is the original input string, datatype is
|
|
* the name of the datatype we were trying to accept.
|
|
*
|
|
* Note: it might seem useless to distinguish DTERR_INTERVAL_OVERFLOW and
|
|
* DTERR_TZDISP_OVERFLOW from DTERR_FIELD_OVERFLOW, but SQL99 mandates three
|
|
* separate SQLSTATE codes, so ...
|
|
*/
|
|
void
|
|
DateTimeParseError(int dterr, const char *str, const char *datatype)
|
|
{
|
|
switch (dterr)
|
|
{
|
|
case DTERR_FIELD_OVERFLOW:
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DATETIME_FIELD_OVERFLOW),
|
|
errmsg("date/time field value out of range: \"%s\"",
|
|
str)));
|
|
break;
|
|
case DTERR_MD_FIELD_OVERFLOW:
|
|
/* <nanny>same as above, but add hint about DateStyle</nanny> */
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DATETIME_FIELD_OVERFLOW),
|
|
errmsg("date/time field value out of range: \"%s\"",
|
|
str),
|
|
errhint("Perhaps you need a different \"datestyle\" setting.")));
|
|
break;
|
|
case DTERR_INTERVAL_OVERFLOW:
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INTERVAL_FIELD_OVERFLOW),
|
|
errmsg("interval field value out of range: \"%s\"",
|
|
str)));
|
|
break;
|
|
case DTERR_TZDISP_OVERFLOW:
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TIME_ZONE_DISPLACEMENT_VALUE),
|
|
errmsg("time zone displacement out of range: \"%s\"",
|
|
str)));
|
|
break;
|
|
case DTERR_BAD_FORMAT:
|
|
default:
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_DATETIME_FORMAT),
|
|
errmsg("invalid input syntax for type %s: \"%s\"",
|
|
datatype, str)));
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* datebsearch()
|
|
* Binary search -- from Knuth (6.2.1) Algorithm B. Special case like this
|
|
* is WAY faster than the generic bsearch().
|
|
*/
|
|
static const datetkn *
|
|
datebsearch(const char *key, const datetkn *base, int nel)
|
|
{
|
|
if (nel > 0)
|
|
{
|
|
const datetkn *last = base + nel - 1,
|
|
*position;
|
|
int result;
|
|
|
|
while (last >= base)
|
|
{
|
|
position = base + ((last - base) >> 1);
|
|
/* precheck the first character for a bit of extra speed */
|
|
result = (int) key[0] - (int) position->token[0];
|
|
if (result == 0)
|
|
{
|
|
/* use strncmp so that we match truncated tokens */
|
|
result = strncmp(key, position->token, TOKMAXLEN);
|
|
if (result == 0)
|
|
return position;
|
|
}
|
|
if (result < 0)
|
|
last = position - 1;
|
|
else
|
|
base = position + 1;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* EncodeTimezone()
|
|
* Copies representation of a numeric timezone offset to str.
|
|
*
|
|
* Returns a pointer to the new end of string. No NUL terminator is put
|
|
* there; callers are responsible for NUL terminating str themselves.
|
|
*/
|
|
static char *
|
|
EncodeTimezone(char *str, int tz, int style)
|
|
{
|
|
int hour,
|
|
min,
|
|
sec;
|
|
|
|
sec = abs(tz);
|
|
min = sec / SECS_PER_MINUTE;
|
|
sec -= min * SECS_PER_MINUTE;
|
|
hour = min / MINS_PER_HOUR;
|
|
min -= hour * MINS_PER_HOUR;
|
|
|
|
/* TZ is negated compared to sign we wish to display ... */
|
|
*str++ = (tz <= 0 ? '+' : '-');
|
|
|
|
if (sec != 0)
|
|
{
|
|
str = pg_ltostr_zeropad(str, hour, 2);
|
|
*str++ = ':';
|
|
str = pg_ltostr_zeropad(str, min, 2);
|
|
*str++ = ':';
|
|
str = pg_ltostr_zeropad(str, sec, 2);
|
|
}
|
|
else if (min != 0 || style == USE_XSD_DATES)
|
|
{
|
|
str = pg_ltostr_zeropad(str, hour, 2);
|
|
*str++ = ':';
|
|
str = pg_ltostr_zeropad(str, min, 2);
|
|
}
|
|
else
|
|
str = pg_ltostr_zeropad(str, hour, 2);
|
|
return str;
|
|
}
|
|
|
|
/* EncodeDateOnly()
|
|
* Encode date as local time.
|
|
*/
|
|
void
|
|
EncodeDateOnly(struct pg_tm *tm, int style, char *str)
|
|
{
|
|
Assert(tm->tm_mon >= 1 && tm->tm_mon <= MONTHS_PER_YEAR);
|
|
|
|
switch (style)
|
|
{
|
|
case USE_ISO_DATES:
|
|
case USE_XSD_DATES:
|
|
/* compatible with ISO date formats */
|
|
str = pg_ltostr_zeropad(str,
|
|
(tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4);
|
|
*str++ = '-';
|
|
str = pg_ltostr_zeropad(str, tm->tm_mon, 2);
|
|
*str++ = '-';
|
|
str = pg_ltostr_zeropad(str, tm->tm_mday, 2);
|
|
break;
|
|
|
|
case USE_SQL_DATES:
|
|
/* compatible with Oracle/Ingres date formats */
|
|
if (DateOrder == DATEORDER_DMY)
|
|
{
|
|
str = pg_ltostr_zeropad(str, tm->tm_mday, 2);
|
|
*str++ = '/';
|
|
str = pg_ltostr_zeropad(str, tm->tm_mon, 2);
|
|
}
|
|
else
|
|
{
|
|
str = pg_ltostr_zeropad(str, tm->tm_mon, 2);
|
|
*str++ = '/';
|
|
str = pg_ltostr_zeropad(str, tm->tm_mday, 2);
|
|
}
|
|
*str++ = '/';
|
|
str = pg_ltostr_zeropad(str,
|
|
(tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4);
|
|
break;
|
|
|
|
case USE_GERMAN_DATES:
|
|
/* German-style date format */
|
|
str = pg_ltostr_zeropad(str, tm->tm_mday, 2);
|
|
*str++ = '.';
|
|
str = pg_ltostr_zeropad(str, tm->tm_mon, 2);
|
|
*str++ = '.';
|
|
str = pg_ltostr_zeropad(str,
|
|
(tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4);
|
|
break;
|
|
|
|
case USE_POSTGRES_DATES:
|
|
default:
|
|
/* traditional date-only style for Postgres */
|
|
if (DateOrder == DATEORDER_DMY)
|
|
{
|
|
str = pg_ltostr_zeropad(str, tm->tm_mday, 2);
|
|
*str++ = '-';
|
|
str = pg_ltostr_zeropad(str, tm->tm_mon, 2);
|
|
}
|
|
else
|
|
{
|
|
str = pg_ltostr_zeropad(str, tm->tm_mon, 2);
|
|
*str++ = '-';
|
|
str = pg_ltostr_zeropad(str, tm->tm_mday, 2);
|
|
}
|
|
*str++ = '-';
|
|
str = pg_ltostr_zeropad(str,
|
|
(tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4);
|
|
break;
|
|
}
|
|
|
|
if (tm->tm_year <= 0)
|
|
{
|
|
memcpy(str, " BC", 3); /* Don't copy NUL */
|
|
str += 3;
|
|
}
|
|
*str = '\0';
|
|
}
|
|
|
|
|
|
/* EncodeTimeOnly()
|
|
* Encode time fields only.
|
|
*
|
|
* tm and fsec are the value to encode, print_tz determines whether to include
|
|
* a time zone (the difference between time and timetz types), tz is the
|
|
* numeric time zone offset, style is the date style, str is where to write the
|
|
* output.
|
|
*/
|
|
void
|
|
EncodeTimeOnly(struct pg_tm *tm, fsec_t fsec, bool print_tz, int tz, int style, char *str)
|
|
{
|
|
str = pg_ltostr_zeropad(str, tm->tm_hour, 2);
|
|
*str++ = ':';
|
|
str = pg_ltostr_zeropad(str, tm->tm_min, 2);
|
|
*str++ = ':';
|
|
str = AppendSeconds(str, tm->tm_sec, fsec, MAX_TIME_PRECISION, true);
|
|
if (print_tz)
|
|
str = EncodeTimezone(str, tz, style);
|
|
*str = '\0';
|
|
}
|
|
|
|
|
|
/* EncodeDateTime()
|
|
* Encode date and time interpreted as local time.
|
|
*
|
|
* tm and fsec are the value to encode, print_tz determines whether to include
|
|
* a time zone (the difference between timestamp and timestamptz types), tz is
|
|
* the numeric time zone offset, tzn is the textual time zone, which if
|
|
* specified will be used instead of tz by some styles, style is the date
|
|
* style, str is where to write the output.
|
|
*
|
|
* Supported date styles:
|
|
* Postgres - day mon hh:mm:ss yyyy tz
|
|
* SQL - mm/dd/yyyy hh:mm:ss.ss tz
|
|
* ISO - yyyy-mm-dd hh:mm:ss+/-tz
|
|
* German - dd.mm.yyyy hh:mm:ss tz
|
|
* XSD - yyyy-mm-ddThh:mm:ss.ss+/-tz
|
|
*/
|
|
void
|
|
EncodeDateTime(struct pg_tm *tm, fsec_t fsec, bool print_tz, int tz, const char *tzn, int style, char *str)
|
|
{
|
|
int day;
|
|
|
|
Assert(tm->tm_mon >= 1 && tm->tm_mon <= MONTHS_PER_YEAR);
|
|
|
|
/*
|
|
* Negative tm_isdst means we have no valid time zone translation.
|
|
*/
|
|
if (tm->tm_isdst < 0)
|
|
print_tz = false;
|
|
|
|
switch (style)
|
|
{
|
|
case USE_ISO_DATES:
|
|
case USE_XSD_DATES:
|
|
/* Compatible with ISO-8601 date formats */
|
|
str = pg_ltostr_zeropad(str,
|
|
(tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4);
|
|
*str++ = '-';
|
|
str = pg_ltostr_zeropad(str, tm->tm_mon, 2);
|
|
*str++ = '-';
|
|
str = pg_ltostr_zeropad(str, tm->tm_mday, 2);
|
|
*str++ = (style == USE_ISO_DATES) ? ' ' : 'T';
|
|
str = pg_ltostr_zeropad(str, tm->tm_hour, 2);
|
|
*str++ = ':';
|
|
str = pg_ltostr_zeropad(str, tm->tm_min, 2);
|
|
*str++ = ':';
|
|
str = AppendTimestampSeconds(str, tm, fsec);
|
|
if (print_tz)
|
|
str = EncodeTimezone(str, tz, style);
|
|
break;
|
|
|
|
case USE_SQL_DATES:
|
|
/* Compatible with Oracle/Ingres date formats */
|
|
if (DateOrder == DATEORDER_DMY)
|
|
{
|
|
str = pg_ltostr_zeropad(str, tm->tm_mday, 2);
|
|
*str++ = '/';
|
|
str = pg_ltostr_zeropad(str, tm->tm_mon, 2);
|
|
}
|
|
else
|
|
{
|
|
str = pg_ltostr_zeropad(str, tm->tm_mon, 2);
|
|
*str++ = '/';
|
|
str = pg_ltostr_zeropad(str, tm->tm_mday, 2);
|
|
}
|
|
*str++ = '/';
|
|
str = pg_ltostr_zeropad(str,
|
|
(tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4);
|
|
*str++ = ' ';
|
|
str = pg_ltostr_zeropad(str, tm->tm_hour, 2);
|
|
*str++ = ':';
|
|
str = pg_ltostr_zeropad(str, tm->tm_min, 2);
|
|
*str++ = ':';
|
|
str = AppendTimestampSeconds(str, tm, fsec);
|
|
|
|
/*
|
|
* Note: the uses of %.*s in this function would be risky if the
|
|
* timezone names ever contain non-ASCII characters. However, all
|
|
* TZ abbreviations in the IANA database are plain ASCII.
|
|
*/
|
|
if (print_tz)
|
|
{
|
|
if (tzn)
|
|
{
|
|
sprintf(str, " %.*s", MAXTZLEN, tzn);
|
|
str += strlen(str);
|
|
}
|
|
else
|
|
str = EncodeTimezone(str, tz, style);
|
|
}
|
|
break;
|
|
|
|
case USE_GERMAN_DATES:
|
|
/* German variant on European style */
|
|
str = pg_ltostr_zeropad(str, tm->tm_mday, 2);
|
|
*str++ = '.';
|
|
str = pg_ltostr_zeropad(str, tm->tm_mon, 2);
|
|
*str++ = '.';
|
|
str = pg_ltostr_zeropad(str,
|
|
(tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4);
|
|
*str++ = ' ';
|
|
str = pg_ltostr_zeropad(str, tm->tm_hour, 2);
|
|
*str++ = ':';
|
|
str = pg_ltostr_zeropad(str, tm->tm_min, 2);
|
|
*str++ = ':';
|
|
str = AppendTimestampSeconds(str, tm, fsec);
|
|
|
|
if (print_tz)
|
|
{
|
|
if (tzn)
|
|
{
|
|
sprintf(str, " %.*s", MAXTZLEN, tzn);
|
|
str += strlen(str);
|
|
}
|
|
else
|
|
str = EncodeTimezone(str, tz, style);
|
|
}
|
|
break;
|
|
|
|
case USE_POSTGRES_DATES:
|
|
default:
|
|
/* Backward-compatible with traditional Postgres abstime dates */
|
|
day = date2j(tm->tm_year, tm->tm_mon, tm->tm_mday);
|
|
tm->tm_wday = j2day(day);
|
|
memcpy(str, days[tm->tm_wday], 3);
|
|
str += 3;
|
|
*str++ = ' ';
|
|
if (DateOrder == DATEORDER_DMY)
|
|
{
|
|
str = pg_ltostr_zeropad(str, tm->tm_mday, 2);
|
|
*str++ = ' ';
|
|
memcpy(str, months[tm->tm_mon - 1], 3);
|
|
str += 3;
|
|
}
|
|
else
|
|
{
|
|
memcpy(str, months[tm->tm_mon - 1], 3);
|
|
str += 3;
|
|
*str++ = ' ';
|
|
str = pg_ltostr_zeropad(str, tm->tm_mday, 2);
|
|
}
|
|
*str++ = ' ';
|
|
str = pg_ltostr_zeropad(str, tm->tm_hour, 2);
|
|
*str++ = ':';
|
|
str = pg_ltostr_zeropad(str, tm->tm_min, 2);
|
|
*str++ = ':';
|
|
str = AppendTimestampSeconds(str, tm, fsec);
|
|
*str++ = ' ';
|
|
str = pg_ltostr_zeropad(str,
|
|
(tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4);
|
|
|
|
if (print_tz)
|
|
{
|
|
if (tzn)
|
|
{
|
|
sprintf(str, " %.*s", MAXTZLEN, tzn);
|
|
str += strlen(str);
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* We have a time zone, but no string version. Use the
|
|
* numeric form, but be sure to include a leading space to
|
|
* avoid formatting something which would be rejected by
|
|
* the date/time parser later. - thomas 2001-10-19
|
|
*/
|
|
*str++ = ' ';
|
|
str = EncodeTimezone(str, tz, style);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (tm->tm_year <= 0)
|
|
{
|
|
memcpy(str, " BC", 3); /* Don't copy NUL */
|
|
str += 3;
|
|
}
|
|
*str = '\0';
|
|
}
|
|
|
|
|
|
/*
|
|
* Helper functions to avoid duplicated code in EncodeInterval.
|
|
*/
|
|
|
|
/* Append an ISO-8601-style interval field, but only if value isn't zero */
|
|
static char *
|
|
AddISO8601IntPart(char *cp, int value, char units)
|
|
{
|
|
if (value == 0)
|
|
return cp;
|
|
sprintf(cp, "%d%c", value, units);
|
|
return cp + strlen(cp);
|
|
}
|
|
|
|
/* Append a postgres-style interval field, but only if value isn't zero */
|
|
static char *
|
|
AddPostgresIntPart(char *cp, int value, const char *units,
|
|
bool *is_zero, bool *is_before)
|
|
{
|
|
if (value == 0)
|
|
return cp;
|
|
sprintf(cp, "%s%s%d %s%s",
|
|
(!*is_zero) ? " " : "",
|
|
(*is_before && value > 0) ? "+" : "",
|
|
value,
|
|
units,
|
|
(value != 1) ? "s" : "");
|
|
|
|
/*
|
|
* Each nonzero field sets is_before for (only) the next one. This is a
|
|
* tad bizarre but it's how it worked before...
|
|
*/
|
|
*is_before = (value < 0);
|
|
*is_zero = false;
|
|
return cp + strlen(cp);
|
|
}
|
|
|
|
/* Append a verbose-style interval field, but only if value isn't zero */
|
|
static char *
|
|
AddVerboseIntPart(char *cp, int value, const char *units,
|
|
bool *is_zero, bool *is_before)
|
|
{
|
|
if (value == 0)
|
|
return cp;
|
|
/* first nonzero value sets is_before */
|
|
if (*is_zero)
|
|
{
|
|
*is_before = (value < 0);
|
|
value = abs(value);
|
|
}
|
|
else if (*is_before)
|
|
value = -value;
|
|
sprintf(cp, " %d %s%s", value, units, (value == 1) ? "" : "s");
|
|
*is_zero = false;
|
|
return cp + strlen(cp);
|
|
}
|
|
|
|
|
|
/* EncodeInterval()
|
|
* Interpret time structure as a delta time and convert to string.
|
|
*
|
|
* Support "traditional Postgres" and ISO-8601 styles.
|
|
* Actually, afaik ISO does not address time interval formatting,
|
|
* but this looks similar to the spec for absolute date/time.
|
|
* - thomas 1998-04-30
|
|
*
|
|
* Actually, afaik, ISO 8601 does specify formats for "time
|
|
* intervals...[of the]...format with time-unit designators", which
|
|
* are pretty ugly. The format looks something like
|
|
* P1Y1M1DT1H1M1.12345S
|
|
* but useful for exchanging data with computers instead of humans.
|
|
* - ron 2003-07-14
|
|
*
|
|
* And ISO's SQL 2008 standard specifies standards for
|
|
* "year-month literal"s (that look like '2-3') and
|
|
* "day-time literal"s (that look like ('4 5:6:7')
|
|
*/
|
|
void
|
|
EncodeInterval(struct pg_tm *tm, fsec_t fsec, int style, char *str)
|
|
{
|
|
char *cp = str;
|
|
int year = tm->tm_year;
|
|
int mon = tm->tm_mon;
|
|
int mday = tm->tm_mday;
|
|
int hour = tm->tm_hour;
|
|
int min = tm->tm_min;
|
|
int sec = tm->tm_sec;
|
|
bool is_before = false;
|
|
bool is_zero = true;
|
|
|
|
/*
|
|
* The sign of year and month are guaranteed to match, since they are
|
|
* stored internally as "month". But we'll need to check for is_before and
|
|
* is_zero when determining the signs of day and hour/minute/seconds
|
|
* fields.
|
|
*/
|
|
switch (style)
|
|
{
|
|
/* SQL Standard interval format */
|
|
case INTSTYLE_SQL_STANDARD:
|
|
{
|
|
bool has_negative = year < 0 || mon < 0 ||
|
|
mday < 0 || hour < 0 ||
|
|
min < 0 || sec < 0 || fsec < 0;
|
|
bool has_positive = year > 0 || mon > 0 ||
|
|
mday > 0 || hour > 0 ||
|
|
min > 0 || sec > 0 || fsec > 0;
|
|
bool has_year_month = year != 0 || mon != 0;
|
|
bool has_day_time = mday != 0 || hour != 0 ||
|
|
min != 0 || sec != 0 || fsec != 0;
|
|
bool has_day = mday != 0;
|
|
bool sql_standard_value = !(has_negative && has_positive) &&
|
|
!(has_year_month && has_day_time);
|
|
|
|
/*
|
|
* SQL Standard wants only 1 "<sign>" preceding the whole
|
|
* interval ... but can't do that if mixed signs.
|
|
*/
|
|
if (has_negative && sql_standard_value)
|
|
{
|
|
*cp++ = '-';
|
|
year = -year;
|
|
mon = -mon;
|
|
mday = -mday;
|
|
hour = -hour;
|
|
min = -min;
|
|
sec = -sec;
|
|
fsec = -fsec;
|
|
}
|
|
|
|
if (!has_negative && !has_positive)
|
|
{
|
|
sprintf(cp, "0");
|
|
}
|
|
else if (!sql_standard_value)
|
|
{
|
|
/*
|
|
* For non sql-standard interval values, force outputting
|
|
* the signs to avoid ambiguities with intervals with
|
|
* mixed sign components.
|
|
*/
|
|
char year_sign = (year < 0 || mon < 0) ? '-' : '+';
|
|
char day_sign = (mday < 0) ? '-' : '+';
|
|
char sec_sign = (hour < 0 || min < 0 ||
|
|
sec < 0 || fsec < 0) ? '-' : '+';
|
|
|
|
sprintf(cp, "%c%d-%d %c%d %c%d:%02d:",
|
|
year_sign, abs(year), abs(mon),
|
|
day_sign, abs(mday),
|
|
sec_sign, abs(hour), abs(min));
|
|
cp += strlen(cp);
|
|
cp = AppendSeconds(cp, sec, fsec, MAX_INTERVAL_PRECISION, true);
|
|
*cp = '\0';
|
|
}
|
|
else if (has_year_month)
|
|
{
|
|
sprintf(cp, "%d-%d", year, mon);
|
|
}
|
|
else if (has_day)
|
|
{
|
|
sprintf(cp, "%d %d:%02d:", mday, hour, min);
|
|
cp += strlen(cp);
|
|
cp = AppendSeconds(cp, sec, fsec, MAX_INTERVAL_PRECISION, true);
|
|
*cp = '\0';
|
|
}
|
|
else
|
|
{
|
|
sprintf(cp, "%d:%02d:", hour, min);
|
|
cp += strlen(cp);
|
|
cp = AppendSeconds(cp, sec, fsec, MAX_INTERVAL_PRECISION, true);
|
|
*cp = '\0';
|
|
}
|
|
}
|
|
break;
|
|
|
|
/* ISO 8601 "time-intervals by duration only" */
|
|
case INTSTYLE_ISO_8601:
|
|
/* special-case zero to avoid printing nothing */
|
|
if (year == 0 && mon == 0 && mday == 0 &&
|
|
hour == 0 && min == 0 && sec == 0 && fsec == 0)
|
|
{
|
|
sprintf(cp, "PT0S");
|
|
break;
|
|
}
|
|
*cp++ = 'P';
|
|
cp = AddISO8601IntPart(cp, year, 'Y');
|
|
cp = AddISO8601IntPart(cp, mon, 'M');
|
|
cp = AddISO8601IntPart(cp, mday, 'D');
|
|
if (hour != 0 || min != 0 || sec != 0 || fsec != 0)
|
|
*cp++ = 'T';
|
|
cp = AddISO8601IntPart(cp, hour, 'H');
|
|
cp = AddISO8601IntPart(cp, min, 'M');
|
|
if (sec != 0 || fsec != 0)
|
|
{
|
|
if (sec < 0 || fsec < 0)
|
|
*cp++ = '-';
|
|
cp = AppendSeconds(cp, sec, fsec, MAX_INTERVAL_PRECISION, false);
|
|
*cp++ = 'S';
|
|
*cp++ = '\0';
|
|
}
|
|
break;
|
|
|
|
/* Compatible with postgresql < 8.4 when DateStyle = 'iso' */
|
|
case INTSTYLE_POSTGRES:
|
|
cp = AddPostgresIntPart(cp, year, "year", &is_zero, &is_before);
|
|
|
|
/*
|
|
* Ideally we should spell out "month" like we do for "year" and
|
|
* "day". However, for backward compatibility, we can't easily
|
|
* fix this. bjm 2011-05-24
|
|
*/
|
|
cp = AddPostgresIntPart(cp, mon, "mon", &is_zero, &is_before);
|
|
cp = AddPostgresIntPart(cp, mday, "day", &is_zero, &is_before);
|
|
if (is_zero || hour != 0 || min != 0 || sec != 0 || fsec != 0)
|
|
{
|
|
bool minus = (hour < 0 || min < 0 || sec < 0 || fsec < 0);
|
|
|
|
sprintf(cp, "%s%s%02d:%02d:",
|
|
is_zero ? "" : " ",
|
|
(minus ? "-" : (is_before ? "+" : "")),
|
|
abs(hour), abs(min));
|
|
cp += strlen(cp);
|
|
cp = AppendSeconds(cp, sec, fsec, MAX_INTERVAL_PRECISION, true);
|
|
*cp = '\0';
|
|
}
|
|
break;
|
|
|
|
/* Compatible with postgresql < 8.4 when DateStyle != 'iso' */
|
|
case INTSTYLE_POSTGRES_VERBOSE:
|
|
default:
|
|
strcpy(cp, "@");
|
|
cp++;
|
|
cp = AddVerboseIntPart(cp, year, "year", &is_zero, &is_before);
|
|
cp = AddVerboseIntPart(cp, mon, "mon", &is_zero, &is_before);
|
|
cp = AddVerboseIntPart(cp, mday, "day", &is_zero, &is_before);
|
|
cp = AddVerboseIntPart(cp, hour, "hour", &is_zero, &is_before);
|
|
cp = AddVerboseIntPart(cp, min, "min", &is_zero, &is_before);
|
|
if (sec != 0 || fsec != 0)
|
|
{
|
|
*cp++ = ' ';
|
|
if (sec < 0 || (sec == 0 && fsec < 0))
|
|
{
|
|
if (is_zero)
|
|
is_before = true;
|
|
else if (!is_before)
|
|
*cp++ = '-';
|
|
}
|
|
else if (is_before)
|
|
*cp++ = '-';
|
|
cp = AppendSeconds(cp, sec, fsec, MAX_INTERVAL_PRECISION, false);
|
|
sprintf(cp, " sec%s",
|
|
(abs(sec) != 1 || fsec != 0) ? "s" : "");
|
|
is_zero = false;
|
|
}
|
|
/* identically zero? then put in a unitless zero... */
|
|
if (is_zero)
|
|
strcat(cp, " 0");
|
|
if (is_before)
|
|
strcat(cp, " ago");
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* We've been burnt by stupid errors in the ordering of the datetkn tables
|
|
* once too often. Arrange to check them during postmaster start.
|
|
*/
|
|
static bool
|
|
CheckDateTokenTable(const char *tablename, const datetkn *base, int nel)
|
|
{
|
|
bool ok = true;
|
|
int i;
|
|
|
|
for (i = 0; i < nel; i++)
|
|
{
|
|
/* check for token strings that don't fit */
|
|
if (strlen(base[i].token) > TOKMAXLEN)
|
|
{
|
|
/* %.*s is safe since all our tokens are ASCII */
|
|
elog(LOG, "token too long in %s table: \"%.*s\"",
|
|
tablename,
|
|
TOKMAXLEN + 1, base[i].token);
|
|
ok = false;
|
|
break; /* don't risk applying strcmp */
|
|
}
|
|
/* check for out of order */
|
|
if (i > 0 &&
|
|
strcmp(base[i - 1].token, base[i].token) >= 0)
|
|
{
|
|
elog(LOG, "ordering error in %s table: \"%s\" >= \"%s\"",
|
|
tablename,
|
|
base[i - 1].token,
|
|
base[i].token);
|
|
ok = false;
|
|
}
|
|
}
|
|
return ok;
|
|
}
|
|
|
|
bool
|
|
CheckDateTokenTables(void)
|
|
{
|
|
bool ok = true;
|
|
|
|
Assert(UNIX_EPOCH_JDATE == date2j(1970, 1, 1));
|
|
Assert(POSTGRES_EPOCH_JDATE == date2j(2000, 1, 1));
|
|
|
|
ok &= CheckDateTokenTable("datetktbl", datetktbl, szdatetktbl);
|
|
ok &= CheckDateTokenTable("deltatktbl", deltatktbl, szdeltatktbl);
|
|
return ok;
|
|
}
|
|
|
|
/*
|
|
* Common code for temporal prosupport functions: simplify, if possible,
|
|
* a call to a temporal type's length-coercion function.
|
|
*
|
|
* Types time, timetz, timestamp and timestamptz each have a range of allowed
|
|
* precisions. An unspecified precision is rigorously equivalent to the
|
|
* highest specifiable precision. We can replace the function call with a
|
|
* no-op RelabelType if it is coercing to the same or higher precision as the
|
|
* input is known to have.
|
|
*
|
|
* The input Node is always a FuncExpr, but to reduce the #include footprint
|
|
* of datetime.h, we declare it as Node *.
|
|
*
|
|
* Note: timestamp_scale throws an error when the typmod is out of range, but
|
|
* we can't get there from a cast: our typmodin will have caught it already.
|
|
*/
|
|
Node *
|
|
TemporalSimplify(int32 max_precis, Node *node)
|
|
{
|
|
FuncExpr *expr = castNode(FuncExpr, node);
|
|
Node *ret = NULL;
|
|
Node *typmod;
|
|
|
|
Assert(list_length(expr->args) >= 2);
|
|
|
|
typmod = (Node *) lsecond(expr->args);
|
|
|
|
if (IsA(typmod, Const) &&!((Const *) typmod)->constisnull)
|
|
{
|
|
Node *source = (Node *) linitial(expr->args);
|
|
int32 old_precis = exprTypmod(source);
|
|
int32 new_precis = DatumGetInt32(((Const *) typmod)->constvalue);
|
|
|
|
if (new_precis < 0 || new_precis == max_precis ||
|
|
(old_precis >= 0 && new_precis >= old_precis))
|
|
ret = relabel_to_typmod(source, new_precis);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This function gets called during timezone config file load or reload
|
|
* to create the final array of timezone tokens. The argument array
|
|
* is already sorted in name order.
|
|
*
|
|
* The result is a TimeZoneAbbrevTable (which must be a single malloc'd chunk)
|
|
* or NULL on malloc failure. No other error conditions are defined.
|
|
*/
|
|
TimeZoneAbbrevTable *
|
|
ConvertTimeZoneAbbrevs(struct tzEntry *abbrevs, int n)
|
|
{
|
|
TimeZoneAbbrevTable *tbl;
|
|
Size tbl_size;
|
|
int i;
|
|
|
|
/* Space for fixed fields and datetkn array */
|
|
tbl_size = offsetof(TimeZoneAbbrevTable, abbrevs) +
|
|
n * sizeof(datetkn);
|
|
tbl_size = MAXALIGN(tbl_size);
|
|
/* Count up space for dynamic abbreviations */
|
|
for (i = 0; i < n; i++)
|
|
{
|
|
struct tzEntry *abbr = abbrevs + i;
|
|
|
|
if (abbr->zone != NULL)
|
|
{
|
|
Size dsize;
|
|
|
|
dsize = offsetof(DynamicZoneAbbrev, zone) +
|
|
strlen(abbr->zone) + 1;
|
|
tbl_size += MAXALIGN(dsize);
|
|
}
|
|
}
|
|
|
|
/* Alloc the result ... */
|
|
tbl = malloc(tbl_size);
|
|
if (!tbl)
|
|
return NULL;
|
|
|
|
/* ... and fill it in */
|
|
tbl->tblsize = tbl_size;
|
|
tbl->numabbrevs = n;
|
|
/* in this loop, tbl_size reprises the space calculation above */
|
|
tbl_size = offsetof(TimeZoneAbbrevTable, abbrevs) +
|
|
n * sizeof(datetkn);
|
|
tbl_size = MAXALIGN(tbl_size);
|
|
for (i = 0; i < n; i++)
|
|
{
|
|
struct tzEntry *abbr = abbrevs + i;
|
|
datetkn *dtoken = tbl->abbrevs + i;
|
|
|
|
/* use strlcpy to truncate name if necessary */
|
|
strlcpy(dtoken->token, abbr->abbrev, TOKMAXLEN + 1);
|
|
if (abbr->zone != NULL)
|
|
{
|
|
/* Allocate a DynamicZoneAbbrev for this abbreviation */
|
|
DynamicZoneAbbrev *dtza;
|
|
Size dsize;
|
|
|
|
dtza = (DynamicZoneAbbrev *) ((char *) tbl + tbl_size);
|
|
dtza->tz = NULL;
|
|
strcpy(dtza->zone, abbr->zone);
|
|
|
|
dtoken->type = DYNTZ;
|
|
/* value is offset from table start to DynamicZoneAbbrev */
|
|
dtoken->value = (int32) tbl_size;
|
|
|
|
dsize = offsetof(DynamicZoneAbbrev, zone) +
|
|
strlen(abbr->zone) + 1;
|
|
tbl_size += MAXALIGN(dsize);
|
|
}
|
|
else
|
|
{
|
|
dtoken->type = abbr->is_dst ? DTZ : TZ;
|
|
dtoken->value = abbr->offset;
|
|
}
|
|
}
|
|
|
|
/* Assert the two loops above agreed on size calculations */
|
|
Assert(tbl->tblsize == tbl_size);
|
|
|
|
/* Check the ordering, if testing */
|
|
Assert(CheckDateTokenTable("timezone abbreviations", tbl->abbrevs, n));
|
|
|
|
return tbl;
|
|
}
|
|
|
|
/*
|
|
* Install a TimeZoneAbbrevTable as the active table.
|
|
*
|
|
* Caller is responsible that the passed table doesn't go away while in use.
|
|
*/
|
|
void
|
|
InstallTimeZoneAbbrevs(TimeZoneAbbrevTable *tbl)
|
|
{
|
|
zoneabbrevtbl = tbl;
|
|
/* reset abbrevcache, which may contain pointers into old table */
|
|
memset(abbrevcache, 0, sizeof(abbrevcache));
|
|
}
|
|
|
|
/*
|
|
* Helper subroutine to locate pg_tz timezone for a dynamic abbreviation.
|
|
*/
|
|
static pg_tz *
|
|
FetchDynamicTimeZone(TimeZoneAbbrevTable *tbl, const datetkn *tp)
|
|
{
|
|
DynamicZoneAbbrev *dtza;
|
|
|
|
/* Just some sanity checks to prevent indexing off into nowhere */
|
|
Assert(tp->type == DYNTZ);
|
|
Assert(tp->value > 0 && tp->value < tbl->tblsize);
|
|
|
|
dtza = (DynamicZoneAbbrev *) ((char *) tbl + tp->value);
|
|
|
|
/* Look up the underlying zone if we haven't already */
|
|
if (dtza->tz == NULL)
|
|
{
|
|
dtza->tz = pg_tzset(dtza->zone);
|
|
|
|
/*
|
|
* Ideally we'd let the caller ereport instead of doing it here, but
|
|
* then there is no way to report the bad time zone name.
|
|
*/
|
|
if (dtza->tz == NULL)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_CONFIG_FILE_ERROR),
|
|
errmsg("time zone \"%s\" not recognized",
|
|
dtza->zone),
|
|
errdetail("This time zone name appears in the configuration file for time zone abbreviation \"%s\".",
|
|
tp->token)));
|
|
}
|
|
return dtza->tz;
|
|
}
|
|
|
|
|
|
/*
|
|
* This set-returning function reads all the available time zone abbreviations
|
|
* and returns a set of (abbrev, utc_offset, is_dst).
|
|
*/
|
|
Datum
|
|
pg_timezone_abbrevs(PG_FUNCTION_ARGS)
|
|
{
|
|
FuncCallContext *funcctx;
|
|
int *pindex;
|
|
Datum result;
|
|
HeapTuple tuple;
|
|
Datum values[3];
|
|
bool nulls[3];
|
|
const datetkn *tp;
|
|
char buffer[TOKMAXLEN + 1];
|
|
int gmtoffset;
|
|
bool is_dst;
|
|
unsigned char *p;
|
|
struct pg_tm tm;
|
|
Interval *resInterval;
|
|
|
|
/* stuff done only on the first call of the function */
|
|
if (SRF_IS_FIRSTCALL())
|
|
{
|
|
TupleDesc tupdesc;
|
|
MemoryContext oldcontext;
|
|
|
|
/* create a function context for cross-call persistence */
|
|
funcctx = SRF_FIRSTCALL_INIT();
|
|
|
|
/*
|
|
* switch to memory context appropriate for multiple function calls
|
|
*/
|
|
oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
|
|
|
|
/* allocate memory for user context */
|
|
pindex = (int *) palloc(sizeof(int));
|
|
*pindex = 0;
|
|
funcctx->user_fctx = (void *) pindex;
|
|
|
|
/*
|
|
* build tupdesc for result tuples. This must match this function's
|
|
* pg_proc entry!
|
|
*/
|
|
tupdesc = CreateTemplateTupleDesc(3);
|
|
TupleDescInitEntry(tupdesc, (AttrNumber) 1, "abbrev",
|
|
TEXTOID, -1, 0);
|
|
TupleDescInitEntry(tupdesc, (AttrNumber) 2, "utc_offset",
|
|
INTERVALOID, -1, 0);
|
|
TupleDescInitEntry(tupdesc, (AttrNumber) 3, "is_dst",
|
|
BOOLOID, -1, 0);
|
|
|
|
funcctx->tuple_desc = BlessTupleDesc(tupdesc);
|
|
MemoryContextSwitchTo(oldcontext);
|
|
}
|
|
|
|
/* stuff done on every call of the function */
|
|
funcctx = SRF_PERCALL_SETUP();
|
|
pindex = (int *) funcctx->user_fctx;
|
|
|
|
if (zoneabbrevtbl == NULL ||
|
|
*pindex >= zoneabbrevtbl->numabbrevs)
|
|
SRF_RETURN_DONE(funcctx);
|
|
|
|
tp = zoneabbrevtbl->abbrevs + *pindex;
|
|
|
|
switch (tp->type)
|
|
{
|
|
case TZ:
|
|
gmtoffset = tp->value;
|
|
is_dst = false;
|
|
break;
|
|
case DTZ:
|
|
gmtoffset = tp->value;
|
|
is_dst = true;
|
|
break;
|
|
case DYNTZ:
|
|
{
|
|
/* Determine the current meaning of the abbrev */
|
|
pg_tz *tzp;
|
|
TimestampTz now;
|
|
int isdst;
|
|
|
|
tzp = FetchDynamicTimeZone(zoneabbrevtbl, tp);
|
|
now = GetCurrentTransactionStartTimestamp();
|
|
gmtoffset = -DetermineTimeZoneAbbrevOffsetTS(now,
|
|
tp->token,
|
|
tzp,
|
|
&isdst);
|
|
is_dst = (bool) isdst;
|
|
break;
|
|
}
|
|
default:
|
|
elog(ERROR, "unrecognized timezone type %d", (int) tp->type);
|
|
gmtoffset = 0; /* keep compiler quiet */
|
|
is_dst = false;
|
|
break;
|
|
}
|
|
|
|
MemSet(nulls, 0, sizeof(nulls));
|
|
|
|
/*
|
|
* Convert name to text, using upcasing conversion that is the inverse of
|
|
* what ParseDateTime() uses.
|
|
*/
|
|
strlcpy(buffer, tp->token, sizeof(buffer));
|
|
for (p = (unsigned char *) buffer; *p; p++)
|
|
*p = pg_toupper(*p);
|
|
|
|
values[0] = CStringGetTextDatum(buffer);
|
|
|
|
/* Convert offset (in seconds) to an interval */
|
|
MemSet(&tm, 0, sizeof(struct pg_tm));
|
|
tm.tm_sec = gmtoffset;
|
|
resInterval = (Interval *) palloc(sizeof(Interval));
|
|
tm2interval(&tm, 0, resInterval);
|
|
values[1] = IntervalPGetDatum(resInterval);
|
|
|
|
values[2] = BoolGetDatum(is_dst);
|
|
|
|
(*pindex)++;
|
|
|
|
tuple = heap_form_tuple(funcctx->tuple_desc, values, nulls);
|
|
result = HeapTupleGetDatum(tuple);
|
|
|
|
SRF_RETURN_NEXT(funcctx, result);
|
|
}
|
|
|
|
/*
|
|
* This set-returning function reads all the available full time zones
|
|
* and returns a set of (name, abbrev, utc_offset, is_dst).
|
|
*/
|
|
Datum
|
|
pg_timezone_names(PG_FUNCTION_ARGS)
|
|
{
|
|
MemoryContext oldcontext;
|
|
FuncCallContext *funcctx;
|
|
pg_tzenum *tzenum;
|
|
pg_tz *tz;
|
|
Datum result;
|
|
HeapTuple tuple;
|
|
Datum values[4];
|
|
bool nulls[4];
|
|
int tzoff;
|
|
struct pg_tm tm;
|
|
fsec_t fsec;
|
|
const char *tzn;
|
|
Interval *resInterval;
|
|
struct pg_tm itm;
|
|
|
|
/* stuff done only on the first call of the function */
|
|
if (SRF_IS_FIRSTCALL())
|
|
{
|
|
TupleDesc tupdesc;
|
|
|
|
/* create a function context for cross-call persistence */
|
|
funcctx = SRF_FIRSTCALL_INIT();
|
|
|
|
/*
|
|
* switch to memory context appropriate for multiple function calls
|
|
*/
|
|
oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
|
|
|
|
/* initialize timezone scanning code */
|
|
tzenum = pg_tzenumerate_start();
|
|
funcctx->user_fctx = (void *) tzenum;
|
|
|
|
/*
|
|
* build tupdesc for result tuples. This must match this function's
|
|
* pg_proc entry!
|
|
*/
|
|
tupdesc = CreateTemplateTupleDesc(4);
|
|
TupleDescInitEntry(tupdesc, (AttrNumber) 1, "name",
|
|
TEXTOID, -1, 0);
|
|
TupleDescInitEntry(tupdesc, (AttrNumber) 2, "abbrev",
|
|
TEXTOID, -1, 0);
|
|
TupleDescInitEntry(tupdesc, (AttrNumber) 3, "utc_offset",
|
|
INTERVALOID, -1, 0);
|
|
TupleDescInitEntry(tupdesc, (AttrNumber) 4, "is_dst",
|
|
BOOLOID, -1, 0);
|
|
|
|
funcctx->tuple_desc = BlessTupleDesc(tupdesc);
|
|
MemoryContextSwitchTo(oldcontext);
|
|
}
|
|
|
|
/* stuff done on every call of the function */
|
|
funcctx = SRF_PERCALL_SETUP();
|
|
tzenum = (pg_tzenum *) funcctx->user_fctx;
|
|
|
|
/* search for another zone to display */
|
|
for (;;)
|
|
{
|
|
oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
|
|
tz = pg_tzenumerate_next(tzenum);
|
|
MemoryContextSwitchTo(oldcontext);
|
|
|
|
if (!tz)
|
|
{
|
|
pg_tzenumerate_end(tzenum);
|
|
funcctx->user_fctx = NULL;
|
|
SRF_RETURN_DONE(funcctx);
|
|
}
|
|
|
|
/* Convert now() to local time in this zone */
|
|
if (timestamp2tm(GetCurrentTransactionStartTimestamp(),
|
|
&tzoff, &tm, &fsec, &tzn, tz) != 0)
|
|
continue; /* ignore if conversion fails */
|
|
|
|
/*
|
|
* Ignore zic's rather silly "Factory" time zone. The long string
|
|
* about "see zic manual page" is used in tzdata versions before
|
|
* 2016g; we can drop it someday when we're pretty sure no such data
|
|
* exists in the wild on platforms using --with-system-tzdata. In
|
|
* 2016g and later, the time zone abbreviation "-00" is used for
|
|
* "Factory" as well as some invalid cases, all of which we can
|
|
* reasonably omit from the pg_timezone_names view.
|
|
*/
|
|
if (tzn && (strcmp(tzn, "-00") == 0 ||
|
|
strcmp(tzn, "Local time zone must be set--see zic manual page") == 0))
|
|
continue;
|
|
|
|
/* Found a displayable zone */
|
|
break;
|
|
}
|
|
|
|
MemSet(nulls, 0, sizeof(nulls));
|
|
|
|
values[0] = CStringGetTextDatum(pg_get_timezone_name(tz));
|
|
values[1] = CStringGetTextDatum(tzn ? tzn : "");
|
|
|
|
MemSet(&itm, 0, sizeof(struct pg_tm));
|
|
itm.tm_sec = -tzoff;
|
|
resInterval = (Interval *) palloc(sizeof(Interval));
|
|
tm2interval(&itm, 0, resInterval);
|
|
values[2] = IntervalPGetDatum(resInterval);
|
|
|
|
values[3] = BoolGetDatum(tm.tm_isdst > 0);
|
|
|
|
tuple = heap_form_tuple(funcctx->tuple_desc, values, nulls);
|
|
result = HeapTupleGetDatum(tuple);
|
|
|
|
SRF_RETURN_NEXT(funcctx, result);
|
|
}
|