mirror of
https://github.com/postgres/postgres.git
synced 2025-04-27 22:56:53 +03:00
Currently, for large transactions, the publisher sends the data in multiple streams (changes divided into chunks depending upon logical_decoding_work_mem), and then on the subscriber-side, the apply worker writes the changes into temporary files and once it receives the commit, it reads from those files and applies the entire transaction. To improve the performance of such transactions, we can instead allow them to be applied via parallel workers. In this approach, we assign a new parallel apply worker (if available) as soon as the xact's first stream is received and the leader apply worker will send changes to this new worker via shared memory. The parallel apply worker will directly apply the change instead of writing it to temporary files. However, if the leader apply worker times out while attempting to send a message to the parallel apply worker, it will switch to "partial serialize" mode - in this mode, the leader serializes all remaining changes to a file and notifies the parallel apply workers to read and apply them at the end of the transaction. We use a non-blocking way to send the messages from the leader apply worker to the parallel apply to avoid deadlocks. We keep this parallel apply assigned till the transaction commit is received and also wait for the worker to finish at commit. This preserves commit ordering and avoid writing to and reading from files in most cases. We still need to spill if there is no worker available. This patch also extends the SUBSCRIPTION 'streaming' parameter so that the user can control whether to apply the streaming transaction in a parallel apply worker or spill the change to disk. The user can set the streaming parameter to 'on/off', or 'parallel'. The parameter value 'parallel' means the streaming will be applied via a parallel apply worker, if available. The parameter value 'on' means the streaming transaction will be spilled to disk. The default value is 'off' (same as current behaviour). In addition, the patch extends the logical replication STREAM_ABORT message so that abort_lsn and abort_time can also be sent which can be used to update the replication origin in parallel apply worker when the streaming transaction is aborted. Because this message extension is needed to support parallel streaming, parallel streaming is not supported for publications on servers < PG16. Author: Hou Zhijie, Wang wei, Amit Kapila with design inputs from Sawada Masahiko Reviewed-by: Sawada Masahiko, Peter Smith, Dilip Kumar, Shi yu, Kuroda Hayato, Shveta Mallik Discussion: https://postgr.es/m/CAA4eK1+wyN6zpaHUkCLorEWNx75MG0xhMwcFhvjqm2KURZEAGw@mail.gmail.com
2446 lines
72 KiB
C
2446 lines
72 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* pgoutput.c
|
|
* Logical Replication output plugin
|
|
*
|
|
* Copyright (c) 2012-2023, PostgreSQL Global Development Group
|
|
*
|
|
* IDENTIFICATION
|
|
* src/backend/replication/pgoutput/pgoutput.c
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
#include "postgres.h"
|
|
|
|
#include "access/tupconvert.h"
|
|
#include "catalog/partition.h"
|
|
#include "catalog/pg_publication.h"
|
|
#include "catalog/pg_publication_rel.h"
|
|
#include "catalog/pg_subscription.h"
|
|
#include "commands/defrem.h"
|
|
#include "commands/subscriptioncmds.h"
|
|
#include "executor/executor.h"
|
|
#include "fmgr.h"
|
|
#include "nodes/makefuncs.h"
|
|
#include "optimizer/optimizer.h"
|
|
#include "replication/logical.h"
|
|
#include "replication/logicalproto.h"
|
|
#include "replication/origin.h"
|
|
#include "replication/pgoutput.h"
|
|
#include "utils/builtins.h"
|
|
#include "utils/inval.h"
|
|
#include "utils/lsyscache.h"
|
|
#include "utils/memutils.h"
|
|
#include "utils/rel.h"
|
|
#include "utils/syscache.h"
|
|
#include "utils/varlena.h"
|
|
|
|
PG_MODULE_MAGIC;
|
|
|
|
static void pgoutput_startup(LogicalDecodingContext *ctx,
|
|
OutputPluginOptions *opt, bool is_init);
|
|
static void pgoutput_shutdown(LogicalDecodingContext *ctx);
|
|
static void pgoutput_begin_txn(LogicalDecodingContext *ctx,
|
|
ReorderBufferTXN *txn);
|
|
static void pgoutput_commit_txn(LogicalDecodingContext *ctx,
|
|
ReorderBufferTXN *txn, XLogRecPtr commit_lsn);
|
|
static void pgoutput_change(LogicalDecodingContext *ctx,
|
|
ReorderBufferTXN *txn, Relation relation,
|
|
ReorderBufferChange *change);
|
|
static void pgoutput_truncate(LogicalDecodingContext *ctx,
|
|
ReorderBufferTXN *txn, int nrelations, Relation relations[],
|
|
ReorderBufferChange *change);
|
|
static void pgoutput_message(LogicalDecodingContext *ctx,
|
|
ReorderBufferTXN *txn, XLogRecPtr message_lsn,
|
|
bool transactional, const char *prefix,
|
|
Size sz, const char *message);
|
|
static bool pgoutput_origin_filter(LogicalDecodingContext *ctx,
|
|
RepOriginId origin_id);
|
|
static void pgoutput_begin_prepare_txn(LogicalDecodingContext *ctx,
|
|
ReorderBufferTXN *txn);
|
|
static void pgoutput_prepare_txn(LogicalDecodingContext *ctx,
|
|
ReorderBufferTXN *txn, XLogRecPtr prepare_lsn);
|
|
static void pgoutput_commit_prepared_txn(LogicalDecodingContext *ctx,
|
|
ReorderBufferTXN *txn, XLogRecPtr commit_lsn);
|
|
static void pgoutput_rollback_prepared_txn(LogicalDecodingContext *ctx,
|
|
ReorderBufferTXN *txn,
|
|
XLogRecPtr prepare_end_lsn,
|
|
TimestampTz prepare_time);
|
|
static void pgoutput_stream_start(struct LogicalDecodingContext *ctx,
|
|
ReorderBufferTXN *txn);
|
|
static void pgoutput_stream_stop(struct LogicalDecodingContext *ctx,
|
|
ReorderBufferTXN *txn);
|
|
static void pgoutput_stream_abort(struct LogicalDecodingContext *ctx,
|
|
ReorderBufferTXN *txn,
|
|
XLogRecPtr abort_lsn);
|
|
static void pgoutput_stream_commit(struct LogicalDecodingContext *ctx,
|
|
ReorderBufferTXN *txn,
|
|
XLogRecPtr commit_lsn);
|
|
static void pgoutput_stream_prepare_txn(LogicalDecodingContext *ctx,
|
|
ReorderBufferTXN *txn, XLogRecPtr prepare_lsn);
|
|
|
|
static bool publications_valid;
|
|
static bool in_streaming;
|
|
static bool publish_no_origin;
|
|
|
|
static List *LoadPublications(List *pubnames);
|
|
static void publication_invalidation_cb(Datum arg, int cacheid,
|
|
uint32 hashvalue);
|
|
static void send_relation_and_attrs(Relation relation, TransactionId xid,
|
|
LogicalDecodingContext *ctx,
|
|
Bitmapset *columns);
|
|
static void send_repl_origin(LogicalDecodingContext *ctx,
|
|
RepOriginId origin_id, XLogRecPtr origin_lsn,
|
|
bool send_origin);
|
|
static void update_replication_progress(LogicalDecodingContext *ctx,
|
|
bool skipped_xact);
|
|
|
|
/*
|
|
* Only 3 publication actions are used for row filtering ("insert", "update",
|
|
* "delete"). See RelationSyncEntry.exprstate[].
|
|
*/
|
|
enum RowFilterPubAction
|
|
{
|
|
PUBACTION_INSERT,
|
|
PUBACTION_UPDATE,
|
|
PUBACTION_DELETE
|
|
};
|
|
|
|
#define NUM_ROWFILTER_PUBACTIONS (PUBACTION_DELETE+1)
|
|
|
|
/*
|
|
* Entry in the map used to remember which relation schemas we sent.
|
|
*
|
|
* The schema_sent flag determines if the current schema record for the
|
|
* relation (and for its ancestor if publish_as_relid is set) was already
|
|
* sent to the subscriber (in which case we don't need to send it again).
|
|
*
|
|
* The schema cache on downstream is however updated only at commit time,
|
|
* and with streamed transactions the commit order may be different from
|
|
* the order the transactions are sent in. Also, the (sub) transactions
|
|
* might get aborted so we need to send the schema for each (sub) transaction
|
|
* so that we don't lose the schema information on abort. For handling this,
|
|
* we maintain the list of xids (streamed_txns) for those we have already sent
|
|
* the schema.
|
|
*
|
|
* For partitions, 'pubactions' considers not only the table's own
|
|
* publications, but also those of all of its ancestors.
|
|
*/
|
|
typedef struct RelationSyncEntry
|
|
{
|
|
Oid relid; /* relation oid */
|
|
|
|
bool replicate_valid; /* overall validity flag for entry */
|
|
|
|
bool schema_sent;
|
|
List *streamed_txns; /* streamed toplevel transactions with this
|
|
* schema */
|
|
|
|
/* are we publishing this rel? */
|
|
PublicationActions pubactions;
|
|
|
|
/*
|
|
* ExprState array for row filter. Different publication actions don't
|
|
* allow multiple expressions to always be combined into one, because
|
|
* updates or deletes restrict the column in expression to be part of the
|
|
* replica identity index whereas inserts do not have this restriction, so
|
|
* there is one ExprState per publication action.
|
|
*/
|
|
ExprState *exprstate[NUM_ROWFILTER_PUBACTIONS];
|
|
EState *estate; /* executor state used for row filter */
|
|
TupleTableSlot *new_slot; /* slot for storing new tuple */
|
|
TupleTableSlot *old_slot; /* slot for storing old tuple */
|
|
|
|
/*
|
|
* OID of the relation to publish changes as. For a partition, this may
|
|
* be set to one of its ancestors whose schema will be used when
|
|
* replicating changes, if publish_via_partition_root is set for the
|
|
* publication.
|
|
*/
|
|
Oid publish_as_relid;
|
|
|
|
/*
|
|
* Map used when replicating using an ancestor's schema to convert tuples
|
|
* from partition's type to the ancestor's; NULL if publish_as_relid is
|
|
* same as 'relid' or if unnecessary due to partition and the ancestor
|
|
* having identical TupleDesc.
|
|
*/
|
|
AttrMap *attrmap;
|
|
|
|
/*
|
|
* Columns included in the publication, or NULL if all columns are
|
|
* included implicitly. Note that the attnums in this bitmap are not
|
|
* shifted by FirstLowInvalidHeapAttributeNumber.
|
|
*/
|
|
Bitmapset *columns;
|
|
|
|
/*
|
|
* Private context to store additional data for this entry - state for the
|
|
* row filter expressions, column list, etc.
|
|
*/
|
|
MemoryContext entry_cxt;
|
|
} RelationSyncEntry;
|
|
|
|
/*
|
|
* Maintain a per-transaction level variable to track whether the transaction
|
|
* has sent BEGIN. BEGIN is only sent when the first change in a transaction
|
|
* is processed. This makes it possible to skip sending a pair of BEGIN/COMMIT
|
|
* messages for empty transactions which saves network bandwidth.
|
|
*
|
|
* This optimization is not used for prepared transactions because if the
|
|
* WALSender restarts after prepare of a transaction and before commit prepared
|
|
* of the same transaction then we won't be able to figure out if we have
|
|
* skipped sending BEGIN/PREPARE of a transaction as it was empty. This is
|
|
* because we would have lost the in-memory txndata information that was
|
|
* present prior to the restart. This will result in sending a spurious
|
|
* COMMIT PREPARED without a corresponding prepared transaction at the
|
|
* downstream which would lead to an error when it tries to process it.
|
|
*
|
|
* XXX We could achieve this optimization by changing protocol to send
|
|
* additional information so that downstream can detect that the corresponding
|
|
* prepare has not been sent. However, adding such a check for every
|
|
* transaction in the downstream could be costly so we might want to do it
|
|
* optionally.
|
|
*
|
|
* We also don't have this optimization for streamed transactions because
|
|
* they can contain prepared transactions.
|
|
*/
|
|
typedef struct PGOutputTxnData
|
|
{
|
|
bool sent_begin_txn; /* flag indicating whether BEGIN has been sent */
|
|
} PGOutputTxnData;
|
|
|
|
/* Map used to remember which relation schemas we sent. */
|
|
static HTAB *RelationSyncCache = NULL;
|
|
|
|
static void init_rel_sync_cache(MemoryContext cachectx);
|
|
static void cleanup_rel_sync_cache(TransactionId xid, bool is_commit);
|
|
static RelationSyncEntry *get_rel_sync_entry(PGOutputData *data,
|
|
Relation relation);
|
|
static void rel_sync_cache_relation_cb(Datum arg, Oid relid);
|
|
static void rel_sync_cache_publication_cb(Datum arg, int cacheid,
|
|
uint32 hashvalue);
|
|
static void set_schema_sent_in_streamed_txn(RelationSyncEntry *entry,
|
|
TransactionId xid);
|
|
static bool get_schema_sent_in_streamed_txn(RelationSyncEntry *entry,
|
|
TransactionId xid);
|
|
static void init_tuple_slot(PGOutputData *data, Relation relation,
|
|
RelationSyncEntry *entry);
|
|
|
|
/* row filter routines */
|
|
static EState *create_estate_for_relation(Relation rel);
|
|
static void pgoutput_row_filter_init(PGOutputData *data,
|
|
List *publications,
|
|
RelationSyncEntry *entry);
|
|
static bool pgoutput_row_filter_exec_expr(ExprState *state,
|
|
ExprContext *econtext);
|
|
static bool pgoutput_row_filter(Relation relation, TupleTableSlot *old_slot,
|
|
TupleTableSlot **new_slot_ptr,
|
|
RelationSyncEntry *entry,
|
|
ReorderBufferChangeType *action);
|
|
|
|
/* column list routines */
|
|
static void pgoutput_column_list_init(PGOutputData *data,
|
|
List *publications,
|
|
RelationSyncEntry *entry);
|
|
|
|
/*
|
|
* Specify output plugin callbacks
|
|
*/
|
|
void
|
|
_PG_output_plugin_init(OutputPluginCallbacks *cb)
|
|
{
|
|
AssertVariableIsOfType(&_PG_output_plugin_init, LogicalOutputPluginInit);
|
|
|
|
cb->startup_cb = pgoutput_startup;
|
|
cb->begin_cb = pgoutput_begin_txn;
|
|
cb->change_cb = pgoutput_change;
|
|
cb->truncate_cb = pgoutput_truncate;
|
|
cb->message_cb = pgoutput_message;
|
|
cb->commit_cb = pgoutput_commit_txn;
|
|
|
|
cb->begin_prepare_cb = pgoutput_begin_prepare_txn;
|
|
cb->prepare_cb = pgoutput_prepare_txn;
|
|
cb->commit_prepared_cb = pgoutput_commit_prepared_txn;
|
|
cb->rollback_prepared_cb = pgoutput_rollback_prepared_txn;
|
|
cb->filter_by_origin_cb = pgoutput_origin_filter;
|
|
cb->shutdown_cb = pgoutput_shutdown;
|
|
|
|
/* transaction streaming */
|
|
cb->stream_start_cb = pgoutput_stream_start;
|
|
cb->stream_stop_cb = pgoutput_stream_stop;
|
|
cb->stream_abort_cb = pgoutput_stream_abort;
|
|
cb->stream_commit_cb = pgoutput_stream_commit;
|
|
cb->stream_change_cb = pgoutput_change;
|
|
cb->stream_message_cb = pgoutput_message;
|
|
cb->stream_truncate_cb = pgoutput_truncate;
|
|
/* transaction streaming - two-phase commit */
|
|
cb->stream_prepare_cb = pgoutput_stream_prepare_txn;
|
|
}
|
|
|
|
static void
|
|
parse_output_parameters(List *options, PGOutputData *data)
|
|
{
|
|
ListCell *lc;
|
|
bool protocol_version_given = false;
|
|
bool publication_names_given = false;
|
|
bool binary_option_given = false;
|
|
bool messages_option_given = false;
|
|
bool streaming_given = false;
|
|
bool two_phase_option_given = false;
|
|
bool origin_option_given = false;
|
|
|
|
data->binary = false;
|
|
data->streaming = LOGICALREP_STREAM_OFF;
|
|
data->messages = false;
|
|
data->two_phase = false;
|
|
|
|
foreach(lc, options)
|
|
{
|
|
DefElem *defel = (DefElem *) lfirst(lc);
|
|
|
|
Assert(defel->arg == NULL || IsA(defel->arg, String));
|
|
|
|
/* Check each param, whether or not we recognize it */
|
|
if (strcmp(defel->defname, "proto_version") == 0)
|
|
{
|
|
unsigned long parsed;
|
|
char *endptr;
|
|
|
|
if (protocol_version_given)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_SYNTAX_ERROR),
|
|
errmsg("conflicting or redundant options")));
|
|
protocol_version_given = true;
|
|
|
|
errno = 0;
|
|
parsed = strtoul(strVal(defel->arg), &endptr, 10);
|
|
if (errno != 0 || *endptr != '\0')
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
|
|
errmsg("invalid proto_version")));
|
|
|
|
if (parsed > PG_UINT32_MAX)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
|
|
errmsg("proto_version \"%s\" out of range",
|
|
strVal(defel->arg))));
|
|
|
|
data->protocol_version = (uint32) parsed;
|
|
}
|
|
else if (strcmp(defel->defname, "publication_names") == 0)
|
|
{
|
|
if (publication_names_given)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_SYNTAX_ERROR),
|
|
errmsg("conflicting or redundant options")));
|
|
publication_names_given = true;
|
|
|
|
if (!SplitIdentifierString(strVal(defel->arg), ',',
|
|
&data->publication_names))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_NAME),
|
|
errmsg("invalid publication_names syntax")));
|
|
}
|
|
else if (strcmp(defel->defname, "binary") == 0)
|
|
{
|
|
if (binary_option_given)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_SYNTAX_ERROR),
|
|
errmsg("conflicting or redundant options")));
|
|
binary_option_given = true;
|
|
|
|
data->binary = defGetBoolean(defel);
|
|
}
|
|
else if (strcmp(defel->defname, "messages") == 0)
|
|
{
|
|
if (messages_option_given)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_SYNTAX_ERROR),
|
|
errmsg("conflicting or redundant options")));
|
|
messages_option_given = true;
|
|
|
|
data->messages = defGetBoolean(defel);
|
|
}
|
|
else if (strcmp(defel->defname, "streaming") == 0)
|
|
{
|
|
if (streaming_given)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_SYNTAX_ERROR),
|
|
errmsg("conflicting or redundant options")));
|
|
streaming_given = true;
|
|
|
|
data->streaming = defGetStreamingMode(defel);
|
|
}
|
|
else if (strcmp(defel->defname, "two_phase") == 0)
|
|
{
|
|
if (two_phase_option_given)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_SYNTAX_ERROR),
|
|
errmsg("conflicting or redundant options")));
|
|
two_phase_option_given = true;
|
|
|
|
data->two_phase = defGetBoolean(defel);
|
|
}
|
|
else if (strcmp(defel->defname, "origin") == 0)
|
|
{
|
|
if (origin_option_given)
|
|
ereport(ERROR,
|
|
errcode(ERRCODE_SYNTAX_ERROR),
|
|
errmsg("conflicting or redundant options"));
|
|
origin_option_given = true;
|
|
|
|
data->origin = defGetString(defel);
|
|
if (pg_strcasecmp(data->origin, LOGICALREP_ORIGIN_NONE) == 0)
|
|
publish_no_origin = true;
|
|
else if (pg_strcasecmp(data->origin, LOGICALREP_ORIGIN_ANY) == 0)
|
|
publish_no_origin = false;
|
|
else
|
|
ereport(ERROR,
|
|
errcode(ERRCODE_INVALID_PARAMETER_VALUE),
|
|
errmsg("unrecognized origin value: \"%s\"", data->origin));
|
|
}
|
|
else
|
|
elog(ERROR, "unrecognized pgoutput option: %s", defel->defname);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Initialize this plugin
|
|
*/
|
|
static void
|
|
pgoutput_startup(LogicalDecodingContext *ctx, OutputPluginOptions *opt,
|
|
bool is_init)
|
|
{
|
|
PGOutputData *data = palloc0(sizeof(PGOutputData));
|
|
|
|
/* Create our memory context for private allocations. */
|
|
data->context = AllocSetContextCreate(ctx->context,
|
|
"logical replication output context",
|
|
ALLOCSET_DEFAULT_SIZES);
|
|
|
|
data->cachectx = AllocSetContextCreate(ctx->context,
|
|
"logical replication cache context",
|
|
ALLOCSET_DEFAULT_SIZES);
|
|
|
|
ctx->output_plugin_private = data;
|
|
|
|
/* This plugin uses binary protocol. */
|
|
opt->output_type = OUTPUT_PLUGIN_BINARY_OUTPUT;
|
|
|
|
/*
|
|
* This is replication start and not slot initialization.
|
|
*
|
|
* Parse and validate options passed by the client.
|
|
*/
|
|
if (!is_init)
|
|
{
|
|
/* Parse the params and ERROR if we see any we don't recognize */
|
|
parse_output_parameters(ctx->output_plugin_options, data);
|
|
|
|
/* Check if we support requested protocol */
|
|
if (data->protocol_version > LOGICALREP_PROTO_MAX_VERSION_NUM)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("client sent proto_version=%d but server only supports protocol %d or lower",
|
|
data->protocol_version, LOGICALREP_PROTO_MAX_VERSION_NUM)));
|
|
|
|
if (data->protocol_version < LOGICALREP_PROTO_MIN_VERSION_NUM)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("client sent proto_version=%d but server only supports protocol %d or higher",
|
|
data->protocol_version, LOGICALREP_PROTO_MIN_VERSION_NUM)));
|
|
|
|
if (data->publication_names == NIL)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
|
|
errmsg("publication_names parameter missing")));
|
|
|
|
/*
|
|
* Decide whether to enable streaming. It is disabled by default, in
|
|
* which case we just update the flag in decoding context. Otherwise
|
|
* we only allow it with sufficient version of the protocol, and when
|
|
* the output plugin supports it.
|
|
*/
|
|
if (data->streaming == LOGICALREP_STREAM_OFF)
|
|
ctx->streaming = false;
|
|
else if (data->streaming == LOGICALREP_STREAM_ON &&
|
|
data->protocol_version < LOGICALREP_PROTO_STREAM_VERSION_NUM)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
|
|
errmsg("requested proto_version=%d does not support streaming, need %d or higher",
|
|
data->protocol_version, LOGICALREP_PROTO_STREAM_VERSION_NUM)));
|
|
else if (data->streaming == LOGICALREP_STREAM_PARALLEL &&
|
|
data->protocol_version < LOGICALREP_PROTO_STREAM_PARALLEL_VERSION_NUM)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
|
|
errmsg("requested proto_version=%d does not support parallel streaming, need %d or higher",
|
|
data->protocol_version, LOGICALREP_PROTO_STREAM_PARALLEL_VERSION_NUM)));
|
|
else if (!ctx->streaming)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
|
|
errmsg("streaming requested, but not supported by output plugin")));
|
|
|
|
/* Also remember we're currently not streaming any transaction. */
|
|
in_streaming = false;
|
|
|
|
/*
|
|
* Here, we just check whether the two-phase option is passed by
|
|
* plugin and decide whether to enable it at later point of time. It
|
|
* remains enabled if the previous start-up has done so. But we only
|
|
* allow the option to be passed in with sufficient version of the
|
|
* protocol, and when the output plugin supports it.
|
|
*/
|
|
if (!data->two_phase)
|
|
ctx->twophase_opt_given = false;
|
|
else if (data->protocol_version < LOGICALREP_PROTO_TWOPHASE_VERSION_NUM)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
|
|
errmsg("requested proto_version=%d does not support two-phase commit, need %d or higher",
|
|
data->protocol_version, LOGICALREP_PROTO_TWOPHASE_VERSION_NUM)));
|
|
else if (!ctx->twophase)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
|
|
errmsg("two-phase commit requested, but not supported by output plugin")));
|
|
else
|
|
ctx->twophase_opt_given = true;
|
|
|
|
/* Init publication state. */
|
|
data->publications = NIL;
|
|
publications_valid = false;
|
|
CacheRegisterSyscacheCallback(PUBLICATIONOID,
|
|
publication_invalidation_cb,
|
|
(Datum) 0);
|
|
|
|
/* Initialize relation schema cache. */
|
|
init_rel_sync_cache(CacheMemoryContext);
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* Disable the streaming and prepared transactions during the slot
|
|
* initialization mode.
|
|
*/
|
|
ctx->streaming = false;
|
|
ctx->twophase = false;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* BEGIN callback.
|
|
*
|
|
* Don't send the BEGIN message here instead postpone it until the first
|
|
* change. In logical replication, a common scenario is to replicate a set of
|
|
* tables (instead of all tables) and transactions whose changes were on
|
|
* the table(s) that are not published will produce empty transactions. These
|
|
* empty transactions will send BEGIN and COMMIT messages to subscribers,
|
|
* using bandwidth on something with little/no use for logical replication.
|
|
*/
|
|
static void
|
|
pgoutput_begin_txn(LogicalDecodingContext *ctx, ReorderBufferTXN *txn)
|
|
{
|
|
PGOutputTxnData *txndata = MemoryContextAllocZero(ctx->context,
|
|
sizeof(PGOutputTxnData));
|
|
|
|
txn->output_plugin_private = txndata;
|
|
}
|
|
|
|
/*
|
|
* Send BEGIN.
|
|
*
|
|
* This is called while processing the first change of the transaction.
|
|
*/
|
|
static void
|
|
pgoutput_send_begin(LogicalDecodingContext *ctx, ReorderBufferTXN *txn)
|
|
{
|
|
bool send_replication_origin = txn->origin_id != InvalidRepOriginId;
|
|
PGOutputTxnData *txndata = (PGOutputTxnData *) txn->output_plugin_private;
|
|
|
|
Assert(txndata);
|
|
Assert(!txndata->sent_begin_txn);
|
|
|
|
OutputPluginPrepareWrite(ctx, !send_replication_origin);
|
|
logicalrep_write_begin(ctx->out, txn);
|
|
txndata->sent_begin_txn = true;
|
|
|
|
send_repl_origin(ctx, txn->origin_id, txn->origin_lsn,
|
|
send_replication_origin);
|
|
|
|
OutputPluginWrite(ctx, true);
|
|
}
|
|
|
|
/*
|
|
* COMMIT callback
|
|
*/
|
|
static void
|
|
pgoutput_commit_txn(LogicalDecodingContext *ctx, ReorderBufferTXN *txn,
|
|
XLogRecPtr commit_lsn)
|
|
{
|
|
PGOutputTxnData *txndata = (PGOutputTxnData *) txn->output_plugin_private;
|
|
bool sent_begin_txn;
|
|
|
|
Assert(txndata);
|
|
|
|
/*
|
|
* We don't need to send the commit message unless some relevant change
|
|
* from this transaction has been sent to the downstream.
|
|
*/
|
|
sent_begin_txn = txndata->sent_begin_txn;
|
|
update_replication_progress(ctx, !sent_begin_txn);
|
|
pfree(txndata);
|
|
txn->output_plugin_private = NULL;
|
|
|
|
if (!sent_begin_txn)
|
|
{
|
|
elog(DEBUG1, "skipped replication of an empty transaction with XID: %u", txn->xid);
|
|
return;
|
|
}
|
|
|
|
OutputPluginPrepareWrite(ctx, true);
|
|
logicalrep_write_commit(ctx->out, txn, commit_lsn);
|
|
OutputPluginWrite(ctx, true);
|
|
}
|
|
|
|
/*
|
|
* BEGIN PREPARE callback
|
|
*/
|
|
static void
|
|
pgoutput_begin_prepare_txn(LogicalDecodingContext *ctx, ReorderBufferTXN *txn)
|
|
{
|
|
bool send_replication_origin = txn->origin_id != InvalidRepOriginId;
|
|
|
|
OutputPluginPrepareWrite(ctx, !send_replication_origin);
|
|
logicalrep_write_begin_prepare(ctx->out, txn);
|
|
|
|
send_repl_origin(ctx, txn->origin_id, txn->origin_lsn,
|
|
send_replication_origin);
|
|
|
|
OutputPluginWrite(ctx, true);
|
|
}
|
|
|
|
/*
|
|
* PREPARE callback
|
|
*/
|
|
static void
|
|
pgoutput_prepare_txn(LogicalDecodingContext *ctx, ReorderBufferTXN *txn,
|
|
XLogRecPtr prepare_lsn)
|
|
{
|
|
update_replication_progress(ctx, false);
|
|
|
|
OutputPluginPrepareWrite(ctx, true);
|
|
logicalrep_write_prepare(ctx->out, txn, prepare_lsn);
|
|
OutputPluginWrite(ctx, true);
|
|
}
|
|
|
|
/*
|
|
* COMMIT PREPARED callback
|
|
*/
|
|
static void
|
|
pgoutput_commit_prepared_txn(LogicalDecodingContext *ctx, ReorderBufferTXN *txn,
|
|
XLogRecPtr commit_lsn)
|
|
{
|
|
update_replication_progress(ctx, false);
|
|
|
|
OutputPluginPrepareWrite(ctx, true);
|
|
logicalrep_write_commit_prepared(ctx->out, txn, commit_lsn);
|
|
OutputPluginWrite(ctx, true);
|
|
}
|
|
|
|
/*
|
|
* ROLLBACK PREPARED callback
|
|
*/
|
|
static void
|
|
pgoutput_rollback_prepared_txn(LogicalDecodingContext *ctx,
|
|
ReorderBufferTXN *txn,
|
|
XLogRecPtr prepare_end_lsn,
|
|
TimestampTz prepare_time)
|
|
{
|
|
update_replication_progress(ctx, false);
|
|
|
|
OutputPluginPrepareWrite(ctx, true);
|
|
logicalrep_write_rollback_prepared(ctx->out, txn, prepare_end_lsn,
|
|
prepare_time);
|
|
OutputPluginWrite(ctx, true);
|
|
}
|
|
|
|
/*
|
|
* Write the current schema of the relation and its ancestor (if any) if not
|
|
* done yet.
|
|
*/
|
|
static void
|
|
maybe_send_schema(LogicalDecodingContext *ctx,
|
|
ReorderBufferChange *change,
|
|
Relation relation, RelationSyncEntry *relentry)
|
|
{
|
|
bool schema_sent;
|
|
TransactionId xid = InvalidTransactionId;
|
|
TransactionId topxid = InvalidTransactionId;
|
|
|
|
/*
|
|
* Remember XID of the (sub)transaction for the change. We don't care if
|
|
* it's top-level transaction or not (we have already sent that XID in
|
|
* start of the current streaming block).
|
|
*
|
|
* If we're not in a streaming block, just use InvalidTransactionId and
|
|
* the write methods will not include it.
|
|
*/
|
|
if (in_streaming)
|
|
xid = change->txn->xid;
|
|
|
|
if (change->txn->toptxn)
|
|
topxid = change->txn->toptxn->xid;
|
|
else
|
|
topxid = xid;
|
|
|
|
/*
|
|
* Do we need to send the schema? We do track streamed transactions
|
|
* separately, because those may be applied later (and the regular
|
|
* transactions won't see their effects until then) and in an order that
|
|
* we don't know at this point.
|
|
*
|
|
* XXX There is a scope of optimization here. Currently, we always send
|
|
* the schema first time in a streaming transaction but we can probably
|
|
* avoid that by checking 'relentry->schema_sent' flag. However, before
|
|
* doing that we need to study its impact on the case where we have a mix
|
|
* of streaming and non-streaming transactions.
|
|
*/
|
|
if (in_streaming)
|
|
schema_sent = get_schema_sent_in_streamed_txn(relentry, topxid);
|
|
else
|
|
schema_sent = relentry->schema_sent;
|
|
|
|
/* Nothing to do if we already sent the schema. */
|
|
if (schema_sent)
|
|
return;
|
|
|
|
/*
|
|
* Send the schema. If the changes will be published using an ancestor's
|
|
* schema, not the relation's own, send that ancestor's schema before
|
|
* sending relation's own (XXX - maybe sending only the former suffices?).
|
|
*/
|
|
if (relentry->publish_as_relid != RelationGetRelid(relation))
|
|
{
|
|
Relation ancestor = RelationIdGetRelation(relentry->publish_as_relid);
|
|
|
|
send_relation_and_attrs(ancestor, xid, ctx, relentry->columns);
|
|
RelationClose(ancestor);
|
|
}
|
|
|
|
send_relation_and_attrs(relation, xid, ctx, relentry->columns);
|
|
|
|
if (in_streaming)
|
|
set_schema_sent_in_streamed_txn(relentry, topxid);
|
|
else
|
|
relentry->schema_sent = true;
|
|
}
|
|
|
|
/*
|
|
* Sends a relation
|
|
*/
|
|
static void
|
|
send_relation_and_attrs(Relation relation, TransactionId xid,
|
|
LogicalDecodingContext *ctx,
|
|
Bitmapset *columns)
|
|
{
|
|
TupleDesc desc = RelationGetDescr(relation);
|
|
int i;
|
|
|
|
/*
|
|
* Write out type info if needed. We do that only for user-created types.
|
|
* We use FirstGenbkiObjectId as the cutoff, so that we only consider
|
|
* objects with hand-assigned OIDs to be "built in", not for instance any
|
|
* function or type defined in the information_schema. This is important
|
|
* because only hand-assigned OIDs can be expected to remain stable across
|
|
* major versions.
|
|
*/
|
|
for (i = 0; i < desc->natts; i++)
|
|
{
|
|
Form_pg_attribute att = TupleDescAttr(desc, i);
|
|
|
|
if (att->attisdropped || att->attgenerated)
|
|
continue;
|
|
|
|
if (att->atttypid < FirstGenbkiObjectId)
|
|
continue;
|
|
|
|
/* Skip this attribute if it's not present in the column list */
|
|
if (columns != NULL && !bms_is_member(att->attnum, columns))
|
|
continue;
|
|
|
|
OutputPluginPrepareWrite(ctx, false);
|
|
logicalrep_write_typ(ctx->out, xid, att->atttypid);
|
|
OutputPluginWrite(ctx, false);
|
|
}
|
|
|
|
OutputPluginPrepareWrite(ctx, false);
|
|
logicalrep_write_rel(ctx->out, xid, relation, columns);
|
|
OutputPluginWrite(ctx, false);
|
|
}
|
|
|
|
/*
|
|
* Executor state preparation for evaluation of row filter expressions for the
|
|
* specified relation.
|
|
*/
|
|
static EState *
|
|
create_estate_for_relation(Relation rel)
|
|
{
|
|
EState *estate;
|
|
RangeTblEntry *rte;
|
|
|
|
estate = CreateExecutorState();
|
|
|
|
rte = makeNode(RangeTblEntry);
|
|
rte->rtekind = RTE_RELATION;
|
|
rte->relid = RelationGetRelid(rel);
|
|
rte->relkind = rel->rd_rel->relkind;
|
|
rte->rellockmode = AccessShareLock;
|
|
ExecInitRangeTable(estate, list_make1(rte));
|
|
|
|
estate->es_output_cid = GetCurrentCommandId(false);
|
|
|
|
return estate;
|
|
}
|
|
|
|
/*
|
|
* Evaluates row filter.
|
|
*
|
|
* If the row filter evaluates to NULL, it is taken as false i.e. the change
|
|
* isn't replicated.
|
|
*/
|
|
static bool
|
|
pgoutput_row_filter_exec_expr(ExprState *state, ExprContext *econtext)
|
|
{
|
|
Datum ret;
|
|
bool isnull;
|
|
|
|
Assert(state != NULL);
|
|
|
|
ret = ExecEvalExprSwitchContext(state, econtext, &isnull);
|
|
|
|
elog(DEBUG3, "row filter evaluates to %s (isnull: %s)",
|
|
isnull ? "false" : DatumGetBool(ret) ? "true" : "false",
|
|
isnull ? "true" : "false");
|
|
|
|
if (isnull)
|
|
return false;
|
|
|
|
return DatumGetBool(ret);
|
|
}
|
|
|
|
/*
|
|
* Make sure the per-entry memory context exists.
|
|
*/
|
|
static void
|
|
pgoutput_ensure_entry_cxt(PGOutputData *data, RelationSyncEntry *entry)
|
|
{
|
|
Relation relation;
|
|
|
|
/* The context may already exist, in which case bail out. */
|
|
if (entry->entry_cxt)
|
|
return;
|
|
|
|
relation = RelationIdGetRelation(entry->publish_as_relid);
|
|
|
|
entry->entry_cxt = AllocSetContextCreate(data->cachectx,
|
|
"entry private context",
|
|
ALLOCSET_SMALL_SIZES);
|
|
|
|
MemoryContextCopyAndSetIdentifier(entry->entry_cxt,
|
|
RelationGetRelationName(relation));
|
|
}
|
|
|
|
/*
|
|
* Initialize the row filter.
|
|
*/
|
|
static void
|
|
pgoutput_row_filter_init(PGOutputData *data, List *publications,
|
|
RelationSyncEntry *entry)
|
|
{
|
|
ListCell *lc;
|
|
List *rfnodes[] = {NIL, NIL, NIL}; /* One per pubaction */
|
|
bool no_filter[] = {false, false, false}; /* One per pubaction */
|
|
MemoryContext oldctx;
|
|
int idx;
|
|
bool has_filter = true;
|
|
Oid schemaid = get_rel_namespace(entry->publish_as_relid);
|
|
|
|
/*
|
|
* Find if there are any row filters for this relation. If there are, then
|
|
* prepare the necessary ExprState and cache it in entry->exprstate. To
|
|
* build an expression state, we need to ensure the following:
|
|
*
|
|
* All the given publication-table mappings must be checked.
|
|
*
|
|
* Multiple publications might have multiple row filters for this
|
|
* relation. Since row filter usage depends on the DML operation, there
|
|
* are multiple lists (one for each operation) to which row filters will
|
|
* be appended.
|
|
*
|
|
* FOR ALL TABLES and FOR TABLES IN SCHEMA implies "don't use row
|
|
* filter expression" so it takes precedence.
|
|
*/
|
|
foreach(lc, publications)
|
|
{
|
|
Publication *pub = lfirst(lc);
|
|
HeapTuple rftuple = NULL;
|
|
Datum rfdatum = 0;
|
|
bool pub_no_filter = true;
|
|
|
|
/*
|
|
* If the publication is FOR ALL TABLES, or the publication includes a
|
|
* FOR TABLES IN SCHEMA where the table belongs to the referred
|
|
* schema, then it is treated the same as if there are no row filters
|
|
* (even if other publications have a row filter).
|
|
*/
|
|
if (!pub->alltables &&
|
|
!SearchSysCacheExists2(PUBLICATIONNAMESPACEMAP,
|
|
ObjectIdGetDatum(schemaid),
|
|
ObjectIdGetDatum(pub->oid)))
|
|
{
|
|
/*
|
|
* Check for the presence of a row filter in this publication.
|
|
*/
|
|
rftuple = SearchSysCache2(PUBLICATIONRELMAP,
|
|
ObjectIdGetDatum(entry->publish_as_relid),
|
|
ObjectIdGetDatum(pub->oid));
|
|
|
|
if (HeapTupleIsValid(rftuple))
|
|
{
|
|
/* Null indicates no filter. */
|
|
rfdatum = SysCacheGetAttr(PUBLICATIONRELMAP, rftuple,
|
|
Anum_pg_publication_rel_prqual,
|
|
&pub_no_filter);
|
|
}
|
|
}
|
|
|
|
if (pub_no_filter)
|
|
{
|
|
if (rftuple)
|
|
ReleaseSysCache(rftuple);
|
|
|
|
no_filter[PUBACTION_INSERT] |= pub->pubactions.pubinsert;
|
|
no_filter[PUBACTION_UPDATE] |= pub->pubactions.pubupdate;
|
|
no_filter[PUBACTION_DELETE] |= pub->pubactions.pubdelete;
|
|
|
|
/*
|
|
* Quick exit if all the DML actions are publicized via this
|
|
* publication.
|
|
*/
|
|
if (no_filter[PUBACTION_INSERT] &&
|
|
no_filter[PUBACTION_UPDATE] &&
|
|
no_filter[PUBACTION_DELETE])
|
|
{
|
|
has_filter = false;
|
|
break;
|
|
}
|
|
|
|
/* No additional work for this publication. Next one. */
|
|
continue;
|
|
}
|
|
|
|
/* Form the per pubaction row filter lists. */
|
|
if (pub->pubactions.pubinsert && !no_filter[PUBACTION_INSERT])
|
|
rfnodes[PUBACTION_INSERT] = lappend(rfnodes[PUBACTION_INSERT],
|
|
TextDatumGetCString(rfdatum));
|
|
if (pub->pubactions.pubupdate && !no_filter[PUBACTION_UPDATE])
|
|
rfnodes[PUBACTION_UPDATE] = lappend(rfnodes[PUBACTION_UPDATE],
|
|
TextDatumGetCString(rfdatum));
|
|
if (pub->pubactions.pubdelete && !no_filter[PUBACTION_DELETE])
|
|
rfnodes[PUBACTION_DELETE] = lappend(rfnodes[PUBACTION_DELETE],
|
|
TextDatumGetCString(rfdatum));
|
|
|
|
ReleaseSysCache(rftuple);
|
|
} /* loop all subscribed publications */
|
|
|
|
/* Clean the row filter */
|
|
for (idx = 0; idx < NUM_ROWFILTER_PUBACTIONS; idx++)
|
|
{
|
|
if (no_filter[idx])
|
|
{
|
|
list_free_deep(rfnodes[idx]);
|
|
rfnodes[idx] = NIL;
|
|
}
|
|
}
|
|
|
|
if (has_filter)
|
|
{
|
|
Relation relation = RelationIdGetRelation(entry->publish_as_relid);
|
|
|
|
pgoutput_ensure_entry_cxt(data, entry);
|
|
|
|
/*
|
|
* Now all the filters for all pubactions are known. Combine them when
|
|
* their pubactions are the same.
|
|
*/
|
|
oldctx = MemoryContextSwitchTo(entry->entry_cxt);
|
|
entry->estate = create_estate_for_relation(relation);
|
|
for (idx = 0; idx < NUM_ROWFILTER_PUBACTIONS; idx++)
|
|
{
|
|
List *filters = NIL;
|
|
Expr *rfnode;
|
|
|
|
if (rfnodes[idx] == NIL)
|
|
continue;
|
|
|
|
foreach(lc, rfnodes[idx])
|
|
filters = lappend(filters, stringToNode((char *) lfirst(lc)));
|
|
|
|
/* combine the row filter and cache the ExprState */
|
|
rfnode = make_orclause(filters);
|
|
entry->exprstate[idx] = ExecPrepareExpr(rfnode, entry->estate);
|
|
} /* for each pubaction */
|
|
MemoryContextSwitchTo(oldctx);
|
|
|
|
RelationClose(relation);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Initialize the column list.
|
|
*/
|
|
static void
|
|
pgoutput_column_list_init(PGOutputData *data, List *publications,
|
|
RelationSyncEntry *entry)
|
|
{
|
|
ListCell *lc;
|
|
bool first = true;
|
|
Relation relation = RelationIdGetRelation(entry->publish_as_relid);
|
|
|
|
/*
|
|
* Find if there are any column lists for this relation. If there are,
|
|
* build a bitmap using the column lists.
|
|
*
|
|
* Multiple publications might have multiple column lists for this
|
|
* relation.
|
|
*
|
|
* Note that we don't support the case where the column list is different
|
|
* for the same table when combining publications. See comments atop
|
|
* fetch_table_list. But one can later change the publication so we still
|
|
* need to check all the given publication-table mappings and report an
|
|
* error if any publications have a different column list.
|
|
*
|
|
* FOR ALL TABLES and FOR TABLES IN SCHEMA imply "don't use column list".
|
|
*/
|
|
foreach(lc, publications)
|
|
{
|
|
Publication *pub = lfirst(lc);
|
|
HeapTuple cftuple = NULL;
|
|
Datum cfdatum = 0;
|
|
Bitmapset *cols = NULL;
|
|
|
|
/*
|
|
* If the publication is FOR ALL TABLES then it is treated the same as
|
|
* if there are no column lists (even if other publications have a
|
|
* list).
|
|
*/
|
|
if (!pub->alltables)
|
|
{
|
|
bool pub_no_list = true;
|
|
|
|
/*
|
|
* Check for the presence of a column list in this publication.
|
|
*
|
|
* Note: If we find no pg_publication_rel row, it's a publication
|
|
* defined for a whole schema, so it can't have a column list,
|
|
* just like a FOR ALL TABLES publication.
|
|
*/
|
|
cftuple = SearchSysCache2(PUBLICATIONRELMAP,
|
|
ObjectIdGetDatum(entry->publish_as_relid),
|
|
ObjectIdGetDatum(pub->oid));
|
|
|
|
if (HeapTupleIsValid(cftuple))
|
|
{
|
|
/* Lookup the column list attribute. */
|
|
cfdatum = SysCacheGetAttr(PUBLICATIONRELMAP, cftuple,
|
|
Anum_pg_publication_rel_prattrs,
|
|
&pub_no_list);
|
|
|
|
/* Build the column list bitmap in the per-entry context. */
|
|
if (!pub_no_list) /* when not null */
|
|
{
|
|
pgoutput_ensure_entry_cxt(data, entry);
|
|
|
|
cols = pub_collist_to_bitmapset(cols, cfdatum,
|
|
entry->entry_cxt);
|
|
|
|
/*
|
|
* If column list includes all the columns of the table,
|
|
* set it to NULL.
|
|
*/
|
|
if (bms_num_members(cols) == RelationGetNumberOfAttributes(relation))
|
|
{
|
|
bms_free(cols);
|
|
cols = NULL;
|
|
}
|
|
}
|
|
|
|
ReleaseSysCache(cftuple);
|
|
}
|
|
}
|
|
|
|
if (first)
|
|
{
|
|
entry->columns = cols;
|
|
first = false;
|
|
}
|
|
else if (!bms_equal(entry->columns, cols))
|
|
ereport(ERROR,
|
|
errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("cannot use different column lists for table \"%s.%s\" in different publications",
|
|
get_namespace_name(RelationGetNamespace(relation)),
|
|
RelationGetRelationName(relation)));
|
|
} /* loop all subscribed publications */
|
|
|
|
RelationClose(relation);
|
|
}
|
|
|
|
/*
|
|
* Initialize the slot for storing new and old tuples, and build the map that
|
|
* will be used to convert the relation's tuples into the ancestor's format.
|
|
*/
|
|
static void
|
|
init_tuple_slot(PGOutputData *data, Relation relation,
|
|
RelationSyncEntry *entry)
|
|
{
|
|
MemoryContext oldctx;
|
|
TupleDesc oldtupdesc;
|
|
TupleDesc newtupdesc;
|
|
|
|
oldctx = MemoryContextSwitchTo(data->cachectx);
|
|
|
|
/*
|
|
* Create tuple table slots. Create a copy of the TupleDesc as it needs to
|
|
* live as long as the cache remains.
|
|
*/
|
|
oldtupdesc = CreateTupleDescCopy(RelationGetDescr(relation));
|
|
newtupdesc = CreateTupleDescCopy(RelationGetDescr(relation));
|
|
|
|
entry->old_slot = MakeSingleTupleTableSlot(oldtupdesc, &TTSOpsHeapTuple);
|
|
entry->new_slot = MakeSingleTupleTableSlot(newtupdesc, &TTSOpsHeapTuple);
|
|
|
|
MemoryContextSwitchTo(oldctx);
|
|
|
|
/*
|
|
* Cache the map that will be used to convert the relation's tuples into
|
|
* the ancestor's format, if needed.
|
|
*/
|
|
if (entry->publish_as_relid != RelationGetRelid(relation))
|
|
{
|
|
Relation ancestor = RelationIdGetRelation(entry->publish_as_relid);
|
|
TupleDesc indesc = RelationGetDescr(relation);
|
|
TupleDesc outdesc = RelationGetDescr(ancestor);
|
|
|
|
/* Map must live as long as the session does. */
|
|
oldctx = MemoryContextSwitchTo(CacheMemoryContext);
|
|
|
|
entry->attrmap = build_attrmap_by_name_if_req(indesc, outdesc, false);
|
|
|
|
MemoryContextSwitchTo(oldctx);
|
|
RelationClose(ancestor);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Change is checked against the row filter if any.
|
|
*
|
|
* Returns true if the change is to be replicated, else false.
|
|
*
|
|
* For inserts, evaluate the row filter for new tuple.
|
|
* For deletes, evaluate the row filter for old tuple.
|
|
* For updates, evaluate the row filter for old and new tuple.
|
|
*
|
|
* For updates, if both evaluations are true, we allow sending the UPDATE and
|
|
* if both the evaluations are false, it doesn't replicate the UPDATE. Now, if
|
|
* only one of the tuples matches the row filter expression, we transform
|
|
* UPDATE to DELETE or INSERT to avoid any data inconsistency based on the
|
|
* following rules:
|
|
*
|
|
* Case 1: old-row (no match) new-row (no match) -> (drop change)
|
|
* Case 2: old-row (no match) new row (match) -> INSERT
|
|
* Case 3: old-row (match) new-row (no match) -> DELETE
|
|
* Case 4: old-row (match) new row (match) -> UPDATE
|
|
*
|
|
* The new action is updated in the action parameter.
|
|
*
|
|
* The new slot could be updated when transforming the UPDATE into INSERT,
|
|
* because the original new tuple might not have column values from the replica
|
|
* identity.
|
|
*
|
|
* Examples:
|
|
* Let's say the old tuple satisfies the row filter but the new tuple doesn't.
|
|
* Since the old tuple satisfies, the initial table synchronization copied this
|
|
* row (or another method was used to guarantee that there is data
|
|
* consistency). However, after the UPDATE the new tuple doesn't satisfy the
|
|
* row filter, so from a data consistency perspective, that row should be
|
|
* removed on the subscriber. The UPDATE should be transformed into a DELETE
|
|
* statement and be sent to the subscriber. Keeping this row on the subscriber
|
|
* is undesirable because it doesn't reflect what was defined in the row filter
|
|
* expression on the publisher. This row on the subscriber would likely not be
|
|
* modified by replication again. If someone inserted a new row with the same
|
|
* old identifier, replication could stop due to a constraint violation.
|
|
*
|
|
* Let's say the old tuple doesn't match the row filter but the new tuple does.
|
|
* Since the old tuple doesn't satisfy, the initial table synchronization
|
|
* probably didn't copy this row. However, after the UPDATE the new tuple does
|
|
* satisfy the row filter, so from a data consistency perspective, that row
|
|
* should be inserted on the subscriber. Otherwise, subsequent UPDATE or DELETE
|
|
* statements have no effect (it matches no row -- see
|
|
* apply_handle_update_internal()). So, the UPDATE should be transformed into a
|
|
* INSERT statement and be sent to the subscriber. However, this might surprise
|
|
* someone who expects the data set to satisfy the row filter expression on the
|
|
* provider.
|
|
*/
|
|
static bool
|
|
pgoutput_row_filter(Relation relation, TupleTableSlot *old_slot,
|
|
TupleTableSlot **new_slot_ptr, RelationSyncEntry *entry,
|
|
ReorderBufferChangeType *action)
|
|
{
|
|
TupleDesc desc;
|
|
int i;
|
|
bool old_matched,
|
|
new_matched,
|
|
result;
|
|
TupleTableSlot *tmp_new_slot;
|
|
TupleTableSlot *new_slot = *new_slot_ptr;
|
|
ExprContext *ecxt;
|
|
ExprState *filter_exprstate;
|
|
|
|
/*
|
|
* We need this map to avoid relying on ReorderBufferChangeType enums
|
|
* having specific values.
|
|
*/
|
|
static const int map_changetype_pubaction[] = {
|
|
[REORDER_BUFFER_CHANGE_INSERT] = PUBACTION_INSERT,
|
|
[REORDER_BUFFER_CHANGE_UPDATE] = PUBACTION_UPDATE,
|
|
[REORDER_BUFFER_CHANGE_DELETE] = PUBACTION_DELETE
|
|
};
|
|
|
|
Assert(*action == REORDER_BUFFER_CHANGE_INSERT ||
|
|
*action == REORDER_BUFFER_CHANGE_UPDATE ||
|
|
*action == REORDER_BUFFER_CHANGE_DELETE);
|
|
|
|
Assert(new_slot || old_slot);
|
|
|
|
/* Get the corresponding row filter */
|
|
filter_exprstate = entry->exprstate[map_changetype_pubaction[*action]];
|
|
|
|
/* Bail out if there is no row filter */
|
|
if (!filter_exprstate)
|
|
return true;
|
|
|
|
elog(DEBUG3, "table \"%s.%s\" has row filter",
|
|
get_namespace_name(RelationGetNamespace(relation)),
|
|
RelationGetRelationName(relation));
|
|
|
|
ResetPerTupleExprContext(entry->estate);
|
|
|
|
ecxt = GetPerTupleExprContext(entry->estate);
|
|
|
|
/*
|
|
* For the following occasions where there is only one tuple, we can
|
|
* evaluate the row filter for that tuple and return.
|
|
*
|
|
* For inserts, we only have the new tuple.
|
|
*
|
|
* For updates, we can have only a new tuple when none of the replica
|
|
* identity columns changed and none of those columns have external data
|
|
* but we still need to evaluate the row filter for the new tuple as the
|
|
* existing values of those columns might not match the filter. Also,
|
|
* users can use constant expressions in the row filter, so we anyway need
|
|
* to evaluate it for the new tuple.
|
|
*
|
|
* For deletes, we only have the old tuple.
|
|
*/
|
|
if (!new_slot || !old_slot)
|
|
{
|
|
ecxt->ecxt_scantuple = new_slot ? new_slot : old_slot;
|
|
result = pgoutput_row_filter_exec_expr(filter_exprstate, ecxt);
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Both the old and new tuples must be valid only for updates and need to
|
|
* be checked against the row filter.
|
|
*/
|
|
Assert(map_changetype_pubaction[*action] == PUBACTION_UPDATE);
|
|
|
|
slot_getallattrs(new_slot);
|
|
slot_getallattrs(old_slot);
|
|
|
|
tmp_new_slot = NULL;
|
|
desc = RelationGetDescr(relation);
|
|
|
|
/*
|
|
* The new tuple might not have all the replica identity columns, in which
|
|
* case it needs to be copied over from the old tuple.
|
|
*/
|
|
for (i = 0; i < desc->natts; i++)
|
|
{
|
|
Form_pg_attribute att = TupleDescAttr(desc, i);
|
|
|
|
/*
|
|
* if the column in the new tuple or old tuple is null, nothing to do
|
|
*/
|
|
if (new_slot->tts_isnull[i] || old_slot->tts_isnull[i])
|
|
continue;
|
|
|
|
/*
|
|
* Unchanged toasted replica identity columns are only logged in the
|
|
* old tuple. Copy this over to the new tuple. The changed (or WAL
|
|
* Logged) toast values are always assembled in memory and set as
|
|
* VARTAG_INDIRECT. See ReorderBufferToastReplace.
|
|
*/
|
|
if (att->attlen == -1 &&
|
|
VARATT_IS_EXTERNAL_ONDISK(new_slot->tts_values[i]) &&
|
|
!VARATT_IS_EXTERNAL_ONDISK(old_slot->tts_values[i]))
|
|
{
|
|
if (!tmp_new_slot)
|
|
{
|
|
tmp_new_slot = MakeSingleTupleTableSlot(desc, &TTSOpsVirtual);
|
|
ExecClearTuple(tmp_new_slot);
|
|
|
|
memcpy(tmp_new_slot->tts_values, new_slot->tts_values,
|
|
desc->natts * sizeof(Datum));
|
|
memcpy(tmp_new_slot->tts_isnull, new_slot->tts_isnull,
|
|
desc->natts * sizeof(bool));
|
|
}
|
|
|
|
tmp_new_slot->tts_values[i] = old_slot->tts_values[i];
|
|
tmp_new_slot->tts_isnull[i] = old_slot->tts_isnull[i];
|
|
}
|
|
}
|
|
|
|
ecxt->ecxt_scantuple = old_slot;
|
|
old_matched = pgoutput_row_filter_exec_expr(filter_exprstate, ecxt);
|
|
|
|
if (tmp_new_slot)
|
|
{
|
|
ExecStoreVirtualTuple(tmp_new_slot);
|
|
ecxt->ecxt_scantuple = tmp_new_slot;
|
|
}
|
|
else
|
|
ecxt->ecxt_scantuple = new_slot;
|
|
|
|
new_matched = pgoutput_row_filter_exec_expr(filter_exprstate, ecxt);
|
|
|
|
/*
|
|
* Case 1: if both tuples don't match the row filter, bailout. Send
|
|
* nothing.
|
|
*/
|
|
if (!old_matched && !new_matched)
|
|
return false;
|
|
|
|
/*
|
|
* Case 2: if the old tuple doesn't satisfy the row filter but the new
|
|
* tuple does, transform the UPDATE into INSERT.
|
|
*
|
|
* Use the newly transformed tuple that must contain the column values for
|
|
* all the replica identity columns. This is required to ensure that the
|
|
* while inserting the tuple in the downstream node, we have all the
|
|
* required column values.
|
|
*/
|
|
if (!old_matched && new_matched)
|
|
{
|
|
*action = REORDER_BUFFER_CHANGE_INSERT;
|
|
|
|
if (tmp_new_slot)
|
|
*new_slot_ptr = tmp_new_slot;
|
|
}
|
|
|
|
/*
|
|
* Case 3: if the old tuple satisfies the row filter but the new tuple
|
|
* doesn't, transform the UPDATE into DELETE.
|
|
*
|
|
* This transformation does not require another tuple. The Old tuple will
|
|
* be used for DELETE.
|
|
*/
|
|
else if (old_matched && !new_matched)
|
|
*action = REORDER_BUFFER_CHANGE_DELETE;
|
|
|
|
/*
|
|
* Case 4: if both tuples match the row filter, transformation isn't
|
|
* required. (*action is default UPDATE).
|
|
*/
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Sends the decoded DML over wire.
|
|
*
|
|
* This is called both in streaming and non-streaming modes.
|
|
*/
|
|
static void
|
|
pgoutput_change(LogicalDecodingContext *ctx, ReorderBufferTXN *txn,
|
|
Relation relation, ReorderBufferChange *change)
|
|
{
|
|
PGOutputData *data = (PGOutputData *) ctx->output_plugin_private;
|
|
PGOutputTxnData *txndata = (PGOutputTxnData *) txn->output_plugin_private;
|
|
MemoryContext old;
|
|
RelationSyncEntry *relentry;
|
|
TransactionId xid = InvalidTransactionId;
|
|
Relation ancestor = NULL;
|
|
Relation targetrel = relation;
|
|
ReorderBufferChangeType action = change->action;
|
|
TupleTableSlot *old_slot = NULL;
|
|
TupleTableSlot *new_slot = NULL;
|
|
|
|
update_replication_progress(ctx, false);
|
|
|
|
if (!is_publishable_relation(relation))
|
|
return;
|
|
|
|
/*
|
|
* Remember the xid for the change in streaming mode. We need to send xid
|
|
* with each change in the streaming mode so that subscriber can make
|
|
* their association and on aborts, it can discard the corresponding
|
|
* changes.
|
|
*/
|
|
if (in_streaming)
|
|
xid = change->txn->xid;
|
|
|
|
relentry = get_rel_sync_entry(data, relation);
|
|
|
|
/* First check the table filter */
|
|
switch (action)
|
|
{
|
|
case REORDER_BUFFER_CHANGE_INSERT:
|
|
if (!relentry->pubactions.pubinsert)
|
|
return;
|
|
break;
|
|
case REORDER_BUFFER_CHANGE_UPDATE:
|
|
if (!relentry->pubactions.pubupdate)
|
|
return;
|
|
break;
|
|
case REORDER_BUFFER_CHANGE_DELETE:
|
|
if (!relentry->pubactions.pubdelete)
|
|
return;
|
|
break;
|
|
default:
|
|
Assert(false);
|
|
}
|
|
|
|
/* Avoid leaking memory by using and resetting our own context */
|
|
old = MemoryContextSwitchTo(data->context);
|
|
|
|
/* Send the data */
|
|
switch (action)
|
|
{
|
|
case REORDER_BUFFER_CHANGE_INSERT:
|
|
new_slot = relentry->new_slot;
|
|
ExecStoreHeapTuple(&change->data.tp.newtuple->tuple,
|
|
new_slot, false);
|
|
|
|
/* Switch relation if publishing via root. */
|
|
if (relentry->publish_as_relid != RelationGetRelid(relation))
|
|
{
|
|
Assert(relation->rd_rel->relispartition);
|
|
ancestor = RelationIdGetRelation(relentry->publish_as_relid);
|
|
targetrel = ancestor;
|
|
/* Convert tuple if needed. */
|
|
if (relentry->attrmap)
|
|
{
|
|
TupleDesc tupdesc = RelationGetDescr(targetrel);
|
|
|
|
new_slot = execute_attr_map_slot(relentry->attrmap,
|
|
new_slot,
|
|
MakeTupleTableSlot(tupdesc, &TTSOpsVirtual));
|
|
}
|
|
}
|
|
|
|
/* Check row filter */
|
|
if (!pgoutput_row_filter(targetrel, NULL, &new_slot, relentry,
|
|
&action))
|
|
break;
|
|
|
|
/*
|
|
* Send BEGIN if we haven't yet.
|
|
*
|
|
* We send the BEGIN message after ensuring that we will actually
|
|
* send the change. This avoids sending a pair of BEGIN/COMMIT
|
|
* messages for empty transactions.
|
|
*/
|
|
if (txndata && !txndata->sent_begin_txn)
|
|
pgoutput_send_begin(ctx, txn);
|
|
|
|
/*
|
|
* Schema should be sent using the original relation because it
|
|
* also sends the ancestor's relation.
|
|
*/
|
|
maybe_send_schema(ctx, change, relation, relentry);
|
|
|
|
OutputPluginPrepareWrite(ctx, true);
|
|
logicalrep_write_insert(ctx->out, xid, targetrel, new_slot,
|
|
data->binary, relentry->columns);
|
|
OutputPluginWrite(ctx, true);
|
|
break;
|
|
case REORDER_BUFFER_CHANGE_UPDATE:
|
|
if (change->data.tp.oldtuple)
|
|
{
|
|
old_slot = relentry->old_slot;
|
|
ExecStoreHeapTuple(&change->data.tp.oldtuple->tuple,
|
|
old_slot, false);
|
|
}
|
|
|
|
new_slot = relentry->new_slot;
|
|
ExecStoreHeapTuple(&change->data.tp.newtuple->tuple,
|
|
new_slot, false);
|
|
|
|
/* Switch relation if publishing via root. */
|
|
if (relentry->publish_as_relid != RelationGetRelid(relation))
|
|
{
|
|
Assert(relation->rd_rel->relispartition);
|
|
ancestor = RelationIdGetRelation(relentry->publish_as_relid);
|
|
targetrel = ancestor;
|
|
/* Convert tuples if needed. */
|
|
if (relentry->attrmap)
|
|
{
|
|
TupleDesc tupdesc = RelationGetDescr(targetrel);
|
|
|
|
if (old_slot)
|
|
old_slot = execute_attr_map_slot(relentry->attrmap,
|
|
old_slot,
|
|
MakeTupleTableSlot(tupdesc, &TTSOpsVirtual));
|
|
|
|
new_slot = execute_attr_map_slot(relentry->attrmap,
|
|
new_slot,
|
|
MakeTupleTableSlot(tupdesc, &TTSOpsVirtual));
|
|
}
|
|
}
|
|
|
|
/* Check row filter */
|
|
if (!pgoutput_row_filter(targetrel, old_slot, &new_slot,
|
|
relentry, &action))
|
|
break;
|
|
|
|
/* Send BEGIN if we haven't yet */
|
|
if (txndata && !txndata->sent_begin_txn)
|
|
pgoutput_send_begin(ctx, txn);
|
|
|
|
maybe_send_schema(ctx, change, relation, relentry);
|
|
|
|
OutputPluginPrepareWrite(ctx, true);
|
|
|
|
/*
|
|
* Updates could be transformed to inserts or deletes based on the
|
|
* results of the row filter for old and new tuple.
|
|
*/
|
|
switch (action)
|
|
{
|
|
case REORDER_BUFFER_CHANGE_INSERT:
|
|
logicalrep_write_insert(ctx->out, xid, targetrel,
|
|
new_slot, data->binary,
|
|
relentry->columns);
|
|
break;
|
|
case REORDER_BUFFER_CHANGE_UPDATE:
|
|
logicalrep_write_update(ctx->out, xid, targetrel,
|
|
old_slot, new_slot, data->binary,
|
|
relentry->columns);
|
|
break;
|
|
case REORDER_BUFFER_CHANGE_DELETE:
|
|
logicalrep_write_delete(ctx->out, xid, targetrel,
|
|
old_slot, data->binary,
|
|
relentry->columns);
|
|
break;
|
|
default:
|
|
Assert(false);
|
|
}
|
|
|
|
OutputPluginWrite(ctx, true);
|
|
break;
|
|
case REORDER_BUFFER_CHANGE_DELETE:
|
|
if (change->data.tp.oldtuple)
|
|
{
|
|
old_slot = relentry->old_slot;
|
|
|
|
ExecStoreHeapTuple(&change->data.tp.oldtuple->tuple,
|
|
old_slot, false);
|
|
|
|
/* Switch relation if publishing via root. */
|
|
if (relentry->publish_as_relid != RelationGetRelid(relation))
|
|
{
|
|
Assert(relation->rd_rel->relispartition);
|
|
ancestor = RelationIdGetRelation(relentry->publish_as_relid);
|
|
targetrel = ancestor;
|
|
/* Convert tuple if needed. */
|
|
if (relentry->attrmap)
|
|
{
|
|
TupleDesc tupdesc = RelationGetDescr(targetrel);
|
|
|
|
old_slot = execute_attr_map_slot(relentry->attrmap,
|
|
old_slot,
|
|
MakeTupleTableSlot(tupdesc, &TTSOpsVirtual));
|
|
}
|
|
}
|
|
|
|
/* Check row filter */
|
|
if (!pgoutput_row_filter(targetrel, old_slot, &new_slot,
|
|
relentry, &action))
|
|
break;
|
|
|
|
/* Send BEGIN if we haven't yet */
|
|
if (txndata && !txndata->sent_begin_txn)
|
|
pgoutput_send_begin(ctx, txn);
|
|
|
|
maybe_send_schema(ctx, change, relation, relentry);
|
|
|
|
OutputPluginPrepareWrite(ctx, true);
|
|
logicalrep_write_delete(ctx->out, xid, targetrel,
|
|
old_slot, data->binary,
|
|
relentry->columns);
|
|
OutputPluginWrite(ctx, true);
|
|
}
|
|
else
|
|
elog(DEBUG1, "didn't send DELETE change because of missing oldtuple");
|
|
break;
|
|
default:
|
|
Assert(false);
|
|
}
|
|
|
|
if (RelationIsValid(ancestor))
|
|
{
|
|
RelationClose(ancestor);
|
|
ancestor = NULL;
|
|
}
|
|
|
|
/* Cleanup */
|
|
MemoryContextSwitchTo(old);
|
|
MemoryContextReset(data->context);
|
|
}
|
|
|
|
static void
|
|
pgoutput_truncate(LogicalDecodingContext *ctx, ReorderBufferTXN *txn,
|
|
int nrelations, Relation relations[], ReorderBufferChange *change)
|
|
{
|
|
PGOutputData *data = (PGOutputData *) ctx->output_plugin_private;
|
|
PGOutputTxnData *txndata = (PGOutputTxnData *) txn->output_plugin_private;
|
|
MemoryContext old;
|
|
RelationSyncEntry *relentry;
|
|
int i;
|
|
int nrelids;
|
|
Oid *relids;
|
|
TransactionId xid = InvalidTransactionId;
|
|
|
|
update_replication_progress(ctx, false);
|
|
|
|
/* Remember the xid for the change in streaming mode. See pgoutput_change. */
|
|
if (in_streaming)
|
|
xid = change->txn->xid;
|
|
|
|
old = MemoryContextSwitchTo(data->context);
|
|
|
|
relids = palloc0(nrelations * sizeof(Oid));
|
|
nrelids = 0;
|
|
|
|
for (i = 0; i < nrelations; i++)
|
|
{
|
|
Relation relation = relations[i];
|
|
Oid relid = RelationGetRelid(relation);
|
|
|
|
if (!is_publishable_relation(relation))
|
|
continue;
|
|
|
|
relentry = get_rel_sync_entry(data, relation);
|
|
|
|
if (!relentry->pubactions.pubtruncate)
|
|
continue;
|
|
|
|
/*
|
|
* Don't send partitions if the publication wants to send only the
|
|
* root tables through it.
|
|
*/
|
|
if (relation->rd_rel->relispartition &&
|
|
relentry->publish_as_relid != relid)
|
|
continue;
|
|
|
|
relids[nrelids++] = relid;
|
|
|
|
/* Send BEGIN if we haven't yet */
|
|
if (txndata && !txndata->sent_begin_txn)
|
|
pgoutput_send_begin(ctx, txn);
|
|
|
|
maybe_send_schema(ctx, change, relation, relentry);
|
|
}
|
|
|
|
if (nrelids > 0)
|
|
{
|
|
OutputPluginPrepareWrite(ctx, true);
|
|
logicalrep_write_truncate(ctx->out,
|
|
xid,
|
|
nrelids,
|
|
relids,
|
|
change->data.truncate.cascade,
|
|
change->data.truncate.restart_seqs);
|
|
OutputPluginWrite(ctx, true);
|
|
}
|
|
|
|
MemoryContextSwitchTo(old);
|
|
MemoryContextReset(data->context);
|
|
}
|
|
|
|
static void
|
|
pgoutput_message(LogicalDecodingContext *ctx, ReorderBufferTXN *txn,
|
|
XLogRecPtr message_lsn, bool transactional, const char *prefix, Size sz,
|
|
const char *message)
|
|
{
|
|
PGOutputData *data = (PGOutputData *) ctx->output_plugin_private;
|
|
TransactionId xid = InvalidTransactionId;
|
|
|
|
update_replication_progress(ctx, false);
|
|
|
|
if (!data->messages)
|
|
return;
|
|
|
|
/*
|
|
* Remember the xid for the message in streaming mode. See
|
|
* pgoutput_change.
|
|
*/
|
|
if (in_streaming)
|
|
xid = txn->xid;
|
|
|
|
/*
|
|
* Output BEGIN if we haven't yet. Avoid for non-transactional messages.
|
|
*/
|
|
if (transactional)
|
|
{
|
|
PGOutputTxnData *txndata = (PGOutputTxnData *) txn->output_plugin_private;
|
|
|
|
/* Send BEGIN if we haven't yet */
|
|
if (txndata && !txndata->sent_begin_txn)
|
|
pgoutput_send_begin(ctx, txn);
|
|
}
|
|
|
|
OutputPluginPrepareWrite(ctx, true);
|
|
logicalrep_write_message(ctx->out,
|
|
xid,
|
|
message_lsn,
|
|
transactional,
|
|
prefix,
|
|
sz,
|
|
message);
|
|
OutputPluginWrite(ctx, true);
|
|
}
|
|
|
|
/*
|
|
* Return true if the data is associated with an origin and the user has
|
|
* requested the changes that don't have an origin, false otherwise.
|
|
*/
|
|
static bool
|
|
pgoutput_origin_filter(LogicalDecodingContext *ctx,
|
|
RepOriginId origin_id)
|
|
{
|
|
if (publish_no_origin && origin_id != InvalidRepOriginId)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Shutdown the output plugin.
|
|
*
|
|
* Note, we don't need to clean the data->context and data->cachectx as
|
|
* they are child context of the ctx->context so it will be cleaned up by
|
|
* logical decoding machinery.
|
|
*/
|
|
static void
|
|
pgoutput_shutdown(LogicalDecodingContext *ctx)
|
|
{
|
|
if (RelationSyncCache)
|
|
{
|
|
hash_destroy(RelationSyncCache);
|
|
RelationSyncCache = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Load publications from the list of publication names.
|
|
*/
|
|
static List *
|
|
LoadPublications(List *pubnames)
|
|
{
|
|
List *result = NIL;
|
|
ListCell *lc;
|
|
|
|
foreach(lc, pubnames)
|
|
{
|
|
char *pubname = (char *) lfirst(lc);
|
|
Publication *pub = GetPublicationByName(pubname, false);
|
|
|
|
result = lappend(result, pub);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Publication syscache invalidation callback.
|
|
*
|
|
* Called for invalidations on pg_publication.
|
|
*/
|
|
static void
|
|
publication_invalidation_cb(Datum arg, int cacheid, uint32 hashvalue)
|
|
{
|
|
publications_valid = false;
|
|
|
|
/*
|
|
* Also invalidate per-relation cache so that next time the filtering info
|
|
* is checked it will be updated with the new publication settings.
|
|
*/
|
|
rel_sync_cache_publication_cb(arg, cacheid, hashvalue);
|
|
}
|
|
|
|
/*
|
|
* START STREAM callback
|
|
*/
|
|
static void
|
|
pgoutput_stream_start(struct LogicalDecodingContext *ctx,
|
|
ReorderBufferTXN *txn)
|
|
{
|
|
bool send_replication_origin = txn->origin_id != InvalidRepOriginId;
|
|
|
|
/* we can't nest streaming of transactions */
|
|
Assert(!in_streaming);
|
|
|
|
/*
|
|
* If we already sent the first stream for this transaction then don't
|
|
* send the origin id in the subsequent streams.
|
|
*/
|
|
if (rbtxn_is_streamed(txn))
|
|
send_replication_origin = false;
|
|
|
|
OutputPluginPrepareWrite(ctx, !send_replication_origin);
|
|
logicalrep_write_stream_start(ctx->out, txn->xid, !rbtxn_is_streamed(txn));
|
|
|
|
send_repl_origin(ctx, txn->origin_id, InvalidXLogRecPtr,
|
|
send_replication_origin);
|
|
|
|
OutputPluginWrite(ctx, true);
|
|
|
|
/* we're streaming a chunk of transaction now */
|
|
in_streaming = true;
|
|
}
|
|
|
|
/*
|
|
* STOP STREAM callback
|
|
*/
|
|
static void
|
|
pgoutput_stream_stop(struct LogicalDecodingContext *ctx,
|
|
ReorderBufferTXN *txn)
|
|
{
|
|
/* we should be streaming a trasanction */
|
|
Assert(in_streaming);
|
|
|
|
OutputPluginPrepareWrite(ctx, true);
|
|
logicalrep_write_stream_stop(ctx->out);
|
|
OutputPluginWrite(ctx, true);
|
|
|
|
/* we've stopped streaming a transaction */
|
|
in_streaming = false;
|
|
}
|
|
|
|
/*
|
|
* Notify downstream to discard the streamed transaction (along with all
|
|
* it's subtransactions, if it's a toplevel transaction).
|
|
*/
|
|
static void
|
|
pgoutput_stream_abort(struct LogicalDecodingContext *ctx,
|
|
ReorderBufferTXN *txn,
|
|
XLogRecPtr abort_lsn)
|
|
{
|
|
ReorderBufferTXN *toptxn;
|
|
PGOutputData *data = (PGOutputData *) ctx->output_plugin_private;
|
|
bool write_abort_info = (data->streaming == LOGICALREP_STREAM_PARALLEL);
|
|
|
|
/*
|
|
* The abort should happen outside streaming block, even for streamed
|
|
* transactions. The transaction has to be marked as streamed, though.
|
|
*/
|
|
Assert(!in_streaming);
|
|
|
|
/* determine the toplevel transaction */
|
|
toptxn = (txn->toptxn) ? txn->toptxn : txn;
|
|
|
|
Assert(rbtxn_is_streamed(toptxn));
|
|
|
|
OutputPluginPrepareWrite(ctx, true);
|
|
logicalrep_write_stream_abort(ctx->out, toptxn->xid, txn->xid, abort_lsn,
|
|
txn->xact_time.abort_time, write_abort_info);
|
|
|
|
OutputPluginWrite(ctx, true);
|
|
|
|
cleanup_rel_sync_cache(toptxn->xid, false);
|
|
}
|
|
|
|
/*
|
|
* Notify downstream to apply the streamed transaction (along with all
|
|
* it's subtransactions).
|
|
*/
|
|
static void
|
|
pgoutput_stream_commit(struct LogicalDecodingContext *ctx,
|
|
ReorderBufferTXN *txn,
|
|
XLogRecPtr commit_lsn)
|
|
{
|
|
/*
|
|
* The commit should happen outside streaming block, even for streamed
|
|
* transactions. The transaction has to be marked as streamed, though.
|
|
*/
|
|
Assert(!in_streaming);
|
|
Assert(rbtxn_is_streamed(txn));
|
|
|
|
update_replication_progress(ctx, false);
|
|
|
|
OutputPluginPrepareWrite(ctx, true);
|
|
logicalrep_write_stream_commit(ctx->out, txn, commit_lsn);
|
|
OutputPluginWrite(ctx, true);
|
|
|
|
cleanup_rel_sync_cache(txn->xid, true);
|
|
}
|
|
|
|
/*
|
|
* PREPARE callback (for streaming two-phase commit).
|
|
*
|
|
* Notify the downstream to prepare the transaction.
|
|
*/
|
|
static void
|
|
pgoutput_stream_prepare_txn(LogicalDecodingContext *ctx,
|
|
ReorderBufferTXN *txn,
|
|
XLogRecPtr prepare_lsn)
|
|
{
|
|
Assert(rbtxn_is_streamed(txn));
|
|
|
|
update_replication_progress(ctx, false);
|
|
OutputPluginPrepareWrite(ctx, true);
|
|
logicalrep_write_stream_prepare(ctx->out, txn, prepare_lsn);
|
|
OutputPluginWrite(ctx, true);
|
|
}
|
|
|
|
/*
|
|
* Initialize the relation schema sync cache for a decoding session.
|
|
*
|
|
* The hash table is destroyed at the end of a decoding session. While
|
|
* relcache invalidations still exist and will still be invoked, they
|
|
* will just see the null hash table global and take no action.
|
|
*/
|
|
static void
|
|
init_rel_sync_cache(MemoryContext cachectx)
|
|
{
|
|
HASHCTL ctl;
|
|
|
|
if (RelationSyncCache != NULL)
|
|
return;
|
|
|
|
/* Make a new hash table for the cache */
|
|
ctl.keysize = sizeof(Oid);
|
|
ctl.entrysize = sizeof(RelationSyncEntry);
|
|
ctl.hcxt = cachectx;
|
|
|
|
RelationSyncCache = hash_create("logical replication output relation cache",
|
|
128, &ctl,
|
|
HASH_ELEM | HASH_CONTEXT | HASH_BLOBS);
|
|
|
|
Assert(RelationSyncCache != NULL);
|
|
|
|
/* We must update the cache entry for a relation after a relcache flush */
|
|
CacheRegisterRelcacheCallback(rel_sync_cache_relation_cb, (Datum) 0);
|
|
|
|
/*
|
|
* Flush all cache entries after a pg_namespace change, in case it was a
|
|
* schema rename affecting a relation being replicated.
|
|
*/
|
|
CacheRegisterSyscacheCallback(NAMESPACEOID,
|
|
rel_sync_cache_publication_cb,
|
|
(Datum) 0);
|
|
|
|
/*
|
|
* Flush all cache entries after any publication changes. (We need no
|
|
* callback entry for pg_publication, because publication_invalidation_cb
|
|
* will take care of it.)
|
|
*/
|
|
CacheRegisterSyscacheCallback(PUBLICATIONRELMAP,
|
|
rel_sync_cache_publication_cb,
|
|
(Datum) 0);
|
|
CacheRegisterSyscacheCallback(PUBLICATIONNAMESPACEMAP,
|
|
rel_sync_cache_publication_cb,
|
|
(Datum) 0);
|
|
}
|
|
|
|
/*
|
|
* We expect relatively small number of streamed transactions.
|
|
*/
|
|
static bool
|
|
get_schema_sent_in_streamed_txn(RelationSyncEntry *entry, TransactionId xid)
|
|
{
|
|
return list_member_xid(entry->streamed_txns, xid);
|
|
}
|
|
|
|
/*
|
|
* Add the xid in the rel sync entry for which we have already sent the schema
|
|
* of the relation.
|
|
*/
|
|
static void
|
|
set_schema_sent_in_streamed_txn(RelationSyncEntry *entry, TransactionId xid)
|
|
{
|
|
MemoryContext oldctx;
|
|
|
|
oldctx = MemoryContextSwitchTo(CacheMemoryContext);
|
|
|
|
entry->streamed_txns = lappend_xid(entry->streamed_txns, xid);
|
|
|
|
MemoryContextSwitchTo(oldctx);
|
|
}
|
|
|
|
/*
|
|
* Find or create entry in the relation schema cache.
|
|
*
|
|
* This looks up publications that the given relation is directly or
|
|
* indirectly part of (the latter if it's really the relation's ancestor that
|
|
* is part of a publication) and fills up the found entry with the information
|
|
* about which operations to publish and whether to use an ancestor's schema
|
|
* when publishing.
|
|
*/
|
|
static RelationSyncEntry *
|
|
get_rel_sync_entry(PGOutputData *data, Relation relation)
|
|
{
|
|
RelationSyncEntry *entry;
|
|
bool found;
|
|
MemoryContext oldctx;
|
|
Oid relid = RelationGetRelid(relation);
|
|
|
|
Assert(RelationSyncCache != NULL);
|
|
|
|
/* Find cached relation info, creating if not found */
|
|
entry = (RelationSyncEntry *) hash_search(RelationSyncCache,
|
|
(void *) &relid,
|
|
HASH_ENTER, &found);
|
|
Assert(entry != NULL);
|
|
|
|
/* initialize entry, if it's new */
|
|
if (!found)
|
|
{
|
|
entry->replicate_valid = false;
|
|
entry->schema_sent = false;
|
|
entry->streamed_txns = NIL;
|
|
entry->pubactions.pubinsert = entry->pubactions.pubupdate =
|
|
entry->pubactions.pubdelete = entry->pubactions.pubtruncate = false;
|
|
entry->new_slot = NULL;
|
|
entry->old_slot = NULL;
|
|
memset(entry->exprstate, 0, sizeof(entry->exprstate));
|
|
entry->entry_cxt = NULL;
|
|
entry->publish_as_relid = InvalidOid;
|
|
entry->columns = NULL;
|
|
entry->attrmap = NULL;
|
|
}
|
|
|
|
/* Validate the entry */
|
|
if (!entry->replicate_valid)
|
|
{
|
|
Oid schemaId = get_rel_namespace(relid);
|
|
List *pubids = GetRelationPublications(relid);
|
|
|
|
/*
|
|
* We don't acquire a lock on the namespace system table as we build
|
|
* the cache entry using a historic snapshot and all the later changes
|
|
* are absorbed while decoding WAL.
|
|
*/
|
|
List *schemaPubids = GetSchemaPublications(schemaId);
|
|
ListCell *lc;
|
|
Oid publish_as_relid = relid;
|
|
int publish_ancestor_level = 0;
|
|
bool am_partition = get_rel_relispartition(relid);
|
|
char relkind = get_rel_relkind(relid);
|
|
List *rel_publications = NIL;
|
|
|
|
/* Reload publications if needed before use. */
|
|
if (!publications_valid)
|
|
{
|
|
oldctx = MemoryContextSwitchTo(CacheMemoryContext);
|
|
if (data->publications)
|
|
{
|
|
list_free_deep(data->publications);
|
|
data->publications = NIL;
|
|
}
|
|
data->publications = LoadPublications(data->publication_names);
|
|
MemoryContextSwitchTo(oldctx);
|
|
publications_valid = true;
|
|
}
|
|
|
|
/*
|
|
* Reset schema_sent status as the relation definition may have
|
|
* changed. Also reset pubactions to empty in case rel was dropped
|
|
* from a publication. Also free any objects that depended on the
|
|
* earlier definition.
|
|
*/
|
|
entry->schema_sent = false;
|
|
list_free(entry->streamed_txns);
|
|
entry->streamed_txns = NIL;
|
|
bms_free(entry->columns);
|
|
entry->columns = NULL;
|
|
entry->pubactions.pubinsert = false;
|
|
entry->pubactions.pubupdate = false;
|
|
entry->pubactions.pubdelete = false;
|
|
entry->pubactions.pubtruncate = false;
|
|
|
|
/*
|
|
* Tuple slots cleanups. (Will be rebuilt later if needed).
|
|
*/
|
|
if (entry->old_slot)
|
|
ExecDropSingleTupleTableSlot(entry->old_slot);
|
|
if (entry->new_slot)
|
|
ExecDropSingleTupleTableSlot(entry->new_slot);
|
|
|
|
entry->old_slot = NULL;
|
|
entry->new_slot = NULL;
|
|
|
|
if (entry->attrmap)
|
|
free_attrmap(entry->attrmap);
|
|
entry->attrmap = NULL;
|
|
|
|
/*
|
|
* Row filter cache cleanups.
|
|
*/
|
|
if (entry->entry_cxt)
|
|
MemoryContextDelete(entry->entry_cxt);
|
|
|
|
entry->entry_cxt = NULL;
|
|
entry->estate = NULL;
|
|
memset(entry->exprstate, 0, sizeof(entry->exprstate));
|
|
|
|
/*
|
|
* Build publication cache. We can't use one provided by relcache as
|
|
* relcache considers all publications that the given relation is in,
|
|
* but here we only need to consider ones that the subscriber
|
|
* requested.
|
|
*/
|
|
foreach(lc, data->publications)
|
|
{
|
|
Publication *pub = lfirst(lc);
|
|
bool publish = false;
|
|
|
|
/*
|
|
* Under what relid should we publish changes in this publication?
|
|
* We'll use the top-most relid across all publications. Also
|
|
* track the ancestor level for this publication.
|
|
*/
|
|
Oid pub_relid = relid;
|
|
int ancestor_level = 0;
|
|
|
|
/*
|
|
* If this is a FOR ALL TABLES publication, pick the partition
|
|
* root and set the ancestor level accordingly.
|
|
*/
|
|
if (pub->alltables)
|
|
{
|
|
publish = true;
|
|
if (pub->pubviaroot && am_partition)
|
|
{
|
|
List *ancestors = get_partition_ancestors(relid);
|
|
|
|
pub_relid = llast_oid(ancestors);
|
|
ancestor_level = list_length(ancestors);
|
|
}
|
|
}
|
|
|
|
if (!publish)
|
|
{
|
|
bool ancestor_published = false;
|
|
|
|
/*
|
|
* For a partition, check if any of the ancestors are
|
|
* published. If so, note down the topmost ancestor that is
|
|
* published via this publication, which will be used as the
|
|
* relation via which to publish the partition's changes.
|
|
*/
|
|
if (am_partition)
|
|
{
|
|
Oid ancestor;
|
|
int level;
|
|
List *ancestors = get_partition_ancestors(relid);
|
|
|
|
ancestor = GetTopMostAncestorInPublication(pub->oid,
|
|
ancestors,
|
|
&level);
|
|
|
|
if (ancestor != InvalidOid)
|
|
{
|
|
ancestor_published = true;
|
|
if (pub->pubviaroot)
|
|
{
|
|
pub_relid = ancestor;
|
|
ancestor_level = level;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (list_member_oid(pubids, pub->oid) ||
|
|
list_member_oid(schemaPubids, pub->oid) ||
|
|
ancestor_published)
|
|
publish = true;
|
|
}
|
|
|
|
/*
|
|
* If the relation is to be published, determine actions to
|
|
* publish, and list of columns, if appropriate.
|
|
*
|
|
* Don't publish changes for partitioned tables, because
|
|
* publishing those of its partitions suffices, unless partition
|
|
* changes won't be published due to pubviaroot being set.
|
|
*/
|
|
if (publish &&
|
|
(relkind != RELKIND_PARTITIONED_TABLE || pub->pubviaroot))
|
|
{
|
|
entry->pubactions.pubinsert |= pub->pubactions.pubinsert;
|
|
entry->pubactions.pubupdate |= pub->pubactions.pubupdate;
|
|
entry->pubactions.pubdelete |= pub->pubactions.pubdelete;
|
|
entry->pubactions.pubtruncate |= pub->pubactions.pubtruncate;
|
|
|
|
/*
|
|
* We want to publish the changes as the top-most ancestor
|
|
* across all publications. So we need to check if the already
|
|
* calculated level is higher than the new one. If yes, we can
|
|
* ignore the new value (as it's a child). Otherwise the new
|
|
* value is an ancestor, so we keep it.
|
|
*/
|
|
if (publish_ancestor_level > ancestor_level)
|
|
continue;
|
|
|
|
/*
|
|
* If we found an ancestor higher up in the tree, discard the
|
|
* list of publications through which we replicate it, and use
|
|
* the new ancestor.
|
|
*/
|
|
if (publish_ancestor_level < ancestor_level)
|
|
{
|
|
publish_as_relid = pub_relid;
|
|
publish_ancestor_level = ancestor_level;
|
|
|
|
/* reset the publication list for this relation */
|
|
rel_publications = NIL;
|
|
}
|
|
else
|
|
{
|
|
/* Same ancestor level, has to be the same OID. */
|
|
Assert(publish_as_relid == pub_relid);
|
|
}
|
|
|
|
/* Track publications for this ancestor. */
|
|
rel_publications = lappend(rel_publications, pub);
|
|
}
|
|
}
|
|
|
|
entry->publish_as_relid = publish_as_relid;
|
|
|
|
/*
|
|
* Initialize the tuple slot, map, and row filter. These are only used
|
|
* when publishing inserts, updates, or deletes.
|
|
*/
|
|
if (entry->pubactions.pubinsert || entry->pubactions.pubupdate ||
|
|
entry->pubactions.pubdelete)
|
|
{
|
|
/* Initialize the tuple slot and map */
|
|
init_tuple_slot(data, relation, entry);
|
|
|
|
/* Initialize the row filter */
|
|
pgoutput_row_filter_init(data, rel_publications, entry);
|
|
|
|
/* Initialize the column list */
|
|
pgoutput_column_list_init(data, rel_publications, entry);
|
|
}
|
|
|
|
list_free(pubids);
|
|
list_free(schemaPubids);
|
|
list_free(rel_publications);
|
|
|
|
entry->replicate_valid = true;
|
|
}
|
|
|
|
return entry;
|
|
}
|
|
|
|
/*
|
|
* Cleanup list of streamed transactions and update the schema_sent flag.
|
|
*
|
|
* When a streamed transaction commits or aborts, we need to remove the
|
|
* toplevel XID from the schema cache. If the transaction aborted, the
|
|
* subscriber will simply throw away the schema records we streamed, so
|
|
* we don't need to do anything else.
|
|
*
|
|
* If the transaction is committed, the subscriber will update the relation
|
|
* cache - so tweak the schema_sent flag accordingly.
|
|
*/
|
|
static void
|
|
cleanup_rel_sync_cache(TransactionId xid, bool is_commit)
|
|
{
|
|
HASH_SEQ_STATUS hash_seq;
|
|
RelationSyncEntry *entry;
|
|
ListCell *lc;
|
|
|
|
Assert(RelationSyncCache != NULL);
|
|
|
|
hash_seq_init(&hash_seq, RelationSyncCache);
|
|
while ((entry = hash_seq_search(&hash_seq)) != NULL)
|
|
{
|
|
/*
|
|
* We can set the schema_sent flag for an entry that has committed xid
|
|
* in the list as that ensures that the subscriber would have the
|
|
* corresponding schema and we don't need to send it unless there is
|
|
* any invalidation for that relation.
|
|
*/
|
|
foreach(lc, entry->streamed_txns)
|
|
{
|
|
if (xid == lfirst_xid(lc))
|
|
{
|
|
if (is_commit)
|
|
entry->schema_sent = true;
|
|
|
|
entry->streamed_txns =
|
|
foreach_delete_current(entry->streamed_txns, lc);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Relcache invalidation callback
|
|
*/
|
|
static void
|
|
rel_sync_cache_relation_cb(Datum arg, Oid relid)
|
|
{
|
|
RelationSyncEntry *entry;
|
|
|
|
/*
|
|
* We can get here if the plugin was used in SQL interface as the
|
|
* RelSchemaSyncCache is destroyed when the decoding finishes, but there
|
|
* is no way to unregister the relcache invalidation callback.
|
|
*/
|
|
if (RelationSyncCache == NULL)
|
|
return;
|
|
|
|
/*
|
|
* Nobody keeps pointers to entries in this hash table around outside
|
|
* logical decoding callback calls - but invalidation events can come in
|
|
* *during* a callback if we do any syscache access in the callback.
|
|
* Because of that we must mark the cache entry as invalid but not damage
|
|
* any of its substructure here. The next get_rel_sync_entry() call will
|
|
* rebuild it all.
|
|
*/
|
|
if (OidIsValid(relid))
|
|
{
|
|
/*
|
|
* Getting invalidations for relations that aren't in the table is
|
|
* entirely normal. So we don't care if it's found or not.
|
|
*/
|
|
entry = (RelationSyncEntry *) hash_search(RelationSyncCache, &relid,
|
|
HASH_FIND, NULL);
|
|
if (entry != NULL)
|
|
entry->replicate_valid = false;
|
|
}
|
|
else
|
|
{
|
|
/* Whole cache must be flushed. */
|
|
HASH_SEQ_STATUS status;
|
|
|
|
hash_seq_init(&status, RelationSyncCache);
|
|
while ((entry = (RelationSyncEntry *) hash_seq_search(&status)) != NULL)
|
|
{
|
|
entry->replicate_valid = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Publication relation/schema map syscache invalidation callback
|
|
*
|
|
* Called for invalidations on pg_publication, pg_publication_rel,
|
|
* pg_publication_namespace, and pg_namespace.
|
|
*/
|
|
static void
|
|
rel_sync_cache_publication_cb(Datum arg, int cacheid, uint32 hashvalue)
|
|
{
|
|
HASH_SEQ_STATUS status;
|
|
RelationSyncEntry *entry;
|
|
|
|
/*
|
|
* We can get here if the plugin was used in SQL interface as the
|
|
* RelSchemaSyncCache is destroyed when the decoding finishes, but there
|
|
* is no way to unregister the invalidation callbacks.
|
|
*/
|
|
if (RelationSyncCache == NULL)
|
|
return;
|
|
|
|
/*
|
|
* We have no easy way to identify which cache entries this invalidation
|
|
* event might have affected, so just mark them all invalid.
|
|
*/
|
|
hash_seq_init(&status, RelationSyncCache);
|
|
while ((entry = (RelationSyncEntry *) hash_seq_search(&status)) != NULL)
|
|
{
|
|
entry->replicate_valid = false;
|
|
}
|
|
}
|
|
|
|
/* Send Replication origin */
|
|
static void
|
|
send_repl_origin(LogicalDecodingContext *ctx, RepOriginId origin_id,
|
|
XLogRecPtr origin_lsn, bool send_origin)
|
|
{
|
|
if (send_origin)
|
|
{
|
|
char *origin;
|
|
|
|
/*----------
|
|
* XXX: which behaviour do we want here?
|
|
*
|
|
* Alternatives:
|
|
* - don't send origin message if origin name not found
|
|
* (that's what we do now)
|
|
* - throw error - that will break replication, not good
|
|
* - send some special "unknown" origin
|
|
*----------
|
|
*/
|
|
if (replorigin_by_oid(origin_id, true, &origin))
|
|
{
|
|
/* Message boundary */
|
|
OutputPluginWrite(ctx, false);
|
|
OutputPluginPrepareWrite(ctx, true);
|
|
|
|
logicalrep_write_origin(ctx->out, origin, origin_lsn);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Try to update progress and send a keepalive message if too many changes were
|
|
* processed.
|
|
*
|
|
* For a large transaction, if we don't send any change to the downstream for a
|
|
* long time (exceeds the wal_receiver_timeout of standby) then it can timeout.
|
|
* This can happen when all or most of the changes are either not published or
|
|
* got filtered out.
|
|
*/
|
|
static void
|
|
update_replication_progress(LogicalDecodingContext *ctx, bool skipped_xact)
|
|
{
|
|
static int changes_count = 0;
|
|
|
|
/*
|
|
* We don't want to try sending a keepalive message after processing each
|
|
* change as that can have overhead. Tests revealed that there is no
|
|
* noticeable overhead in doing it after continuously processing 100 or so
|
|
* changes.
|
|
*/
|
|
#define CHANGES_THRESHOLD 100
|
|
|
|
/*
|
|
* If we are at the end of transaction LSN, update progress tracking.
|
|
* Otherwise, after continuously processing CHANGES_THRESHOLD changes, we
|
|
* try to send a keepalive message if required.
|
|
*/
|
|
if (ctx->end_xact || ++changes_count >= CHANGES_THRESHOLD)
|
|
{
|
|
OutputPluginUpdateProgress(ctx, skipped_xact);
|
|
changes_count = 0;
|
|
}
|
|
}
|