mirror of
https://github.com/postgres/postgres.git
synced 2025-04-29 13:56:47 +03:00
672 lines
19 KiB
C
672 lines
19 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* nodeIndexscan.c
|
|
* Routines to support indexed scans of relations
|
|
*
|
|
* Portions Copyright (c) 1996-2005, PostgreSQL Global Development Group
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
|
*
|
|
*
|
|
* IDENTIFICATION
|
|
* $PostgreSQL: pgsql/src/backend/executor/nodeIndexscan.c,v 1.104 2005/10/15 02:49:17 momjian Exp $
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
/*
|
|
* INTERFACE ROUTINES
|
|
* ExecIndexScan scans a relation using indices
|
|
* ExecIndexNext using index to retrieve next tuple
|
|
* ExecInitIndexScan creates and initializes state info.
|
|
* ExecIndexReScan rescans the indexed relation.
|
|
* ExecEndIndexScan releases all storage.
|
|
* ExecIndexMarkPos marks scan position.
|
|
* ExecIndexRestrPos restores scan position.
|
|
*/
|
|
#include "postgres.h"
|
|
|
|
#include "access/genam.h"
|
|
#include "access/heapam.h"
|
|
#include "executor/execdebug.h"
|
|
#include "executor/nodeIndexscan.h"
|
|
#include "miscadmin.h"
|
|
#include "nodes/nodeFuncs.h"
|
|
#include "optimizer/clauses.h"
|
|
#include "parser/parsetree.h"
|
|
#include "utils/memutils.h"
|
|
|
|
|
|
static TupleTableSlot *IndexNext(IndexScanState *node);
|
|
|
|
|
|
/* ----------------------------------------------------------------
|
|
* IndexNext
|
|
*
|
|
* Retrieve a tuple from the IndexScan node's currentRelation
|
|
* using the index specified in the IndexScanState information.
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
static TupleTableSlot *
|
|
IndexNext(IndexScanState *node)
|
|
{
|
|
EState *estate;
|
|
ExprContext *econtext;
|
|
ScanDirection direction;
|
|
IndexScanDesc scandesc;
|
|
Index scanrelid;
|
|
HeapTuple tuple;
|
|
TupleTableSlot *slot;
|
|
|
|
/*
|
|
* extract necessary information from index scan node
|
|
*/
|
|
estate = node->ss.ps.state;
|
|
direction = estate->es_direction;
|
|
/* flip direction if this is an overall backward scan */
|
|
if (ScanDirectionIsBackward(((IndexScan *) node->ss.ps.plan)->indexorderdir))
|
|
{
|
|
if (ScanDirectionIsForward(direction))
|
|
direction = BackwardScanDirection;
|
|
else if (ScanDirectionIsBackward(direction))
|
|
direction = ForwardScanDirection;
|
|
}
|
|
scandesc = node->iss_ScanDesc;
|
|
econtext = node->ss.ps.ps_ExprContext;
|
|
slot = node->ss.ss_ScanTupleSlot;
|
|
scanrelid = ((IndexScan *) node->ss.ps.plan)->scan.scanrelid;
|
|
|
|
/*
|
|
* Clear any reference to the previously returned tuple. The idea here is
|
|
* to not have the tuple slot be the last holder of a pin on that tuple's
|
|
* buffer; if it is, we'll need a separate visit to the bufmgr to release
|
|
* the buffer. By clearing here, we get to have the release done by
|
|
* ReleaseAndReadBuffer inside index_getnext.
|
|
*/
|
|
ExecClearTuple(slot);
|
|
|
|
/*
|
|
* Check if we are evaluating PlanQual for tuple of this relation.
|
|
* Additional checking is not good, but no other way for now. We could
|
|
* introduce new nodes for this case and handle IndexScan --> NewNode
|
|
* switching in Init/ReScan plan...
|
|
*/
|
|
if (estate->es_evTuple != NULL &&
|
|
estate->es_evTuple[scanrelid - 1] != NULL)
|
|
{
|
|
if (estate->es_evTupleNull[scanrelid - 1])
|
|
return slot; /* return empty slot */
|
|
|
|
ExecStoreTuple(estate->es_evTuple[scanrelid - 1],
|
|
slot, InvalidBuffer, false);
|
|
|
|
/* Does the tuple meet the indexqual condition? */
|
|
econtext->ecxt_scantuple = slot;
|
|
|
|
ResetExprContext(econtext);
|
|
|
|
if (!ExecQual(node->indexqualorig, econtext, false))
|
|
ExecClearTuple(slot); /* would not be returned by scan */
|
|
|
|
/* Flag for the next call that no more tuples */
|
|
estate->es_evTupleNull[scanrelid - 1] = true;
|
|
|
|
return slot;
|
|
}
|
|
|
|
/*
|
|
* ok, now that we have what we need, fetch the next tuple.
|
|
*/
|
|
if ((tuple = index_getnext(scandesc, direction)) != NULL)
|
|
{
|
|
/*
|
|
* Store the scanned tuple in the scan tuple slot of the scan state.
|
|
* Note: we pass 'false' because tuples returned by amgetnext are
|
|
* pointers onto disk pages and must not be pfree()'d.
|
|
*/
|
|
ExecStoreTuple(tuple, /* tuple to store */
|
|
slot, /* slot to store in */
|
|
scandesc->xs_cbuf, /* buffer containing tuple */
|
|
false); /* don't pfree */
|
|
|
|
return slot;
|
|
}
|
|
|
|
/*
|
|
* if we get here it means the index scan failed so we are at the end of
|
|
* the scan..
|
|
*/
|
|
return ExecClearTuple(slot);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecIndexScan(node)
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
TupleTableSlot *
|
|
ExecIndexScan(IndexScanState *node)
|
|
{
|
|
/*
|
|
* If we have runtime keys and they've not already been set up, do it now.
|
|
*/
|
|
if (node->iss_RuntimeKeyInfo && !node->iss_RuntimeKeysReady)
|
|
ExecReScan((PlanState *) node, NULL);
|
|
|
|
/*
|
|
* use IndexNext as access method
|
|
*/
|
|
return ExecScan(&node->ss, (ExecScanAccessMtd) IndexNext);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecIndexReScan(node)
|
|
*
|
|
* Recalculates the value of the scan keys whose value depends on
|
|
* information known at runtime and rescans the indexed relation.
|
|
* Updating the scan key was formerly done separately in
|
|
* ExecUpdateIndexScanKeys. Integrating it into ReScan makes
|
|
* rescans of indices and relations/general streams more uniform.
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
void
|
|
ExecIndexReScan(IndexScanState *node, ExprContext *exprCtxt)
|
|
{
|
|
EState *estate;
|
|
ExprContext *econtext;
|
|
ScanKey scanKeys;
|
|
ExprState **runtimeKeyInfo;
|
|
int numScanKeys;
|
|
Index scanrelid;
|
|
|
|
estate = node->ss.ps.state;
|
|
econtext = node->iss_RuntimeContext; /* context for runtime keys */
|
|
scanKeys = node->iss_ScanKeys;
|
|
runtimeKeyInfo = node->iss_RuntimeKeyInfo;
|
|
numScanKeys = node->iss_NumScanKeys;
|
|
scanrelid = ((IndexScan *) node->ss.ps.plan)->scan.scanrelid;
|
|
|
|
if (econtext)
|
|
{
|
|
/*
|
|
* If we are being passed an outer tuple, save it for runtime key
|
|
* calc. We also need to link it into the "regular" per-tuple
|
|
* econtext, so it can be used during indexqualorig evaluations.
|
|
*/
|
|
if (exprCtxt != NULL)
|
|
{
|
|
ExprContext *stdecontext;
|
|
|
|
econtext->ecxt_outertuple = exprCtxt->ecxt_outertuple;
|
|
stdecontext = node->ss.ps.ps_ExprContext;
|
|
stdecontext->ecxt_outertuple = exprCtxt->ecxt_outertuple;
|
|
}
|
|
|
|
/*
|
|
* Reset the runtime-key context so we don't leak memory as each outer
|
|
* tuple is scanned. Note this assumes that we will recalculate *all*
|
|
* runtime keys on each call.
|
|
*/
|
|
ResetExprContext(econtext);
|
|
}
|
|
|
|
/*
|
|
* If we are doing runtime key calculations (ie, the index keys depend on
|
|
* data from an outer scan), compute the new key values
|
|
*/
|
|
if (runtimeKeyInfo)
|
|
{
|
|
ExecIndexEvalRuntimeKeys(econtext,
|
|
runtimeKeyInfo,
|
|
scanKeys,
|
|
numScanKeys);
|
|
node->iss_RuntimeKeysReady = true;
|
|
}
|
|
|
|
/* If this is re-scanning of PlanQual ... */
|
|
if (estate->es_evTuple != NULL &&
|
|
estate->es_evTuple[scanrelid - 1] != NULL)
|
|
{
|
|
estate->es_evTupleNull[scanrelid - 1] = false;
|
|
return;
|
|
}
|
|
|
|
/* reset index scan */
|
|
index_rescan(node->iss_ScanDesc, scanKeys);
|
|
}
|
|
|
|
|
|
/*
|
|
* ExecIndexEvalRuntimeKeys
|
|
* Evaluate any runtime key values, and update the scankeys.
|
|
*/
|
|
void
|
|
ExecIndexEvalRuntimeKeys(ExprContext *econtext,
|
|
ExprState **run_keys,
|
|
ScanKey scan_keys,
|
|
int n_keys)
|
|
{
|
|
int j;
|
|
|
|
for (j = 0; j < n_keys; j++)
|
|
{
|
|
/*
|
|
* If we have a run-time key, then extract the run-time expression and
|
|
* evaluate it with respect to the current outer tuple. We then stick
|
|
* the result into the scan key.
|
|
*
|
|
* Note: the result of the eval could be a pass-by-ref value that's
|
|
* stored in the outer scan's tuple, not in
|
|
* econtext->ecxt_per_tuple_memory. We assume that the outer tuple
|
|
* will stay put throughout our scan. If this is wrong, we could copy
|
|
* the result into our context explicitly, but I think that's not
|
|
* necessary...
|
|
*/
|
|
if (run_keys[j] != NULL)
|
|
{
|
|
Datum scanvalue;
|
|
bool isNull;
|
|
|
|
scanvalue = ExecEvalExprSwitchContext(run_keys[j],
|
|
econtext,
|
|
&isNull,
|
|
NULL);
|
|
scan_keys[j].sk_argument = scanvalue;
|
|
if (isNull)
|
|
scan_keys[j].sk_flags |= SK_ISNULL;
|
|
else
|
|
scan_keys[j].sk_flags &= ~SK_ISNULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecEndIndexScan
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
void
|
|
ExecEndIndexScan(IndexScanState *node)
|
|
{
|
|
Relation indexRelationDesc;
|
|
IndexScanDesc indexScanDesc;
|
|
Relation relation;
|
|
|
|
/*
|
|
* extract information from the node
|
|
*/
|
|
indexRelationDesc = node->iss_RelationDesc;
|
|
indexScanDesc = node->iss_ScanDesc;
|
|
relation = node->ss.ss_currentRelation;
|
|
|
|
/*
|
|
* Free the exprcontext(s) ... now dead code, see ExecFreeExprContext
|
|
*/
|
|
#ifdef NOT_USED
|
|
ExecFreeExprContext(&node->ss.ps);
|
|
if (node->iss_RuntimeContext)
|
|
FreeExprContext(node->iss_RuntimeContext);
|
|
#endif
|
|
|
|
/*
|
|
* clear out tuple table slots
|
|
*/
|
|
ExecClearTuple(node->ss.ps.ps_ResultTupleSlot);
|
|
ExecClearTuple(node->ss.ss_ScanTupleSlot);
|
|
|
|
/*
|
|
* close the index relation
|
|
*/
|
|
index_endscan(indexScanDesc);
|
|
index_close(indexRelationDesc);
|
|
|
|
/*
|
|
* close the heap relation.
|
|
*
|
|
* Currently, we do not release the AccessShareLock acquired by
|
|
* ExecInitIndexScan. This lock should be held till end of transaction.
|
|
* (There is a faction that considers this too much locking, however.)
|
|
*/
|
|
heap_close(relation, NoLock);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecIndexMarkPos
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
void
|
|
ExecIndexMarkPos(IndexScanState *node)
|
|
{
|
|
index_markpos(node->iss_ScanDesc);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecIndexRestrPos
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
void
|
|
ExecIndexRestrPos(IndexScanState *node)
|
|
{
|
|
index_restrpos(node->iss_ScanDesc);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecInitIndexScan
|
|
*
|
|
* Initializes the index scan's state information, creates
|
|
* scan keys, and opens the base and index relations.
|
|
*
|
|
* Note: index scans have 2 sets of state information because
|
|
* we have to keep track of the base relation and the
|
|
* index relation.
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
IndexScanState *
|
|
ExecInitIndexScan(IndexScan *node, EState *estate)
|
|
{
|
|
IndexScanState *indexstate;
|
|
ScanKey scanKeys;
|
|
int numScanKeys;
|
|
ExprState **runtimeKeyInfo;
|
|
bool have_runtime_keys;
|
|
RangeTblEntry *rtentry;
|
|
Index relid;
|
|
Oid reloid;
|
|
Relation currentRelation;
|
|
|
|
/*
|
|
* create state structure
|
|
*/
|
|
indexstate = makeNode(IndexScanState);
|
|
indexstate->ss.ps.plan = (Plan *) node;
|
|
indexstate->ss.ps.state = estate;
|
|
|
|
/*
|
|
* Miscellaneous initialization
|
|
*
|
|
* create expression context for node
|
|
*/
|
|
ExecAssignExprContext(estate, &indexstate->ss.ps);
|
|
|
|
/*
|
|
* initialize child expressions
|
|
*
|
|
* Note: we don't initialize all of the indexqual expression, only the
|
|
* sub-parts corresponding to runtime keys (see below). The indexqualorig
|
|
* expression is always initialized even though it will only be used in
|
|
* some uncommon cases --- would be nice to improve that. (Problem is
|
|
* that any SubPlans present in the expression must be found now...)
|
|
*/
|
|
indexstate->ss.ps.targetlist = (List *)
|
|
ExecInitExpr((Expr *) node->scan.plan.targetlist,
|
|
(PlanState *) indexstate);
|
|
indexstate->ss.ps.qual = (List *)
|
|
ExecInitExpr((Expr *) node->scan.plan.qual,
|
|
(PlanState *) indexstate);
|
|
indexstate->indexqualorig = (List *)
|
|
ExecInitExpr((Expr *) node->indexqualorig,
|
|
(PlanState *) indexstate);
|
|
|
|
#define INDEXSCAN_NSLOTS 2
|
|
|
|
/*
|
|
* tuple table initialization
|
|
*/
|
|
ExecInitResultTupleSlot(estate, &indexstate->ss.ps);
|
|
ExecInitScanTupleSlot(estate, &indexstate->ss);
|
|
|
|
/*
|
|
* Initialize index-specific scan state
|
|
*/
|
|
indexstate->iss_RuntimeKeysReady = false;
|
|
|
|
CXT1_printf("ExecInitIndexScan: context is %d\n", CurrentMemoryContext);
|
|
|
|
/*
|
|
* build the index scan keys from the index qualification
|
|
*/
|
|
have_runtime_keys =
|
|
ExecIndexBuildScanKeys((PlanState *) indexstate,
|
|
node->indexqual,
|
|
node->indexstrategy,
|
|
node->indexsubtype,
|
|
&runtimeKeyInfo,
|
|
&scanKeys,
|
|
&numScanKeys);
|
|
|
|
indexstate->iss_RuntimeKeyInfo = runtimeKeyInfo;
|
|
indexstate->iss_ScanKeys = scanKeys;
|
|
indexstate->iss_NumScanKeys = numScanKeys;
|
|
|
|
/*
|
|
* If we have runtime keys, we need an ExprContext to evaluate them. The
|
|
* node's standard context won't do because we want to reset that context
|
|
* for every tuple. So, build another context just like the other one...
|
|
* -tgl 7/11/00
|
|
*/
|
|
if (have_runtime_keys)
|
|
{
|
|
ExprContext *stdecontext = indexstate->ss.ps.ps_ExprContext;
|
|
|
|
ExecAssignExprContext(estate, &indexstate->ss.ps);
|
|
indexstate->iss_RuntimeContext = indexstate->ss.ps.ps_ExprContext;
|
|
indexstate->ss.ps.ps_ExprContext = stdecontext;
|
|
}
|
|
else
|
|
{
|
|
indexstate->iss_RuntimeContext = NULL;
|
|
}
|
|
|
|
/*
|
|
* open the base relation and acquire AccessShareLock on it.
|
|
*/
|
|
relid = node->scan.scanrelid;
|
|
rtentry = rt_fetch(relid, estate->es_range_table);
|
|
reloid = rtentry->relid;
|
|
|
|
currentRelation = heap_open(reloid, AccessShareLock);
|
|
|
|
indexstate->ss.ss_currentRelation = currentRelation;
|
|
indexstate->ss.ss_currentScanDesc = NULL; /* no heap scan here */
|
|
|
|
/*
|
|
* get the scan type from the relation descriptor.
|
|
*/
|
|
ExecAssignScanType(&indexstate->ss, RelationGetDescr(currentRelation), false);
|
|
|
|
/*
|
|
* open the index relation and initialize relation and scan descriptors.
|
|
* Note we acquire no locks here; the index machinery does its own locks
|
|
* and unlocks. (We rely on having AccessShareLock on the parent table to
|
|
* ensure the index won't go away!)
|
|
*/
|
|
indexstate->iss_RelationDesc = index_open(node->indexid);
|
|
indexstate->iss_ScanDesc = index_beginscan(currentRelation,
|
|
indexstate->iss_RelationDesc,
|
|
estate->es_snapshot,
|
|
numScanKeys,
|
|
scanKeys);
|
|
|
|
/*
|
|
* Initialize result tuple type and projection info.
|
|
*/
|
|
ExecAssignResultTypeFromTL(&indexstate->ss.ps);
|
|
ExecAssignScanProjectionInfo(&indexstate->ss);
|
|
|
|
/*
|
|
* all done.
|
|
*/
|
|
return indexstate;
|
|
}
|
|
|
|
|
|
/*
|
|
* ExecIndexBuildScanKeys
|
|
* Build the index scan keys from the index qualification
|
|
*
|
|
* Input params are:
|
|
*
|
|
* planstate: executor state node we are working for
|
|
* quals: indexquals expressions
|
|
* strategies: associated operator strategy numbers
|
|
* subtypes: associated operator subtype OIDs
|
|
*
|
|
* Output params are:
|
|
*
|
|
* *runtimeKeyInfo: receives ptr to array of runtime key exprstates
|
|
* (NULL if no runtime keys)
|
|
* *scanKeys: receives ptr to array of ScanKeys
|
|
* *numScanKeys: receives number of scankeys/runtime keys
|
|
*
|
|
* Return value is TRUE if any runtime key expressions were found, else FALSE.
|
|
*/
|
|
bool
|
|
ExecIndexBuildScanKeys(PlanState *planstate, List *quals,
|
|
List *strategies, List *subtypes,
|
|
ExprState ***runtimeKeyInfo,
|
|
ScanKey *scanKeys, int *numScanKeys)
|
|
{
|
|
bool have_runtime_keys = false;
|
|
ListCell *qual_cell;
|
|
ListCell *strategy_cell;
|
|
ListCell *subtype_cell;
|
|
int n_keys;
|
|
ScanKey scan_keys;
|
|
ExprState **run_keys;
|
|
int j;
|
|
|
|
n_keys = list_length(quals);
|
|
scan_keys = (n_keys <= 0) ? NULL :
|
|
(ScanKey) palloc(n_keys * sizeof(ScanKeyData));
|
|
run_keys = (n_keys <= 0) ? NULL :
|
|
(ExprState **) palloc(n_keys * sizeof(ExprState *));
|
|
|
|
/*
|
|
* for each opclause in the given qual, convert each qual's opclause into
|
|
* a single scan key
|
|
*/
|
|
qual_cell = list_head(quals);
|
|
strategy_cell = list_head(strategies);
|
|
subtype_cell = list_head(subtypes);
|
|
|
|
for (j = 0; j < n_keys; j++)
|
|
{
|
|
OpExpr *clause; /* one clause of index qual */
|
|
Expr *leftop; /* expr on lhs of operator */
|
|
Expr *rightop; /* expr on rhs ... */
|
|
int flags = 0;
|
|
AttrNumber varattno; /* att number used in scan */
|
|
StrategyNumber strategy; /* op's strategy number */
|
|
Oid subtype; /* op's strategy subtype */
|
|
RegProcedure opfuncid; /* operator proc id used in scan */
|
|
Datum scanvalue; /* value used in scan (if const) */
|
|
|
|
/*
|
|
* extract clause information from the qualification
|
|
*/
|
|
clause = (OpExpr *) lfirst(qual_cell);
|
|
qual_cell = lnext(qual_cell);
|
|
strategy = lfirst_int(strategy_cell);
|
|
strategy_cell = lnext(strategy_cell);
|
|
subtype = lfirst_oid(subtype_cell);
|
|
subtype_cell = lnext(subtype_cell);
|
|
|
|
if (!IsA(clause, OpExpr))
|
|
elog(ERROR, "indexqual is not an OpExpr");
|
|
|
|
opfuncid = clause->opfuncid;
|
|
|
|
/*
|
|
* Here we figure out the contents of the index qual. The usual case
|
|
* is (var op const) which means we form a scan key for the attribute
|
|
* listed in the var node and use the value of the const as comparison
|
|
* data.
|
|
*
|
|
* If we don't have a const node, it means our scan key is a function of
|
|
* information obtained during the execution of the plan, in which
|
|
* case we need to recalculate the index scan key at run time. Hence,
|
|
* we set have_runtime_keys to true and place the appropriate
|
|
* subexpression in run_keys. The corresponding scan key values are
|
|
* recomputed at run time.
|
|
*/
|
|
run_keys[j] = NULL;
|
|
|
|
/*
|
|
* determine information in leftop
|
|
*/
|
|
leftop = (Expr *) get_leftop((Expr *) clause);
|
|
|
|
if (leftop && IsA(leftop, RelabelType))
|
|
leftop = ((RelabelType *) leftop)->arg;
|
|
|
|
Assert(leftop != NULL);
|
|
|
|
if (!(IsA(leftop, Var) &&
|
|
var_is_rel((Var *) leftop)))
|
|
elog(ERROR, "indexqual doesn't have key on left side");
|
|
|
|
varattno = ((Var *) leftop)->varattno;
|
|
|
|
/*
|
|
* now determine information in rightop
|
|
*/
|
|
rightop = (Expr *) get_rightop((Expr *) clause);
|
|
|
|
if (rightop && IsA(rightop, RelabelType))
|
|
rightop = ((RelabelType *) rightop)->arg;
|
|
|
|
Assert(rightop != NULL);
|
|
|
|
if (IsA(rightop, Const))
|
|
{
|
|
/*
|
|
* if the rightop is a const node then it means it identifies the
|
|
* value to place in our scan key.
|
|
*/
|
|
scanvalue = ((Const *) rightop)->constvalue;
|
|
if (((Const *) rightop)->constisnull)
|
|
flags |= SK_ISNULL;
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* otherwise, the rightop contains an expression evaluable at
|
|
* runtime to figure out the value to place in our scan key.
|
|
*/
|
|
have_runtime_keys = true;
|
|
run_keys[j] = ExecInitExpr(rightop, planstate);
|
|
scanvalue = (Datum) 0;
|
|
}
|
|
|
|
/*
|
|
* initialize the scan key's fields appropriately
|
|
*/
|
|
ScanKeyEntryInitialize(&scan_keys[j],
|
|
flags,
|
|
varattno, /* attribute number to scan */
|
|
strategy, /* op's strategy */
|
|
subtype, /* strategy subtype */
|
|
opfuncid, /* reg proc to use */
|
|
scanvalue); /* constant */
|
|
}
|
|
|
|
/* If no runtime keys, get rid of speculatively-allocated array */
|
|
if (run_keys && !have_runtime_keys)
|
|
{
|
|
pfree(run_keys);
|
|
run_keys = NULL;
|
|
}
|
|
|
|
/*
|
|
* Return the info to our caller.
|
|
*/
|
|
*numScanKeys = n_keys;
|
|
*scanKeys = scan_keys;
|
|
*runtimeKeyInfo = run_keys;
|
|
|
|
return have_runtime_keys;
|
|
}
|
|
|
|
int
|
|
ExecCountSlotsIndexScan(IndexScan *node)
|
|
{
|
|
return ExecCountSlotsNode(outerPlan((Plan *) node)) +
|
|
ExecCountSlotsNode(innerPlan((Plan *) node)) + INDEXSCAN_NSLOTS;
|
|
}
|