1
0
mirror of https://github.com/postgres/postgres.git synced 2025-05-02 11:44:50 +03:00
Tom Lane a391ff3c3d Build out the planner support function infrastructure.
Add support function requests for estimating the selectivity, cost,
and number of result rows (if a SRF) of the target function.

The lack of a way to estimate selectivity of a boolean-returning
function in WHERE has been a recognized deficiency of the planner
since Berkeley days.  This commit finally fixes it.

In addition, non-constant estimates of cost and number of output
rows are now possible.  We still fall back to looking at procost
and prorows if the support function doesn't service the request,
of course.

To make concrete use of the possibility of estimating output rowcount
for SRFs, this commit adds support functions for array_unnest(anyarray)
and the integer variants of generate_series; the lack of plausible
rowcount estimates for those, even when it's obvious to a human,
has been a repeated subject of complaints.  Obviously, much more
could now be done in this line, but I'm mostly just trying to get
the infrastructure in place.

Discussion: https://postgr.es/m/15193.1548028093@sss.pgh.pa.us
2019-02-09 18:32:23 -05:00

1504 lines
31 KiB
C

/*-------------------------------------------------------------------------
*
* int.c
* Functions for the built-in integer types (except int8).
*
* Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/backend/utils/adt/int.c
*
*-------------------------------------------------------------------------
*/
/*
* OLD COMMENTS
* I/O routines:
* int2in, int2out, int2recv, int2send
* int4in, int4out, int4recv, int4send
* int2vectorin, int2vectorout, int2vectorrecv, int2vectorsend
* Boolean operators:
* inteq, intne, intlt, intle, intgt, intge
* Arithmetic operators:
* intpl, intmi, int4mul, intdiv
*
* Arithmetic operators:
* intmod
*/
#include "postgres.h"
#include <ctype.h>
#include <limits.h>
#include <math.h>
#include "catalog/pg_type.h"
#include "common/int.h"
#include "funcapi.h"
#include "libpq/pqformat.h"
#include "nodes/nodeFuncs.h"
#include "nodes/supportnodes.h"
#include "optimizer/optimizer.h"
#include "utils/array.h"
#include "utils/builtins.h"
#define Int2VectorSize(n) (offsetof(int2vector, values) + (n) * sizeof(int16))
typedef struct
{
int32 current;
int32 finish;
int32 step;
} generate_series_fctx;
/*****************************************************************************
* USER I/O ROUTINES *
*****************************************************************************/
/*
* int2in - converts "num" to short
*/
Datum
int2in(PG_FUNCTION_ARGS)
{
char *num = PG_GETARG_CSTRING(0);
PG_RETURN_INT16(pg_strtoint16(num));
}
/*
* int2out - converts short to "num"
*/
Datum
int2out(PG_FUNCTION_ARGS)
{
int16 arg1 = PG_GETARG_INT16(0);
char *result = (char *) palloc(7); /* sign, 5 digits, '\0' */
pg_itoa(arg1, result);
PG_RETURN_CSTRING(result);
}
/*
* int2recv - converts external binary format to int2
*/
Datum
int2recv(PG_FUNCTION_ARGS)
{
StringInfo buf = (StringInfo) PG_GETARG_POINTER(0);
PG_RETURN_INT16((int16) pq_getmsgint(buf, sizeof(int16)));
}
/*
* int2send - converts int2 to binary format
*/
Datum
int2send(PG_FUNCTION_ARGS)
{
int16 arg1 = PG_GETARG_INT16(0);
StringInfoData buf;
pq_begintypsend(&buf);
pq_sendint16(&buf, arg1);
PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
}
/*
* construct int2vector given a raw array of int2s
*
* If int2s is NULL then caller must fill values[] afterward
*/
int2vector *
buildint2vector(const int16 *int2s, int n)
{
int2vector *result;
result = (int2vector *) palloc0(Int2VectorSize(n));
if (n > 0 && int2s)
memcpy(result->values, int2s, n * sizeof(int16));
/*
* Attach standard array header. For historical reasons, we set the index
* lower bound to 0 not 1.
*/
SET_VARSIZE(result, Int2VectorSize(n));
result->ndim = 1;
result->dataoffset = 0; /* never any nulls */
result->elemtype = INT2OID;
result->dim1 = n;
result->lbound1 = 0;
return result;
}
/*
* int2vectorin - converts "num num ..." to internal form
*/
Datum
int2vectorin(PG_FUNCTION_ARGS)
{
char *intString = PG_GETARG_CSTRING(0);
int2vector *result;
int n;
result = (int2vector *) palloc0(Int2VectorSize(FUNC_MAX_ARGS));
for (n = 0; *intString && n < FUNC_MAX_ARGS; n++)
{
while (*intString && isspace((unsigned char) *intString))
intString++;
if (*intString == '\0')
break;
result->values[n] = pg_atoi(intString, sizeof(int16), ' ');
while (*intString && !isspace((unsigned char) *intString))
intString++;
}
while (*intString && isspace((unsigned char) *intString))
intString++;
if (*intString)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("int2vector has too many elements")));
SET_VARSIZE(result, Int2VectorSize(n));
result->ndim = 1;
result->dataoffset = 0; /* never any nulls */
result->elemtype = INT2OID;
result->dim1 = n;
result->lbound1 = 0;
PG_RETURN_POINTER(result);
}
/*
* int2vectorout - converts internal form to "num num ..."
*/
Datum
int2vectorout(PG_FUNCTION_ARGS)
{
int2vector *int2Array = (int2vector *) PG_GETARG_POINTER(0);
int num,
nnums = int2Array->dim1;
char *rp;
char *result;
/* assumes sign, 5 digits, ' ' */
rp = result = (char *) palloc(nnums * 7 + 1);
for (num = 0; num < nnums; num++)
{
if (num != 0)
*rp++ = ' ';
pg_itoa(int2Array->values[num], rp);
while (*++rp != '\0')
;
}
*rp = '\0';
PG_RETURN_CSTRING(result);
}
/*
* int2vectorrecv - converts external binary format to int2vector
*/
Datum
int2vectorrecv(PG_FUNCTION_ARGS)
{
LOCAL_FCINFO(locfcinfo, 3);
StringInfo buf = (StringInfo) PG_GETARG_POINTER(0);
int2vector *result;
/*
* Normally one would call array_recv() using DirectFunctionCall3, but
* that does not work since array_recv wants to cache some data using
* fcinfo->flinfo->fn_extra. So we need to pass it our own flinfo
* parameter.
*/
InitFunctionCallInfoData(*locfcinfo, fcinfo->flinfo, 3,
InvalidOid, NULL, NULL);
locfcinfo->args[0].value = PointerGetDatum(buf);
locfcinfo->args[0].isnull = false;
locfcinfo->args[1].value = ObjectIdGetDatum(INT2OID);
locfcinfo->args[1].isnull = false;
locfcinfo->args[2].value = Int32GetDatum(-1);
locfcinfo->args[2].isnull = false;
result = (int2vector *) DatumGetPointer(array_recv(locfcinfo));
Assert(!locfcinfo->isnull);
/* sanity checks: int2vector must be 1-D, 0-based, no nulls */
if (ARR_NDIM(result) != 1 ||
ARR_HASNULL(result) ||
ARR_ELEMTYPE(result) != INT2OID ||
ARR_LBOUND(result)[0] != 0)
ereport(ERROR,
(errcode(ERRCODE_INVALID_BINARY_REPRESENTATION),
errmsg("invalid int2vector data")));
/* check length for consistency with int2vectorin() */
if (ARR_DIMS(result)[0] > FUNC_MAX_ARGS)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("oidvector has too many elements")));
PG_RETURN_POINTER(result);
}
/*
* int2vectorsend - converts int2vector to binary format
*/
Datum
int2vectorsend(PG_FUNCTION_ARGS)
{
return array_send(fcinfo);
}
/*****************************************************************************
* PUBLIC ROUTINES *
*****************************************************************************/
/*
* int4in - converts "num" to int4
*/
Datum
int4in(PG_FUNCTION_ARGS)
{
char *num = PG_GETARG_CSTRING(0);
PG_RETURN_INT32(pg_strtoint32(num));
}
/*
* int4out - converts int4 to "num"
*/
Datum
int4out(PG_FUNCTION_ARGS)
{
int32 arg1 = PG_GETARG_INT32(0);
char *result = (char *) palloc(12); /* sign, 10 digits, '\0' */
pg_ltoa(arg1, result);
PG_RETURN_CSTRING(result);
}
/*
* int4recv - converts external binary format to int4
*/
Datum
int4recv(PG_FUNCTION_ARGS)
{
StringInfo buf = (StringInfo) PG_GETARG_POINTER(0);
PG_RETURN_INT32((int32) pq_getmsgint(buf, sizeof(int32)));
}
/*
* int4send - converts int4 to binary format
*/
Datum
int4send(PG_FUNCTION_ARGS)
{
int32 arg1 = PG_GETARG_INT32(0);
StringInfoData buf;
pq_begintypsend(&buf);
pq_sendint32(&buf, arg1);
PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
}
/*
* ===================
* CONVERSION ROUTINES
* ===================
*/
Datum
i2toi4(PG_FUNCTION_ARGS)
{
int16 arg1 = PG_GETARG_INT16(0);
PG_RETURN_INT32((int32) arg1);
}
Datum
i4toi2(PG_FUNCTION_ARGS)
{
int32 arg1 = PG_GETARG_INT32(0);
if (unlikely(arg1 < SHRT_MIN) || unlikely(arg1 > SHRT_MAX))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("smallint out of range")));
PG_RETURN_INT16((int16) arg1);
}
/* Cast int4 -> bool */
Datum
int4_bool(PG_FUNCTION_ARGS)
{
if (PG_GETARG_INT32(0) == 0)
PG_RETURN_BOOL(false);
else
PG_RETURN_BOOL(true);
}
/* Cast bool -> int4 */
Datum
bool_int4(PG_FUNCTION_ARGS)
{
if (PG_GETARG_BOOL(0) == false)
PG_RETURN_INT32(0);
else
PG_RETURN_INT32(1);
}
/*
* ============================
* COMPARISON OPERATOR ROUTINES
* ============================
*/
/*
* inteq - returns 1 iff arg1 == arg2
* intne - returns 1 iff arg1 != arg2
* intlt - returns 1 iff arg1 < arg2
* intle - returns 1 iff arg1 <= arg2
* intgt - returns 1 iff arg1 > arg2
* intge - returns 1 iff arg1 >= arg2
*/
Datum
int4eq(PG_FUNCTION_ARGS)
{
int32 arg1 = PG_GETARG_INT32(0);
int32 arg2 = PG_GETARG_INT32(1);
PG_RETURN_BOOL(arg1 == arg2);
}
Datum
int4ne(PG_FUNCTION_ARGS)
{
int32 arg1 = PG_GETARG_INT32(0);
int32 arg2 = PG_GETARG_INT32(1);
PG_RETURN_BOOL(arg1 != arg2);
}
Datum
int4lt(PG_FUNCTION_ARGS)
{
int32 arg1 = PG_GETARG_INT32(0);
int32 arg2 = PG_GETARG_INT32(1);
PG_RETURN_BOOL(arg1 < arg2);
}
Datum
int4le(PG_FUNCTION_ARGS)
{
int32 arg1 = PG_GETARG_INT32(0);
int32 arg2 = PG_GETARG_INT32(1);
PG_RETURN_BOOL(arg1 <= arg2);
}
Datum
int4gt(PG_FUNCTION_ARGS)
{
int32 arg1 = PG_GETARG_INT32(0);
int32 arg2 = PG_GETARG_INT32(1);
PG_RETURN_BOOL(arg1 > arg2);
}
Datum
int4ge(PG_FUNCTION_ARGS)
{
int32 arg1 = PG_GETARG_INT32(0);
int32 arg2 = PG_GETARG_INT32(1);
PG_RETURN_BOOL(arg1 >= arg2);
}
Datum
int2eq(PG_FUNCTION_ARGS)
{
int16 arg1 = PG_GETARG_INT16(0);
int16 arg2 = PG_GETARG_INT16(1);
PG_RETURN_BOOL(arg1 == arg2);
}
Datum
int2ne(PG_FUNCTION_ARGS)
{
int16 arg1 = PG_GETARG_INT16(0);
int16 arg2 = PG_GETARG_INT16(1);
PG_RETURN_BOOL(arg1 != arg2);
}
Datum
int2lt(PG_FUNCTION_ARGS)
{
int16 arg1 = PG_GETARG_INT16(0);
int16 arg2 = PG_GETARG_INT16(1);
PG_RETURN_BOOL(arg1 < arg2);
}
Datum
int2le(PG_FUNCTION_ARGS)
{
int16 arg1 = PG_GETARG_INT16(0);
int16 arg2 = PG_GETARG_INT16(1);
PG_RETURN_BOOL(arg1 <= arg2);
}
Datum
int2gt(PG_FUNCTION_ARGS)
{
int16 arg1 = PG_GETARG_INT16(0);
int16 arg2 = PG_GETARG_INT16(1);
PG_RETURN_BOOL(arg1 > arg2);
}
Datum
int2ge(PG_FUNCTION_ARGS)
{
int16 arg1 = PG_GETARG_INT16(0);
int16 arg2 = PG_GETARG_INT16(1);
PG_RETURN_BOOL(arg1 >= arg2);
}
Datum
int24eq(PG_FUNCTION_ARGS)
{
int16 arg1 = PG_GETARG_INT16(0);
int32 arg2 = PG_GETARG_INT32(1);
PG_RETURN_BOOL(arg1 == arg2);
}
Datum
int24ne(PG_FUNCTION_ARGS)
{
int16 arg1 = PG_GETARG_INT16(0);
int32 arg2 = PG_GETARG_INT32(1);
PG_RETURN_BOOL(arg1 != arg2);
}
Datum
int24lt(PG_FUNCTION_ARGS)
{
int16 arg1 = PG_GETARG_INT16(0);
int32 arg2 = PG_GETARG_INT32(1);
PG_RETURN_BOOL(arg1 < arg2);
}
Datum
int24le(PG_FUNCTION_ARGS)
{
int16 arg1 = PG_GETARG_INT16(0);
int32 arg2 = PG_GETARG_INT32(1);
PG_RETURN_BOOL(arg1 <= arg2);
}
Datum
int24gt(PG_FUNCTION_ARGS)
{
int16 arg1 = PG_GETARG_INT16(0);
int32 arg2 = PG_GETARG_INT32(1);
PG_RETURN_BOOL(arg1 > arg2);
}
Datum
int24ge(PG_FUNCTION_ARGS)
{
int16 arg1 = PG_GETARG_INT16(0);
int32 arg2 = PG_GETARG_INT32(1);
PG_RETURN_BOOL(arg1 >= arg2);
}
Datum
int42eq(PG_FUNCTION_ARGS)
{
int32 arg1 = PG_GETARG_INT32(0);
int16 arg2 = PG_GETARG_INT16(1);
PG_RETURN_BOOL(arg1 == arg2);
}
Datum
int42ne(PG_FUNCTION_ARGS)
{
int32 arg1 = PG_GETARG_INT32(0);
int16 arg2 = PG_GETARG_INT16(1);
PG_RETURN_BOOL(arg1 != arg2);
}
Datum
int42lt(PG_FUNCTION_ARGS)
{
int32 arg1 = PG_GETARG_INT32(0);
int16 arg2 = PG_GETARG_INT16(1);
PG_RETURN_BOOL(arg1 < arg2);
}
Datum
int42le(PG_FUNCTION_ARGS)
{
int32 arg1 = PG_GETARG_INT32(0);
int16 arg2 = PG_GETARG_INT16(1);
PG_RETURN_BOOL(arg1 <= arg2);
}
Datum
int42gt(PG_FUNCTION_ARGS)
{
int32 arg1 = PG_GETARG_INT32(0);
int16 arg2 = PG_GETARG_INT16(1);
PG_RETURN_BOOL(arg1 > arg2);
}
Datum
int42ge(PG_FUNCTION_ARGS)
{
int32 arg1 = PG_GETARG_INT32(0);
int16 arg2 = PG_GETARG_INT16(1);
PG_RETURN_BOOL(arg1 >= arg2);
}
/*----------------------------------------------------------
* in_range functions for int4 and int2,
* including cross-data-type comparisons.
*
* Note: we provide separate intN_int8 functions for performance
* reasons. This forces also providing intN_int2, else cases with a
* smallint offset value would fail to resolve which function to use.
* But that's an unlikely situation, so don't duplicate code for it.
*---------------------------------------------------------*/
Datum
in_range_int4_int4(PG_FUNCTION_ARGS)
{
int32 val = PG_GETARG_INT32(0);
int32 base = PG_GETARG_INT32(1);
int32 offset = PG_GETARG_INT32(2);
bool sub = PG_GETARG_BOOL(3);
bool less = PG_GETARG_BOOL(4);
int32 sum;
if (offset < 0)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PRECEDING_OR_FOLLOWING_SIZE),
errmsg("invalid preceding or following size in window function")));
if (sub)
offset = -offset; /* cannot overflow */
if (unlikely(pg_add_s32_overflow(base, offset, &sum)))
{
/*
* If sub is false, the true sum is surely more than val, so correct
* answer is the same as "less". If sub is true, the true sum is
* surely less than val, so the answer is "!less".
*/
PG_RETURN_BOOL(sub ? !less : less);
}
if (less)
PG_RETURN_BOOL(val <= sum);
else
PG_RETURN_BOOL(val >= sum);
}
Datum
in_range_int4_int2(PG_FUNCTION_ARGS)
{
/* Doesn't seem worth duplicating code for, so just invoke int4_int4 */
return DirectFunctionCall5(in_range_int4_int4,
PG_GETARG_DATUM(0),
PG_GETARG_DATUM(1),
Int32GetDatum((int32) PG_GETARG_INT16(2)),
PG_GETARG_DATUM(3),
PG_GETARG_DATUM(4));
}
Datum
in_range_int4_int8(PG_FUNCTION_ARGS)
{
/* We must do all the math in int64 */
int64 val = (int64) PG_GETARG_INT32(0);
int64 base = (int64) PG_GETARG_INT32(1);
int64 offset = PG_GETARG_INT64(2);
bool sub = PG_GETARG_BOOL(3);
bool less = PG_GETARG_BOOL(4);
int64 sum;
if (offset < 0)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PRECEDING_OR_FOLLOWING_SIZE),
errmsg("invalid preceding or following size in window function")));
if (sub)
offset = -offset; /* cannot overflow */
if (unlikely(pg_add_s64_overflow(base, offset, &sum)))
{
/*
* If sub is false, the true sum is surely more than val, so correct
* answer is the same as "less". If sub is true, the true sum is
* surely less than val, so the answer is "!less".
*/
PG_RETURN_BOOL(sub ? !less : less);
}
if (less)
PG_RETURN_BOOL(val <= sum);
else
PG_RETURN_BOOL(val >= sum);
}
Datum
in_range_int2_int4(PG_FUNCTION_ARGS)
{
/* We must do all the math in int32 */
int32 val = (int32) PG_GETARG_INT16(0);
int32 base = (int32) PG_GETARG_INT16(1);
int32 offset = PG_GETARG_INT32(2);
bool sub = PG_GETARG_BOOL(3);
bool less = PG_GETARG_BOOL(4);
int32 sum;
if (offset < 0)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PRECEDING_OR_FOLLOWING_SIZE),
errmsg("invalid preceding or following size in window function")));
if (sub)
offset = -offset; /* cannot overflow */
if (unlikely(pg_add_s32_overflow(base, offset, &sum)))
{
/*
* If sub is false, the true sum is surely more than val, so correct
* answer is the same as "less". If sub is true, the true sum is
* surely less than val, so the answer is "!less".
*/
PG_RETURN_BOOL(sub ? !less : less);
}
if (less)
PG_RETURN_BOOL(val <= sum);
else
PG_RETURN_BOOL(val >= sum);
}
Datum
in_range_int2_int2(PG_FUNCTION_ARGS)
{
/* Doesn't seem worth duplicating code for, so just invoke int2_int4 */
return DirectFunctionCall5(in_range_int2_int4,
PG_GETARG_DATUM(0),
PG_GETARG_DATUM(1),
Int32GetDatum((int32) PG_GETARG_INT16(2)),
PG_GETARG_DATUM(3),
PG_GETARG_DATUM(4));
}
Datum
in_range_int2_int8(PG_FUNCTION_ARGS)
{
/* Doesn't seem worth duplicating code for, so just invoke int4_int8 */
return DirectFunctionCall5(in_range_int4_int8,
Int32GetDatum((int32) PG_GETARG_INT16(0)),
Int32GetDatum((int32) PG_GETARG_INT16(1)),
PG_GETARG_DATUM(2),
PG_GETARG_DATUM(3),
PG_GETARG_DATUM(4));
}
/*
* int[24]pl - returns arg1 + arg2
* int[24]mi - returns arg1 - arg2
* int[24]mul - returns arg1 * arg2
* int[24]div - returns arg1 / arg2
*/
Datum
int4um(PG_FUNCTION_ARGS)
{
int32 arg = PG_GETARG_INT32(0);
if (unlikely(arg == PG_INT32_MIN))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("integer out of range")));
PG_RETURN_INT32(-arg);
}
Datum
int4up(PG_FUNCTION_ARGS)
{
int32 arg = PG_GETARG_INT32(0);
PG_RETURN_INT32(arg);
}
Datum
int4pl(PG_FUNCTION_ARGS)
{
int32 arg1 = PG_GETARG_INT32(0);
int32 arg2 = PG_GETARG_INT32(1);
int32 result;
if (unlikely(pg_add_s32_overflow(arg1, arg2, &result)))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("integer out of range")));
PG_RETURN_INT32(result);
}
Datum
int4mi(PG_FUNCTION_ARGS)
{
int32 arg1 = PG_GETARG_INT32(0);
int32 arg2 = PG_GETARG_INT32(1);
int32 result;
if (unlikely(pg_sub_s32_overflow(arg1, arg2, &result)))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("integer out of range")));
PG_RETURN_INT32(result);
}
Datum
int4mul(PG_FUNCTION_ARGS)
{
int32 arg1 = PG_GETARG_INT32(0);
int32 arg2 = PG_GETARG_INT32(1);
int32 result;
if (unlikely(pg_mul_s32_overflow(arg1, arg2, &result)))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("integer out of range")));
PG_RETURN_INT32(result);
}
Datum
int4div(PG_FUNCTION_ARGS)
{
int32 arg1 = PG_GETARG_INT32(0);
int32 arg2 = PG_GETARG_INT32(1);
int32 result;
if (arg2 == 0)
{
ereport(ERROR,
(errcode(ERRCODE_DIVISION_BY_ZERO),
errmsg("division by zero")));
/* ensure compiler realizes we mustn't reach the division (gcc bug) */
PG_RETURN_NULL();
}
/*
* INT_MIN / -1 is problematic, since the result can't be represented on a
* two's-complement machine. Some machines produce INT_MIN, some produce
* zero, some throw an exception. We can dodge the problem by recognizing
* that division by -1 is the same as negation.
*/
if (arg2 == -1)
{
if (unlikely(arg1 == PG_INT32_MIN))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("integer out of range")));
result = -arg1;
PG_RETURN_INT32(result);
}
/* No overflow is possible */
result = arg1 / arg2;
PG_RETURN_INT32(result);
}
Datum
int4inc(PG_FUNCTION_ARGS)
{
int32 arg = PG_GETARG_INT32(0);
int32 result;
if (unlikely(pg_add_s32_overflow(arg, 1, &result)))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("integer out of range")));
PG_RETURN_INT32(result);
}
Datum
int2um(PG_FUNCTION_ARGS)
{
int16 arg = PG_GETARG_INT16(0);
if (unlikely(arg == PG_INT16_MIN))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("smallint out of range")));
PG_RETURN_INT16(-arg);
}
Datum
int2up(PG_FUNCTION_ARGS)
{
int16 arg = PG_GETARG_INT16(0);
PG_RETURN_INT16(arg);
}
Datum
int2pl(PG_FUNCTION_ARGS)
{
int16 arg1 = PG_GETARG_INT16(0);
int16 arg2 = PG_GETARG_INT16(1);
int16 result;
if (unlikely(pg_add_s16_overflow(arg1, arg2, &result)))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("smallint out of range")));
PG_RETURN_INT16(result);
}
Datum
int2mi(PG_FUNCTION_ARGS)
{
int16 arg1 = PG_GETARG_INT16(0);
int16 arg2 = PG_GETARG_INT16(1);
int16 result;
if (unlikely(pg_sub_s16_overflow(arg1, arg2, &result)))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("smallint out of range")));
PG_RETURN_INT16(result);
}
Datum
int2mul(PG_FUNCTION_ARGS)
{
int16 arg1 = PG_GETARG_INT16(0);
int16 arg2 = PG_GETARG_INT16(1);
int16 result;
if (unlikely(pg_mul_s16_overflow(arg1, arg2, &result)))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("smallint out of range")));
PG_RETURN_INT16(result);
}
Datum
int2div(PG_FUNCTION_ARGS)
{
int16 arg1 = PG_GETARG_INT16(0);
int16 arg2 = PG_GETARG_INT16(1);
int16 result;
if (arg2 == 0)
{
ereport(ERROR,
(errcode(ERRCODE_DIVISION_BY_ZERO),
errmsg("division by zero")));
/* ensure compiler realizes we mustn't reach the division (gcc bug) */
PG_RETURN_NULL();
}
/*
* SHRT_MIN / -1 is problematic, since the result can't be represented on
* a two's-complement machine. Some machines produce SHRT_MIN, some
* produce zero, some throw an exception. We can dodge the problem by
* recognizing that division by -1 is the same as negation.
*/
if (arg2 == -1)
{
if (unlikely(arg1 == PG_INT16_MIN))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("smallint out of range")));
result = -arg1;
PG_RETURN_INT16(result);
}
/* No overflow is possible */
result = arg1 / arg2;
PG_RETURN_INT16(result);
}
Datum
int24pl(PG_FUNCTION_ARGS)
{
int16 arg1 = PG_GETARG_INT16(0);
int32 arg2 = PG_GETARG_INT32(1);
int32 result;
if (unlikely(pg_add_s32_overflow((int32) arg1, arg2, &result)))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("integer out of range")));
PG_RETURN_INT32(result);
}
Datum
int24mi(PG_FUNCTION_ARGS)
{
int16 arg1 = PG_GETARG_INT16(0);
int32 arg2 = PG_GETARG_INT32(1);
int32 result;
if (unlikely(pg_sub_s32_overflow((int32) arg1, arg2, &result)))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("integer out of range")));
PG_RETURN_INT32(result);
}
Datum
int24mul(PG_FUNCTION_ARGS)
{
int16 arg1 = PG_GETARG_INT16(0);
int32 arg2 = PG_GETARG_INT32(1);
int32 result;
if (unlikely(pg_mul_s32_overflow((int32) arg1, arg2, &result)))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("integer out of range")));
PG_RETURN_INT32(result);
}
Datum
int24div(PG_FUNCTION_ARGS)
{
int16 arg1 = PG_GETARG_INT16(0);
int32 arg2 = PG_GETARG_INT32(1);
if (unlikely(arg2 == 0))
{
ereport(ERROR,
(errcode(ERRCODE_DIVISION_BY_ZERO),
errmsg("division by zero")));
/* ensure compiler realizes we mustn't reach the division (gcc bug) */
PG_RETURN_NULL();
}
/* No overflow is possible */
PG_RETURN_INT32((int32) arg1 / arg2);
}
Datum
int42pl(PG_FUNCTION_ARGS)
{
int32 arg1 = PG_GETARG_INT32(0);
int16 arg2 = PG_GETARG_INT16(1);
int32 result;
if (unlikely(pg_add_s32_overflow(arg1, (int32) arg2, &result)))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("integer out of range")));
PG_RETURN_INT32(result);
}
Datum
int42mi(PG_FUNCTION_ARGS)
{
int32 arg1 = PG_GETARG_INT32(0);
int16 arg2 = PG_GETARG_INT16(1);
int32 result;
if (unlikely(pg_sub_s32_overflow(arg1, (int32) arg2, &result)))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("integer out of range")));
PG_RETURN_INT32(result);
}
Datum
int42mul(PG_FUNCTION_ARGS)
{
int32 arg1 = PG_GETARG_INT32(0);
int16 arg2 = PG_GETARG_INT16(1);
int32 result;
if (unlikely(pg_mul_s32_overflow(arg1, (int32) arg2, &result)))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("integer out of range")));
PG_RETURN_INT32(result);
}
Datum
int42div(PG_FUNCTION_ARGS)
{
int32 arg1 = PG_GETARG_INT32(0);
int16 arg2 = PG_GETARG_INT16(1);
int32 result;
if (unlikely(arg2 == 0))
{
ereport(ERROR,
(errcode(ERRCODE_DIVISION_BY_ZERO),
errmsg("division by zero")));
/* ensure compiler realizes we mustn't reach the division (gcc bug) */
PG_RETURN_NULL();
}
/*
* INT_MIN / -1 is problematic, since the result can't be represented on a
* two's-complement machine. Some machines produce INT_MIN, some produce
* zero, some throw an exception. We can dodge the problem by recognizing
* that division by -1 is the same as negation.
*/
if (arg2 == -1)
{
if (unlikely(arg1 == PG_INT32_MIN))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("integer out of range")));
result = -arg1;
PG_RETURN_INT32(result);
}
/* No overflow is possible */
result = arg1 / arg2;
PG_RETURN_INT32(result);
}
Datum
int4mod(PG_FUNCTION_ARGS)
{
int32 arg1 = PG_GETARG_INT32(0);
int32 arg2 = PG_GETARG_INT32(1);
if (unlikely(arg2 == 0))
{
ereport(ERROR,
(errcode(ERRCODE_DIVISION_BY_ZERO),
errmsg("division by zero")));
/* ensure compiler realizes we mustn't reach the division (gcc bug) */
PG_RETURN_NULL();
}
/*
* Some machines throw a floating-point exception for INT_MIN % -1, which
* is a bit silly since the correct answer is perfectly well-defined,
* namely zero.
*/
if (arg2 == -1)
PG_RETURN_INT32(0);
/* No overflow is possible */
PG_RETURN_INT32(arg1 % arg2);
}
Datum
int2mod(PG_FUNCTION_ARGS)
{
int16 arg1 = PG_GETARG_INT16(0);
int16 arg2 = PG_GETARG_INT16(1);
if (unlikely(arg2 == 0))
{
ereport(ERROR,
(errcode(ERRCODE_DIVISION_BY_ZERO),
errmsg("division by zero")));
/* ensure compiler realizes we mustn't reach the division (gcc bug) */
PG_RETURN_NULL();
}
/*
* Some machines throw a floating-point exception for INT_MIN % -1, which
* is a bit silly since the correct answer is perfectly well-defined,
* namely zero. (It's not clear this ever happens when dealing with
* int16, but we might as well have the test for safety.)
*/
if (arg2 == -1)
PG_RETURN_INT16(0);
/* No overflow is possible */
PG_RETURN_INT16(arg1 % arg2);
}
/* int[24]abs()
* Absolute value
*/
Datum
int4abs(PG_FUNCTION_ARGS)
{
int32 arg1 = PG_GETARG_INT32(0);
int32 result;
if (unlikely(arg1 == PG_INT32_MIN))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("integer out of range")));
result = (arg1 < 0) ? -arg1 : arg1;
PG_RETURN_INT32(result);
}
Datum
int2abs(PG_FUNCTION_ARGS)
{
int16 arg1 = PG_GETARG_INT16(0);
int16 result;
if (unlikely(arg1 == PG_INT16_MIN))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("smallint out of range")));
result = (arg1 < 0) ? -arg1 : arg1;
PG_RETURN_INT16(result);
}
Datum
int2larger(PG_FUNCTION_ARGS)
{
int16 arg1 = PG_GETARG_INT16(0);
int16 arg2 = PG_GETARG_INT16(1);
PG_RETURN_INT16((arg1 > arg2) ? arg1 : arg2);
}
Datum
int2smaller(PG_FUNCTION_ARGS)
{
int16 arg1 = PG_GETARG_INT16(0);
int16 arg2 = PG_GETARG_INT16(1);
PG_RETURN_INT16((arg1 < arg2) ? arg1 : arg2);
}
Datum
int4larger(PG_FUNCTION_ARGS)
{
int32 arg1 = PG_GETARG_INT32(0);
int32 arg2 = PG_GETARG_INT32(1);
PG_RETURN_INT32((arg1 > arg2) ? arg1 : arg2);
}
Datum
int4smaller(PG_FUNCTION_ARGS)
{
int32 arg1 = PG_GETARG_INT32(0);
int32 arg2 = PG_GETARG_INT32(1);
PG_RETURN_INT32((arg1 < arg2) ? arg1 : arg2);
}
/*
* Bit-pushing operators
*
* int[24]and - returns arg1 & arg2
* int[24]or - returns arg1 | arg2
* int[24]xor - returns arg1 # arg2
* int[24]not - returns ~arg1
* int[24]shl - returns arg1 << arg2
* int[24]shr - returns arg1 >> arg2
*/
Datum
int4and(PG_FUNCTION_ARGS)
{
int32 arg1 = PG_GETARG_INT32(0);
int32 arg2 = PG_GETARG_INT32(1);
PG_RETURN_INT32(arg1 & arg2);
}
Datum
int4or(PG_FUNCTION_ARGS)
{
int32 arg1 = PG_GETARG_INT32(0);
int32 arg2 = PG_GETARG_INT32(1);
PG_RETURN_INT32(arg1 | arg2);
}
Datum
int4xor(PG_FUNCTION_ARGS)
{
int32 arg1 = PG_GETARG_INT32(0);
int32 arg2 = PG_GETARG_INT32(1);
PG_RETURN_INT32(arg1 ^ arg2);
}
Datum
int4shl(PG_FUNCTION_ARGS)
{
int32 arg1 = PG_GETARG_INT32(0);
int32 arg2 = PG_GETARG_INT32(1);
PG_RETURN_INT32(arg1 << arg2);
}
Datum
int4shr(PG_FUNCTION_ARGS)
{
int32 arg1 = PG_GETARG_INT32(0);
int32 arg2 = PG_GETARG_INT32(1);
PG_RETURN_INT32(arg1 >> arg2);
}
Datum
int4not(PG_FUNCTION_ARGS)
{
int32 arg1 = PG_GETARG_INT32(0);
PG_RETURN_INT32(~arg1);
}
Datum
int2and(PG_FUNCTION_ARGS)
{
int16 arg1 = PG_GETARG_INT16(0);
int16 arg2 = PG_GETARG_INT16(1);
PG_RETURN_INT16(arg1 & arg2);
}
Datum
int2or(PG_FUNCTION_ARGS)
{
int16 arg1 = PG_GETARG_INT16(0);
int16 arg2 = PG_GETARG_INT16(1);
PG_RETURN_INT16(arg1 | arg2);
}
Datum
int2xor(PG_FUNCTION_ARGS)
{
int16 arg1 = PG_GETARG_INT16(0);
int16 arg2 = PG_GETARG_INT16(1);
PG_RETURN_INT16(arg1 ^ arg2);
}
Datum
int2not(PG_FUNCTION_ARGS)
{
int16 arg1 = PG_GETARG_INT16(0);
PG_RETURN_INT16(~arg1);
}
Datum
int2shl(PG_FUNCTION_ARGS)
{
int16 arg1 = PG_GETARG_INT16(0);
int32 arg2 = PG_GETARG_INT32(1);
PG_RETURN_INT16(arg1 << arg2);
}
Datum
int2shr(PG_FUNCTION_ARGS)
{
int16 arg1 = PG_GETARG_INT16(0);
int32 arg2 = PG_GETARG_INT32(1);
PG_RETURN_INT16(arg1 >> arg2);
}
/*
* non-persistent numeric series generator
*/
Datum
generate_series_int4(PG_FUNCTION_ARGS)
{
return generate_series_step_int4(fcinfo);
}
Datum
generate_series_step_int4(PG_FUNCTION_ARGS)
{
FuncCallContext *funcctx;
generate_series_fctx *fctx;
int32 result;
MemoryContext oldcontext;
/* stuff done only on the first call of the function */
if (SRF_IS_FIRSTCALL())
{
int32 start = PG_GETARG_INT32(0);
int32 finish = PG_GETARG_INT32(1);
int32 step = 1;
/* see if we were given an explicit step size */
if (PG_NARGS() == 3)
step = PG_GETARG_INT32(2);
if (step == 0)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("step size cannot equal zero")));
/* create a function context for cross-call persistence */
funcctx = SRF_FIRSTCALL_INIT();
/*
* switch to memory context appropriate for multiple function calls
*/
oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
/* allocate memory for user context */
fctx = (generate_series_fctx *) palloc(sizeof(generate_series_fctx));
/*
* Use fctx to keep state from call to call. Seed current with the
* original start value
*/
fctx->current = start;
fctx->finish = finish;
fctx->step = step;
funcctx->user_fctx = fctx;
MemoryContextSwitchTo(oldcontext);
}
/* stuff done on every call of the function */
funcctx = SRF_PERCALL_SETUP();
/*
* get the saved state and use current as the result for this iteration
*/
fctx = funcctx->user_fctx;
result = fctx->current;
if ((fctx->step > 0 && fctx->current <= fctx->finish) ||
(fctx->step < 0 && fctx->current >= fctx->finish))
{
/*
* Increment current in preparation for next iteration. If next-value
* computation overflows, this is the final result.
*/
if (pg_add_s32_overflow(fctx->current, fctx->step, &fctx->current))
fctx->step = 0;
/* do when there is more left to send */
SRF_RETURN_NEXT(funcctx, Int32GetDatum(result));
}
else
/* do when there is no more left */
SRF_RETURN_DONE(funcctx);
}
/*
* Planner support function for generate_series(int4, int4 [, int4])
*/
Datum
generate_series_int4_support(PG_FUNCTION_ARGS)
{
Node *rawreq = (Node *) PG_GETARG_POINTER(0);
Node *ret = NULL;
if (IsA(rawreq, SupportRequestRows))
{
/* Try to estimate the number of rows returned */
SupportRequestRows *req = (SupportRequestRows *) rawreq;
if (is_funcclause(req->node)) /* be paranoid */
{
List *args = ((FuncExpr *) req->node)->args;
Node *arg1,
*arg2,
*arg3;
/* We can use estimated argument values here */
arg1 = estimate_expression_value(req->root, linitial(args));
arg2 = estimate_expression_value(req->root, lsecond(args));
if (list_length(args) >= 3)
arg3 = estimate_expression_value(req->root, lthird(args));
else
arg3 = NULL;
/*
* If any argument is constant NULL, we can safely assume that
* zero rows are returned. Otherwise, if they're all non-NULL
* constants, we can calculate the number of rows that will be
* returned. Use double arithmetic to avoid overflow hazards.
*/
if ((IsA(arg1, Const) &&
((Const *) arg1)->constisnull) ||
(IsA(arg2, Const) &&
((Const *) arg2)->constisnull) ||
(arg3 != NULL && IsA(arg3, Const) &&
((Const *) arg3)->constisnull))
{
req->rows = 0;
ret = (Node *) req;
}
else if (IsA(arg1, Const) &&
IsA(arg2, Const) &&
(arg3 == NULL || IsA(arg3, Const)))
{
double start,
finish,
step;
start = DatumGetInt32(((Const *) arg1)->constvalue);
finish = DatumGetInt32(((Const *) arg2)->constvalue);
step = arg3 ? DatumGetInt32(((Const *) arg3)->constvalue) : 1;
/* This equation works for either sign of step */
if (step != 0)
{
req->rows = floor((finish - start + step) / step);
ret = (Node *) req;
}
}
}
}
PG_RETURN_POINTER(ret);
}