1
0
mirror of https://github.com/postgres/postgres.git synced 2025-05-05 09:19:17 +03:00
postgres/src/backend/executor/execTuples.c
Andres Freund 1a0586de36 Introduce notion of different types of slots (without implementing them).
Upcoming work intends to allow pluggable ways to introduce new ways of
storing table data. Accessing those table access methods from the
executor requires TupleTableSlots to be carry tuples in the native
format of such storage methods; otherwise there'll be a significant
conversion overhead.

Different access methods will require different data to store tuples
efficiently (just like virtual, minimal, heap already require fields
in TupleTableSlot). To allow that without requiring additional pointer
indirections, we want to have different structs (embedding
TupleTableSlot) for different types of slots.  Thus different types of
slots are needed, which requires adapting creators of slots.

The slot that most efficiently can represent a type of tuple in an
executor node will often depend on the type of slot a child node
uses. Therefore we need to track the type of slot is returned by
nodes, so parent slots can create slots based on that.

Relatedly, JIT compilation of tuple deforming needs to know which type
of slot a certain expression refers to, so it can create an
appropriate deforming function for the type of tuple in the slot.

But not all nodes will only return one type of slot, e.g. an append
node will potentially return different types of slots for each of its
subplans.

Therefore add function that allows to query the type of a node's
result slot, and whether it'll always be the same type (whether it's
fixed). This can be queried using ExecGetResultSlotOps().

The scan, result, inner, outer type of slots are automatically
inferred from ExecInitScanTupleSlot(), ExecInitResultSlot(),
left/right subtrees respectively. If that's not correct for a node,
that can be overwritten using new fields in PlanState.

This commit does not introduce the actually abstracted implementation
of different kind of TupleTableSlots, that will be left for a followup
commit.  The different types of slots introduced will, for now, still
use the same backing implementation.

While this already partially invalidates the big comment in
tuptable.h, it seems to make more sense to update it later, when the
different TupleTableSlot implementations actually exist.

Author: Ashutosh Bapat and Andres Freund, with changes by Amit Khandekar
Discussion: https://postgr.es/m/20181105210039.hh4vvi4vwoq5ba2q@alap3.anarazel.de
2018-11-15 22:00:30 -08:00

1658 lines
45 KiB
C

/*-------------------------------------------------------------------------
*
* execTuples.c
* Routines dealing with TupleTableSlots. These are used for resource
* management associated with tuples (eg, releasing buffer pins for
* tuples in disk buffers, or freeing the memory occupied by transient
* tuples). Slots also provide access abstraction that lets us implement
* "virtual" tuples to reduce data-copying overhead.
*
* Routines dealing with the type information for tuples. Currently,
* the type information for a tuple is an array of FormData_pg_attribute.
* This information is needed by routines manipulating tuples
* (getattribute, formtuple, etc.).
*
*
* EXAMPLE OF HOW TABLE ROUTINES WORK
* Suppose we have a query such as SELECT emp.name FROM emp and we have
* a single SeqScan node in the query plan.
*
* At ExecutorStart()
* ----------------
* - ExecInitSeqScan() calls ExecInitScanTupleSlot() to construct a
* TupleTableSlots for the tuples returned by the access method, and
* ExecInitResultTypeTL() to define the node's return
* type. ExecAssignScanProjectionInfo() will, if necessary, create
* another TupleTableSlot for the tuples resulting from performing
* target list projections.
*
* During ExecutorRun()
* ----------------
* - SeqNext() calls ExecStoreBufferHeapTuple() to place the tuple
* returned by the access method into the scan tuple slot.
*
* - ExecSeqScan() (via ExecScan), if necessary, calls ExecProject(),
* putting the result of the projection in the result tuple slot. If
* not necessary, it directly returns the slot returned by SeqNext().
*
* - ExecutePlan() calls the output function.
*
* The important thing to watch in the executor code is how pointers
* to the slots containing tuples are passed instead of the tuples
* themselves. This facilitates the communication of related information
* (such as whether or not a tuple should be pfreed, what buffer contains
* this tuple, the tuple's tuple descriptor, etc). It also allows us
* to avoid physically constructing projection tuples in many cases.
*
*
* Portions Copyright (c) 1996-2018, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/backend/executor/execTuples.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/htup_details.h"
#include "access/tupdesc_details.h"
#include "access/tuptoaster.h"
#include "funcapi.h"
#include "catalog/pg_type.h"
#include "nodes/nodeFuncs.h"
#include "storage/bufmgr.h"
#include "utils/builtins.h"
#include "utils/lsyscache.h"
#include "utils/typcache.h"
static TupleDesc ExecTypeFromTLInternal(List *targetList,
bool hasoid, bool skipjunk);
const TupleTableSlotOps TTSOpsVirtual;
const TupleTableSlotOps TTSOpsHeapTuple;
const TupleTableSlotOps TTSOpsMinimalTuple;
const TupleTableSlotOps TTSOpsBufferTuple;
/* ----------------------------------------------------------------
* tuple table create/delete functions
* ----------------------------------------------------------------
*/
/* --------------------------------
* MakeTupleTableSlot
*
* Basic routine to make an empty TupleTableSlot. If tupleDesc is
* specified the slot's descriptor is fixed for it's lifetime, gaining
* some efficiency. If that's undesirable, pass NULL.
* --------------------------------
*/
TupleTableSlot *
MakeTupleTableSlot(TupleDesc tupleDesc,
const TupleTableSlotOps *tts_ops)
{
Size sz;
TupleTableSlot *slot;
/*
* When a fixed descriptor is specified, we can reduce overhead by
* allocating the entire slot in one go.
*/
if (tupleDesc)
sz = MAXALIGN(sizeof(TupleTableSlot)) +
MAXALIGN(tupleDesc->natts * sizeof(Datum)) +
MAXALIGN(tupleDesc->natts * sizeof(bool));
else
sz = sizeof(TupleTableSlot);
slot = palloc0(sz);
/* const for optimization purposes, OK to modify at allocation time */
*((const TupleTableSlotOps **) &slot->tts_ops) = tts_ops;
slot->type = T_TupleTableSlot;
slot->tts_flags |= TTS_FLAG_EMPTY;
if (tupleDesc != NULL)
slot->tts_flags |= TTS_FLAG_FIXED;
slot->tts_tuple = NULL;
slot->tts_tupleDescriptor = tupleDesc;
slot->tts_mcxt = CurrentMemoryContext;
slot->tts_buffer = InvalidBuffer;
slot->tts_nvalid = 0;
slot->tts_values = NULL;
slot->tts_isnull = NULL;
slot->tts_mintuple = NULL;
if (tupleDesc != NULL)
{
slot->tts_values = (Datum *)
(((char *) slot)
+ MAXALIGN(sizeof(TupleTableSlot)));
slot->tts_isnull = (bool *)
(((char *) slot)
+ MAXALIGN(sizeof(TupleTableSlot))
+ MAXALIGN(tupleDesc->natts * sizeof(Datum)));
PinTupleDesc(tupleDesc);
}
return slot;
}
/* --------------------------------
* ExecAllocTableSlot
*
* Create a tuple table slot within a tuple table (which is just a List).
* --------------------------------
*/
TupleTableSlot *
ExecAllocTableSlot(List **tupleTable, TupleDesc desc,
const TupleTableSlotOps *tts_ops)
{
TupleTableSlot *slot = MakeTupleTableSlot(desc, tts_ops);
*tupleTable = lappend(*tupleTable, slot);
return slot;
}
/* --------------------------------
* ExecResetTupleTable
*
* This releases any resources (buffer pins, tupdesc refcounts)
* held by the tuple table, and optionally releases the memory
* occupied by the tuple table data structure.
* It is expected that this routine be called by EndPlan().
* --------------------------------
*/
void
ExecResetTupleTable(List *tupleTable, /* tuple table */
bool shouldFree) /* true if we should free memory */
{
ListCell *lc;
foreach(lc, tupleTable)
{
TupleTableSlot *slot = lfirst_node(TupleTableSlot, lc);
/* Always release resources and reset the slot to empty */
ExecClearTuple(slot);
if (slot->tts_tupleDescriptor)
{
ReleaseTupleDesc(slot->tts_tupleDescriptor);
slot->tts_tupleDescriptor = NULL;
}
/* If shouldFree, release memory occupied by the slot itself */
if (shouldFree)
{
if (!TTS_FIXED(slot))
{
if (slot->tts_values)
pfree(slot->tts_values);
if (slot->tts_isnull)
pfree(slot->tts_isnull);
}
pfree(slot);
}
}
/* If shouldFree, release the list structure */
if (shouldFree)
list_free(tupleTable);
}
/* --------------------------------
* MakeSingleTupleTableSlot
*
* This is a convenience routine for operations that need a standalone
* TupleTableSlot not gotten from the main executor tuple table. It makes
* a single slot of given TupleTableSlotType and initializes it to use the
* given tuple descriptor.
* --------------------------------
*/
TupleTableSlot *
MakeSingleTupleTableSlot(TupleDesc tupdesc,
const TupleTableSlotOps *tts_ops)
{
TupleTableSlot *slot = MakeTupleTableSlot(tupdesc, tts_ops);
return slot;
}
/* --------------------------------
* ExecDropSingleTupleTableSlot
*
* Release a TupleTableSlot made with MakeSingleTupleTableSlot.
* DON'T use this on a slot that's part of a tuple table list!
* --------------------------------
*/
void
ExecDropSingleTupleTableSlot(TupleTableSlot *slot)
{
/* This should match ExecResetTupleTable's processing of one slot */
Assert(IsA(slot, TupleTableSlot));
ExecClearTuple(slot);
if (slot->tts_tupleDescriptor)
ReleaseTupleDesc(slot->tts_tupleDescriptor);
if (!TTS_FIXED(slot))
{
if (slot->tts_values)
pfree(slot->tts_values);
if (slot->tts_isnull)
pfree(slot->tts_isnull);
}
pfree(slot);
}
/* ----------------------------------------------------------------
* tuple table slot accessor functions
* ----------------------------------------------------------------
*/
/* --------------------------------
* ExecSetSlotDescriptor
*
* This function is used to set the tuple descriptor associated
* with the slot's tuple. The passed descriptor must have lifespan
* at least equal to the slot's. If it is a reference-counted descriptor
* then the reference count is incremented for as long as the slot holds
* a reference.
* --------------------------------
*/
void
ExecSetSlotDescriptor(TupleTableSlot *slot, /* slot to change */
TupleDesc tupdesc) /* new tuple descriptor */
{
Assert(!TTS_FIXED(slot));
/* For safety, make sure slot is empty before changing it */
ExecClearTuple(slot);
/*
* Release any old descriptor. Also release old Datum/isnull arrays if
* present (we don't bother to check if they could be re-used).
*/
if (slot->tts_tupleDescriptor)
ReleaseTupleDesc(slot->tts_tupleDescriptor);
if (slot->tts_values)
pfree(slot->tts_values);
if (slot->tts_isnull)
pfree(slot->tts_isnull);
/*
* Install the new descriptor; if it's refcounted, bump its refcount.
*/
slot->tts_tupleDescriptor = tupdesc;
PinTupleDesc(tupdesc);
/*
* Allocate Datum/isnull arrays of the appropriate size. These must have
* the same lifetime as the slot, so allocate in the slot's own context.
*/
slot->tts_values = (Datum *)
MemoryContextAlloc(slot->tts_mcxt, tupdesc->natts * sizeof(Datum));
slot->tts_isnull = (bool *)
MemoryContextAlloc(slot->tts_mcxt, tupdesc->natts * sizeof(bool));
}
/* --------------------------------
* ExecStoreHeapTuple
*
* This function is used to store an on-the-fly physical tuple into a specified
* slot in the tuple table.
*
* tuple: tuple to store
* slot: slot to store it in
* shouldFree: true if ExecClearTuple should pfree() the tuple
* when done with it
*
* shouldFree is normally set 'true' for tuples constructed on-the-fly. But it
* can be 'false' when the referenced tuple is held in a tuple table slot
* belonging to a lower-level executor Proc node. In this case the lower-level
* slot retains ownership and responsibility for eventually releasing the
* tuple. When this method is used, we must be certain that the upper-level
* Proc node will lose interest in the tuple sooner than the lower-level one
* does! If you're not certain, copy the lower-level tuple with heap_copytuple
* and let the upper-level table slot assume ownership of the copy!
*
* Return value is just the passed-in slot pointer.
* --------------------------------
*/
TupleTableSlot *
ExecStoreHeapTuple(HeapTuple tuple,
TupleTableSlot *slot,
bool shouldFree)
{
/*
* sanity checks
*/
Assert(tuple != NULL);
Assert(slot != NULL);
Assert(slot->tts_tupleDescriptor != NULL);
/*
* Free any old physical tuple belonging to the slot.
*/
if (TTS_SHOULDFREE(slot))
{
heap_freetuple(slot->tts_tuple);
slot->tts_flags &= ~TTS_FLAG_SHOULDFREE;
}
if (TTS_SHOULDFREEMIN(slot))
{
heap_free_minimal_tuple(slot->tts_mintuple);
slot->tts_flags &= ~TTS_FLAG_SHOULDFREEMIN;
}
/*
* Store the new tuple into the specified slot.
*/
slot->tts_flags &= ~TTS_FLAG_EMPTY;
if (shouldFree)
slot->tts_flags |= TTS_FLAG_SHOULDFREE;
slot->tts_tuple = tuple;
slot->tts_mintuple = NULL;
/* Mark extracted state invalid */
slot->tts_nvalid = 0;
/* Unpin any buffer pinned by the slot. */
if (BufferIsValid(slot->tts_buffer))
ReleaseBuffer(slot->tts_buffer);
slot->tts_buffer = InvalidBuffer;
return slot;
}
/* --------------------------------
* ExecStoreBufferHeapTuple
*
* This function is used to store an on-disk physical tuple from a buffer
* into a specified slot in the tuple table.
*
* tuple: tuple to store
* slot: slot to store it in
* buffer: disk buffer if tuple is in a disk page, else InvalidBuffer
*
* The tuple table code acquires a pin on the buffer which is held until the
* slot is cleared, so that the tuple won't go away on us.
*
* Return value is just the passed-in slot pointer.
* --------------------------------
*/
TupleTableSlot *
ExecStoreBufferHeapTuple(HeapTuple tuple,
TupleTableSlot *slot,
Buffer buffer)
{
/*
* sanity checks
*/
Assert(tuple != NULL);
Assert(slot != NULL);
Assert(slot->tts_tupleDescriptor != NULL);
Assert(BufferIsValid(buffer));
/*
* Free any old physical tuple belonging to the slot.
*/
if (TTS_SHOULDFREE(slot))
{
heap_freetuple(slot->tts_tuple);
slot->tts_flags &= ~TTS_FLAG_SHOULDFREE;
}
if (TTS_SHOULDFREEMIN(slot))
{
heap_free_minimal_tuple(slot->tts_mintuple);
slot->tts_flags &= ~TTS_FLAG_SHOULDFREEMIN;
}
/*
* Store the new tuple into the specified slot.
*/
slot->tts_flags &= ~TTS_FLAG_EMPTY;
slot->tts_tuple = tuple;
slot->tts_mintuple = NULL;
/* Mark extracted state invalid */
slot->tts_nvalid = 0;
/*
* Keep the disk page containing the given tuple pinned as long as we hold
* a pointer into it. We assume the caller already has such a pin.
*
* This is coded to optimize the case where the slot previously held a
* tuple on the same disk page: in that case releasing and re-acquiring the
* pin is a waste of cycles. This is a common situation during seqscans,
* so it's worth troubling over.
*/
if (slot->tts_buffer != buffer)
{
if (BufferIsValid(slot->tts_buffer))
ReleaseBuffer(slot->tts_buffer);
slot->tts_buffer = buffer;
IncrBufferRefCount(buffer);
}
return slot;
}
/* --------------------------------
* ExecStoreMinimalTuple
*
* Like ExecStoreHeapTuple, but insert a "minimal" tuple into the slot.
*
* No 'buffer' parameter since minimal tuples are never stored in relations.
* --------------------------------
*/
TupleTableSlot *
ExecStoreMinimalTuple(MinimalTuple mtup,
TupleTableSlot *slot,
bool shouldFree)
{
/*
* sanity checks
*/
Assert(mtup != NULL);
Assert(slot != NULL);
Assert(slot->tts_tupleDescriptor != NULL);
/*
* Free any old physical tuple belonging to the slot.
*/
if (TTS_SHOULDFREE(slot))
{
heap_freetuple(slot->tts_tuple);
slot->tts_flags &= ~TTS_FLAG_SHOULDFREE;
}
if (TTS_SHOULDFREEMIN(slot))
{
heap_free_minimal_tuple(slot->tts_mintuple);
slot->tts_flags &= ~TTS_FLAG_SHOULDFREEMIN;
}
/*
* Drop the pin on the referenced buffer, if there is one.
*/
if (BufferIsValid(slot->tts_buffer))
ReleaseBuffer(slot->tts_buffer);
slot->tts_buffer = InvalidBuffer;
/*
* Store the new tuple into the specified slot.
*/
slot->tts_flags &= ~TTS_FLAG_EMPTY;
if (shouldFree)
slot->tts_flags |= TTS_FLAG_SHOULDFREEMIN;
slot->tts_tuple = &slot->tts_minhdr;
slot->tts_mintuple = mtup;
slot->tts_minhdr.t_len = mtup->t_len + MINIMAL_TUPLE_OFFSET;
slot->tts_minhdr.t_data = (HeapTupleHeader) ((char *) mtup - MINIMAL_TUPLE_OFFSET);
/* no need to set t_self or t_tableOid since we won't allow access */
/* Mark extracted state invalid */
slot->tts_nvalid = 0;
return slot;
}
/* --------------------------------
* ExecClearTuple
*
* This function is used to clear out a slot in the tuple table.
*
* NB: only the tuple is cleared, not the tuple descriptor (if any).
* --------------------------------
*/
TupleTableSlot * /* return: slot passed */
ExecClearTuple(TupleTableSlot *slot) /* slot in which to store tuple */
{
/*
* sanity checks
*/
Assert(slot != NULL);
/*
* Free the old physical tuple if necessary.
*/
if (TTS_SHOULDFREE(slot))
{
heap_freetuple(slot->tts_tuple);
slot->tts_flags &= ~TTS_FLAG_SHOULDFREE;
}
if (TTS_SHOULDFREEMIN(slot))
{
heap_free_minimal_tuple(slot->tts_mintuple);
slot->tts_flags &= ~TTS_FLAG_SHOULDFREEMIN;
}
slot->tts_tuple = NULL;
slot->tts_mintuple = NULL;
/*
* Drop the pin on the referenced buffer, if there is one.
*/
if (BufferIsValid(slot->tts_buffer))
ReleaseBuffer(slot->tts_buffer);
slot->tts_buffer = InvalidBuffer;
/*
* Mark it empty.
*/
slot->tts_flags |= TTS_FLAG_EMPTY;
slot->tts_nvalid = 0;
return slot;
}
/* --------------------------------
* ExecStoreVirtualTuple
* Mark a slot as containing a virtual tuple.
*
* The protocol for loading a slot with virtual tuple data is:
* * Call ExecClearTuple to mark the slot empty.
* * Store data into the Datum/isnull arrays.
* * Call ExecStoreVirtualTuple to mark the slot valid.
* This is a bit unclean but it avoids one round of data copying.
* --------------------------------
*/
TupleTableSlot *
ExecStoreVirtualTuple(TupleTableSlot *slot)
{
/*
* sanity checks
*/
Assert(slot != NULL);
Assert(slot->tts_tupleDescriptor != NULL);
Assert(TTS_EMPTY(slot));
slot->tts_flags &= ~TTS_FLAG_EMPTY;
slot->tts_nvalid = slot->tts_tupleDescriptor->natts;
return slot;
}
/* --------------------------------
* ExecStoreAllNullTuple
* Set up the slot to contain a null in every column.
*
* At first glance this might sound just like ExecClearTuple, but it's
* entirely different: the slot ends up full, not empty.
* --------------------------------
*/
TupleTableSlot *
ExecStoreAllNullTuple(TupleTableSlot *slot)
{
/*
* sanity checks
*/
Assert(slot != NULL);
Assert(slot->tts_tupleDescriptor != NULL);
/* Clear any old contents */
ExecClearTuple(slot);
/*
* Fill all the columns of the virtual tuple with nulls
*/
MemSet(slot->tts_values, 0,
slot->tts_tupleDescriptor->natts * sizeof(Datum));
memset(slot->tts_isnull, true,
slot->tts_tupleDescriptor->natts * sizeof(bool));
return ExecStoreVirtualTuple(slot);
}
/* --------------------------------
* ExecCopySlotTuple
* Obtain a copy of a slot's regular physical tuple. The copy is
* palloc'd in the current memory context.
* The slot itself is undisturbed.
*
* This works even if the slot contains a virtual or minimal tuple;
* however the "system columns" of the result will not be meaningful.
* --------------------------------
*/
HeapTuple
ExecCopySlotTuple(TupleTableSlot *slot)
{
/*
* sanity checks
*/
Assert(slot != NULL);
Assert(!TTS_EMPTY(slot));
/*
* If we have a physical tuple (either format) then just copy it.
*/
if (TTS_HAS_PHYSICAL_TUPLE(slot))
return heap_copytuple(slot->tts_tuple);
if (slot->tts_mintuple)
return heap_tuple_from_minimal_tuple(slot->tts_mintuple);
/*
* Otherwise we need to build a tuple from the Datum array.
*/
return heap_form_tuple(slot->tts_tupleDescriptor,
slot->tts_values,
slot->tts_isnull);
}
/* --------------------------------
* ExecCopySlotMinimalTuple
* Obtain a copy of a slot's minimal physical tuple. The copy is
* palloc'd in the current memory context.
* The slot itself is undisturbed.
* --------------------------------
*/
MinimalTuple
ExecCopySlotMinimalTuple(TupleTableSlot *slot)
{
/*
* sanity checks
*/
Assert(slot != NULL);
Assert(!TTS_EMPTY(slot));
/*
* If we have a physical tuple then just copy it. Prefer to copy
* tts_mintuple since that's a tad cheaper.
*/
if (slot->tts_mintuple)
return heap_copy_minimal_tuple(slot->tts_mintuple);
if (slot->tts_tuple)
{
if (HeapTupleHeaderGetNatts(slot->tts_tuple->t_data)
< slot->tts_tupleDescriptor->natts)
return minimal_expand_tuple(slot->tts_tuple,
slot->tts_tupleDescriptor);
else
return minimal_tuple_from_heap_tuple(slot->tts_tuple);
}
/*
* Otherwise we need to build a tuple from the Datum array.
*/
return heap_form_minimal_tuple(slot->tts_tupleDescriptor,
slot->tts_values,
slot->tts_isnull);
}
/*
* ExecFetchSlotHeapTuple - fetch HeapTuple representing the slot's content
*
* The returned HeapTuple represents the slot's content as closely as
* possible.
*
* If materialize is true, the contents of the slots will be made independent
* from the underlying storage (i.e. all buffer pins are release, memory is
* allocated in the slot's context).
*
* If shouldFree is not-NULL it'll be set to true if the returned tuple has
* been allocated in the calling memory context, and must be freed by the
* caller (via explicit pfree() or a memory context reset).
*
* NB: If materialize is true, modifications of the returned tuple are
* allowed. But it depends on the type of the slot whether such modifications
* will also affect the slot's contents. While that is not the nicest
* behaviour, all such modifcations are in the process of being removed.
*/
HeapTuple
ExecFetchSlotHeapTuple(TupleTableSlot *slot, bool materialize, bool *shouldFree)
{
/*
* sanity checks
*/
Assert(slot != NULL);
Assert(!TTS_EMPTY(slot));
/* will be used in the near future */
if (shouldFree)
*shouldFree = false;
/*
* If we have a regular physical tuple then just return it.
*/
if (TTS_HAS_PHYSICAL_TUPLE(slot))
{
if (HeapTupleHeaderGetNatts(slot->tts_tuple->t_data) <
slot->tts_tupleDescriptor->natts)
{
HeapTuple tuple;
MemoryContext oldContext = MemoryContextSwitchTo(slot->tts_mcxt);
tuple = heap_expand_tuple(slot->tts_tuple,
slot->tts_tupleDescriptor);
MemoryContextSwitchTo(oldContext);
slot = ExecStoreHeapTuple(tuple, slot, true);
}
return slot->tts_tuple;
}
/*
* Otherwise materialize the slot...
*/
ExecMaterializeSlot(slot);
return slot->tts_tuple;
}
/* --------------------------------
* ExecFetchSlotMinimalTuple
* Fetch the slot's minimal physical tuple.
*
* If the slot contains a virtual tuple, we convert it to minimal
* physical form. The slot retains ownership of the minimal tuple.
* If it contains a regular tuple we convert to minimal form and store
* that in addition to the regular tuple (not instead of, because
* callers may hold pointers to Datums within the regular tuple).
*
* As above, the result must be treated as read-only.
* --------------------------------
*/
MinimalTuple
ExecFetchSlotMinimalTuple(TupleTableSlot *slot, bool *shouldFree)
{
MemoryContext oldContext;
/*
* sanity checks
*/
Assert(slot != NULL);
Assert(!TTS_EMPTY(slot));
/* will be used in the near future */
if (shouldFree)
*shouldFree = false;
/*
* If we have a minimal physical tuple (local or not) then just return it.
*/
if (slot->tts_mintuple)
return slot->tts_mintuple;
/*
* Otherwise, copy or build a minimal tuple, and store it into the slot.
*
* We may be called in a context that is shorter-lived than the tuple
* slot, but we have to ensure that the materialized tuple will survive
* anyway.
*/
oldContext = MemoryContextSwitchTo(slot->tts_mcxt);
slot->tts_mintuple = ExecCopySlotMinimalTuple(slot);
slot->tts_flags |= TTS_FLAG_SHOULDFREEMIN;
MemoryContextSwitchTo(oldContext);
/*
* Note: we may now have a situation where we have a local minimal tuple
* attached to a virtual or non-local physical tuple. There seems no harm
* in that at the moment, but if any materializes, we should change this
* function to force the slot into minimal-tuple-only state.
*/
return slot->tts_mintuple;
}
/* --------------------------------
* ExecFetchSlotHeapTupleDatum
* Fetch the slot's tuple as a composite-type Datum.
*
* The result is always freshly palloc'd in the caller's memory context.
* --------------------------------
*/
Datum
ExecFetchSlotHeapTupleDatum(TupleTableSlot *slot)
{
HeapTuple tup;
TupleDesc tupdesc;
bool shouldFree;
Datum ret;
/* Fetch slot's contents in regular-physical-tuple form */
tup = ExecFetchSlotHeapTuple(slot, false, &shouldFree);
tupdesc = slot->tts_tupleDescriptor;
/* Convert to Datum form */
ret = heap_copy_tuple_as_datum(tup, tupdesc);
if (shouldFree)
pfree(tup);
return ret;
}
/* ExecMaterializeSlot - force a slot into the "materialized" state.
*
* This causes the slot's tuple to be a local copy not dependent on any
* external storage (i.e. pointing into a Buffer, or having allocations in
* another memory context).
*
* A typical use for this operation is to prepare a computed tuple for being
* stored on disk. The original data may or may not be virtual, but in any
* case we need a private copy for heap_insert to scribble on.
*/
void
ExecMaterializeSlot(TupleTableSlot *slot)
{
MemoryContext oldContext;
/*
* sanity checks
*/
Assert(slot != NULL);
Assert(!TTS_EMPTY(slot));
/*
* If we have a regular physical tuple, and it's locally palloc'd, we have
* nothing to do.
*/
if (slot->tts_tuple && TTS_SHOULDFREE(slot))
return;
/*
* Otherwise, copy or build a physical tuple, and store it into the slot.
*
* We may be called in a context that is shorter-lived than the tuple
* slot, but we have to ensure that the materialized tuple will survive
* anyway.
*/
oldContext = MemoryContextSwitchTo(slot->tts_mcxt);
slot->tts_tuple = ExecCopySlotTuple(slot);
slot->tts_flags |= TTS_FLAG_SHOULDFREE;
MemoryContextSwitchTo(oldContext);
/*
* Drop the pin on the referenced buffer, if there is one.
*/
if (BufferIsValid(slot->tts_buffer))
ReleaseBuffer(slot->tts_buffer);
slot->tts_buffer = InvalidBuffer;
/*
* Mark extracted state invalid. This is important because the slot is
* not supposed to depend any more on the previous external data; we
* mustn't leave any dangling pass-by-reference datums in tts_values.
* However, we have not actually invalidated any such datums, if there
* happen to be any previously fetched from the slot. (Note in particular
* that we have not pfree'd tts_mintuple, if there is one.)
*/
slot->tts_nvalid = 0;
/*
* On the same principle of not depending on previous remote storage,
* forget the mintuple if it's not local storage. (If it is local
* storage, we must not pfree it now, since callers might have already
* fetched datum pointers referencing it.)
*/
if (!TTS_SHOULDFREEMIN(slot))
slot->tts_mintuple = NULL;
}
/* --------------------------------
* ExecCopySlot
* Copy the source slot's contents into the destination slot.
*
* The destination acquires a private copy that will not go away
* if the source is cleared.
*
* The caller must ensure the slots have compatible tupdescs.
* --------------------------------
*/
TupleTableSlot *
ExecCopySlot(TupleTableSlot *dstslot, TupleTableSlot *srcslot)
{
HeapTuple newTuple;
MemoryContext oldContext;
/*
* There might be ways to optimize this when the source is virtual, but
* for now just always build a physical copy. Make sure it is in the
* right context.
*/
oldContext = MemoryContextSwitchTo(dstslot->tts_mcxt);
newTuple = ExecCopySlotTuple(srcslot);
MemoryContextSwitchTo(oldContext);
return ExecStoreHeapTuple(newTuple, dstslot, true);
}
/* ----------------------------------------------------------------
* convenience initialization routines
* ----------------------------------------------------------------
*/
/* ----------------
* ExecInitResultTypeTL
*
* Initialize result type, using the plan node's targetlist.
* ----------------
*/
void
ExecInitResultTypeTL(PlanState *planstate)
{
bool hasoid;
TupleDesc tupDesc;
if (ExecContextForcesOids(planstate, &hasoid))
{
/* context forces OID choice; hasoid is now set correctly */
}
else
{
/* given free choice, don't leave space for OIDs in result tuples */
hasoid = false;
}
tupDesc = ExecTypeFromTL(planstate->plan->targetlist, hasoid);
planstate->ps_ResultTupleDesc = tupDesc;
}
/* --------------------------------
* ExecInit{Result,Scan,Extra}TupleSlot[TL]
*
* These are convenience routines to initialize the specified slot
* in nodes inheriting the appropriate state. ExecInitExtraTupleSlot
* is used for initializing special-purpose slots.
* --------------------------------
*/
/* ----------------
* ExecInitResultTupleSlotTL
*
* Initialize result tuple slot, using the tuple descriptor previously
* computed with ExecInitResultTypeTL().
* ----------------
*/
void
ExecInitResultSlot(PlanState *planstate, const TupleTableSlotOps *tts_ops)
{
TupleTableSlot *slot;
slot = ExecAllocTableSlot(&planstate->state->es_tupleTable,
planstate->ps_ResultTupleDesc, tts_ops);
planstate->ps_ResultTupleSlot = slot;
planstate->resultopsfixed = planstate->ps_ResultTupleDesc != NULL;
planstate->resultops = tts_ops;
planstate->resultopsset = true;
}
/* ----------------
* ExecInitResultTupleSlotTL
*
* Initialize result tuple slot, using the plan node's targetlist.
* ----------------
*/
void
ExecInitResultTupleSlotTL(PlanState *planstate,
const TupleTableSlotOps *tts_ops)
{
ExecInitResultTypeTL(planstate);
ExecInitResultSlot(planstate, tts_ops);
}
/* ----------------
* ExecInitScanTupleSlot
* ----------------
*/
void
ExecInitScanTupleSlot(EState *estate, ScanState *scanstate,
TupleDesc tupledesc, const TupleTableSlotOps *tts_ops)
{
scanstate->ss_ScanTupleSlot = ExecAllocTableSlot(&estate->es_tupleTable,
tupledesc, tts_ops);
scanstate->ps.scandesc = tupledesc;
scanstate->ps.scanopsfixed = tupledesc != NULL;
scanstate->ps.scanops = tts_ops;
scanstate->ps.scanopsset = true;
}
/* ----------------
* ExecInitExtraTupleSlot
*
* Return a newly created slot. If tupledesc is non-NULL the slot will have
* that as its fixed tupledesc. Otherwise the caller needs to use
* ExecSetSlotDescriptor() to set the descriptor before use.
* ----------------
*/
TupleTableSlot *
ExecInitExtraTupleSlot(EState *estate,
TupleDesc tupledesc,
const TupleTableSlotOps *tts_ops)
{
return ExecAllocTableSlot(&estate->es_tupleTable, tupledesc, tts_ops);
}
/* ----------------
* ExecInitNullTupleSlot
*
* Build a slot containing an all-nulls tuple of the given type.
* This is used as a substitute for an input tuple when performing an
* outer join.
* ----------------
*/
TupleTableSlot *
ExecInitNullTupleSlot(EState *estate, TupleDesc tupType,
const TupleTableSlotOps *tts_ops)
{
TupleTableSlot *slot = ExecInitExtraTupleSlot(estate, tupType, tts_ops);
return ExecStoreAllNullTuple(slot);
}
/* ---------------------------------------------------------------
* Routines for setting/accessing attributes in a slot.
* ---------------------------------------------------------------
*/
/*
* Fill in missing values for a TupleTableSlot.
*
* This is only exposed because it's needed for JIT compiled tuple
* deforming. That exception aside, there should be no callers outside of this
* file.
*/
void
slot_getmissingattrs(TupleTableSlot *slot, int startAttNum, int lastAttNum)
{
AttrMissing *attrmiss = NULL;
int missattnum;
if (slot->tts_tupleDescriptor->constr)
attrmiss = slot->tts_tupleDescriptor->constr->missing;
if (!attrmiss)
{
/* no missing values array at all, so just fill everything in as NULL */
memset(slot->tts_values + startAttNum, 0,
(lastAttNum - startAttNum) * sizeof(Datum));
memset(slot->tts_isnull + startAttNum, 1,
(lastAttNum - startAttNum) * sizeof(bool));
}
else
{
/* if there is a missing values array we must process them one by one */
for (missattnum = startAttNum;
missattnum < lastAttNum;
missattnum++)
{
slot->tts_values[missattnum] = attrmiss[missattnum].am_value;
slot->tts_isnull[missattnum] = !attrmiss[missattnum].am_present;
}
}
}
/*
* slot_getattr
* This function fetches an attribute of the slot's current tuple.
* It is functionally equivalent to heap_getattr, but fetches of
* multiple attributes of the same tuple will be optimized better,
* because we avoid O(N^2) behavior from multiple calls of
* nocachegetattr(), even when attcacheoff isn't usable.
*
* A difference from raw heap_getattr is that attnums beyond the
* slot's tupdesc's last attribute will be considered NULL even
* when the physical tuple is longer than the tupdesc.
*/
Datum
slot_getattr(TupleTableSlot *slot, int attnum, bool *isnull)
{
HeapTuple tuple = slot->tts_tuple;
TupleDesc tupleDesc = slot->tts_tupleDescriptor;
HeapTupleHeader tup;
/*
* system attributes are handled by heap_getsysattr
*/
if (attnum <= 0)
{
if (tuple == NULL) /* internal error */
elog(ERROR, "cannot extract system attribute from virtual tuple");
if (tuple == &(slot->tts_minhdr)) /* internal error */
elog(ERROR, "cannot extract system attribute from minimal tuple");
return heap_getsysattr(tuple, attnum, tupleDesc, isnull);
}
/*
* fast path if desired attribute already cached
*/
if (attnum <= slot->tts_nvalid)
{
*isnull = slot->tts_isnull[attnum - 1];
return slot->tts_values[attnum - 1];
}
/*
* return NULL if attnum is out of range according to the tupdesc
*/
if (attnum > tupleDesc->natts)
{
*isnull = true;
return (Datum) 0;
}
/*
* otherwise we had better have a physical tuple (tts_nvalid should equal
* natts in all virtual-tuple cases)
*/
if (tuple == NULL) /* internal error */
elog(ERROR, "cannot extract attribute from empty tuple slot");
/*
* return NULL or missing value if attnum is out of range according to the
* tuple
*
* (We have to check this separately because of various inheritance and
* table-alteration scenarios: the tuple could be either longer or shorter
* than the tupdesc.)
*/
tup = tuple->t_data;
if (attnum > HeapTupleHeaderGetNatts(tup))
return getmissingattr(slot->tts_tupleDescriptor, attnum, isnull);
/*
* check if target attribute is null: no point in groveling through tuple
*/
if (HeapTupleHasNulls(tuple) && att_isnull(attnum - 1, tup->t_bits))
{
*isnull = true;
return (Datum) 0;
}
/*
* Extract the attribute, along with any preceding attributes.
*/
slot_deform_tuple(slot, attnum);
/*
* The result is acquired from tts_values array.
*/
*isnull = slot->tts_isnull[attnum - 1];
return slot->tts_values[attnum - 1];
}
/*
* slot_getsomeattrs
* This function forces the entries of the slot's Datum/isnull
* arrays to be valid at least up through the attnum'th entry.
*/
void
slot_getsomeattrs(TupleTableSlot *slot, int attnum)
{
HeapTuple tuple;
int attno;
/* Quick out if we have 'em all already */
if (slot->tts_nvalid >= attnum)
return;
/* Check for caller error */
if (attnum <= 0 || attnum > slot->tts_tupleDescriptor->natts)
elog(ERROR, "invalid attribute number %d", attnum);
/*
* otherwise we had better have a physical tuple (tts_nvalid should equal
* natts in all virtual-tuple cases)
*/
tuple = slot->tts_tuple;
if (tuple == NULL) /* internal error */
elog(ERROR, "cannot extract attribute from empty tuple slot");
/*
* load up any slots available from physical tuple
*/
attno = HeapTupleHeaderGetNatts(tuple->t_data);
attno = Min(attno, attnum);
slot_deform_tuple(slot, attno);
attno = slot->tts_nvalid;
/*
* If tuple doesn't have all the atts indicated by attnum, read the rest
* as NULLs or missing values
*/
if (attno < attnum)
slot_getmissingattrs(slot, attno, attnum);
slot->tts_nvalid = attnum;
}
/* ----------------------------------------------------------------
* ExecTypeFromTL
*
* Generate a tuple descriptor for the result tuple of a targetlist.
* (A parse/plan tlist must be passed, not an ExprState tlist.)
* Note that resjunk columns, if any, are included in the result.
*
* Currently there are about 4 different places where we create
* TupleDescriptors. They should all be merged, or perhaps
* be rewritten to call BuildDesc().
* ----------------------------------------------------------------
*/
TupleDesc
ExecTypeFromTL(List *targetList, bool hasoid)
{
return ExecTypeFromTLInternal(targetList, hasoid, false);
}
/* ----------------------------------------------------------------
* ExecCleanTypeFromTL
*
* Same as above, but resjunk columns are omitted from the result.
* ----------------------------------------------------------------
*/
TupleDesc
ExecCleanTypeFromTL(List *targetList, bool hasoid)
{
return ExecTypeFromTLInternal(targetList, hasoid, true);
}
static TupleDesc
ExecTypeFromTLInternal(List *targetList, bool hasoid, bool skipjunk)
{
TupleDesc typeInfo;
ListCell *l;
int len;
int cur_resno = 1;
if (skipjunk)
len = ExecCleanTargetListLength(targetList);
else
len = ExecTargetListLength(targetList);
typeInfo = CreateTemplateTupleDesc(len, hasoid);
foreach(l, targetList)
{
TargetEntry *tle = lfirst(l);
if (skipjunk && tle->resjunk)
continue;
TupleDescInitEntry(typeInfo,
cur_resno,
tle->resname,
exprType((Node *) tle->expr),
exprTypmod((Node *) tle->expr),
0);
TupleDescInitEntryCollation(typeInfo,
cur_resno,
exprCollation((Node *) tle->expr));
cur_resno++;
}
return typeInfo;
}
/*
* ExecTypeFromExprList - build a tuple descriptor from a list of Exprs
*
* This is roughly like ExecTypeFromTL, but we work from bare expressions
* not TargetEntrys. No names are attached to the tupledesc's columns.
*/
TupleDesc
ExecTypeFromExprList(List *exprList)
{
TupleDesc typeInfo;
ListCell *lc;
int cur_resno = 1;
typeInfo = CreateTemplateTupleDesc(list_length(exprList), false);
foreach(lc, exprList)
{
Node *e = lfirst(lc);
TupleDescInitEntry(typeInfo,
cur_resno,
NULL,
exprType(e),
exprTypmod(e),
0);
TupleDescInitEntryCollation(typeInfo,
cur_resno,
exprCollation(e));
cur_resno++;
}
return typeInfo;
}
/*
* ExecTypeSetColNames - set column names in a TupleDesc
*
* Column names must be provided as an alias list (list of String nodes).
*
* For some callers, the supplied tupdesc has a named rowtype (not RECORD)
* and it is moderately likely that the alias list matches the column names
* already present in the tupdesc. If we do change any column names then
* we must reset the tupdesc's type to anonymous RECORD; but we avoid doing
* so if no names change.
*/
void
ExecTypeSetColNames(TupleDesc typeInfo, List *namesList)
{
bool modified = false;
int colno = 0;
ListCell *lc;
foreach(lc, namesList)
{
char *cname = strVal(lfirst(lc));
Form_pg_attribute attr;
/* Guard against too-long names list */
if (colno >= typeInfo->natts)
break;
attr = TupleDescAttr(typeInfo, colno);
colno++;
/* Ignore empty aliases (these must be for dropped columns) */
if (cname[0] == '\0')
continue;
/* Change tupdesc only if alias is actually different */
if (strcmp(cname, NameStr(attr->attname)) != 0)
{
namestrcpy(&(attr->attname), cname);
modified = true;
}
}
/* If we modified the tupdesc, it's now a new record type */
if (modified)
{
typeInfo->tdtypeid = RECORDOID;
typeInfo->tdtypmod = -1;
}
}
/*
* BlessTupleDesc - make a completed tuple descriptor useful for SRFs
*
* Rowtype Datums returned by a function must contain valid type information.
* This happens "for free" if the tupdesc came from a relcache entry, but
* not if we have manufactured a tupdesc for a transient RECORD datatype.
* In that case we have to notify typcache.c of the existence of the type.
*/
TupleDesc
BlessTupleDesc(TupleDesc tupdesc)
{
if (tupdesc->tdtypeid == RECORDOID &&
tupdesc->tdtypmod < 0)
assign_record_type_typmod(tupdesc);
return tupdesc; /* just for notational convenience */
}
/*
* TupleDescGetAttInMetadata - Build an AttInMetadata structure based on the
* supplied TupleDesc. AttInMetadata can be used in conjunction with C strings
* to produce a properly formed tuple.
*/
AttInMetadata *
TupleDescGetAttInMetadata(TupleDesc tupdesc)
{
int natts = tupdesc->natts;
int i;
Oid atttypeid;
Oid attinfuncid;
FmgrInfo *attinfuncinfo;
Oid *attioparams;
int32 *atttypmods;
AttInMetadata *attinmeta;
attinmeta = (AttInMetadata *) palloc(sizeof(AttInMetadata));
/* "Bless" the tupledesc so that we can make rowtype datums with it */
attinmeta->tupdesc = BlessTupleDesc(tupdesc);
/*
* Gather info needed later to call the "in" function for each attribute
*/
attinfuncinfo = (FmgrInfo *) palloc0(natts * sizeof(FmgrInfo));
attioparams = (Oid *) palloc0(natts * sizeof(Oid));
atttypmods = (int32 *) palloc0(natts * sizeof(int32));
for (i = 0; i < natts; i++)
{
Form_pg_attribute att = TupleDescAttr(tupdesc, i);
/* Ignore dropped attributes */
if (!att->attisdropped)
{
atttypeid = att->atttypid;
getTypeInputInfo(atttypeid, &attinfuncid, &attioparams[i]);
fmgr_info(attinfuncid, &attinfuncinfo[i]);
atttypmods[i] = att->atttypmod;
}
}
attinmeta->attinfuncs = attinfuncinfo;
attinmeta->attioparams = attioparams;
attinmeta->atttypmods = atttypmods;
return attinmeta;
}
/*
* BuildTupleFromCStrings - build a HeapTuple given user data in C string form.
* values is an array of C strings, one for each attribute of the return tuple.
* A NULL string pointer indicates we want to create a NULL field.
*/
HeapTuple
BuildTupleFromCStrings(AttInMetadata *attinmeta, char **values)
{
TupleDesc tupdesc = attinmeta->tupdesc;
int natts = tupdesc->natts;
Datum *dvalues;
bool *nulls;
int i;
HeapTuple tuple;
dvalues = (Datum *) palloc(natts * sizeof(Datum));
nulls = (bool *) palloc(natts * sizeof(bool));
/*
* Call the "in" function for each non-dropped attribute, even for nulls,
* to support domains.
*/
for (i = 0; i < natts; i++)
{
if (!TupleDescAttr(tupdesc, i)->attisdropped)
{
/* Non-dropped attributes */
dvalues[i] = InputFunctionCall(&attinmeta->attinfuncs[i],
values[i],
attinmeta->attioparams[i],
attinmeta->atttypmods[i]);
if (values[i] != NULL)
nulls[i] = false;
else
nulls[i] = true;
}
else
{
/* Handle dropped attributes by setting to NULL */
dvalues[i] = (Datum) 0;
nulls[i] = true;
}
}
/*
* Form a tuple
*/
tuple = heap_form_tuple(tupdesc, dvalues, nulls);
/*
* Release locally palloc'd space. XXX would probably be good to pfree
* values of pass-by-reference datums, as well.
*/
pfree(dvalues);
pfree(nulls);
return tuple;
}
/*
* HeapTupleHeaderGetDatum - convert a HeapTupleHeader pointer to a Datum.
*
* This must *not* get applied to an on-disk tuple; the tuple should be
* freshly made by heap_form_tuple or some wrapper routine for it (such as
* BuildTupleFromCStrings). Be sure also that the tupledesc used to build
* the tuple has a properly "blessed" rowtype.
*
* Formerly this was a macro equivalent to PointerGetDatum, relying on the
* fact that heap_form_tuple fills in the appropriate tuple header fields
* for a composite Datum. However, we now require that composite Datums not
* contain any external TOAST pointers. We do not want heap_form_tuple itself
* to enforce that; more specifically, the rule applies only to actual Datums
* and not to HeapTuple structures. Therefore, HeapTupleHeaderGetDatum is
* now a function that detects whether there are externally-toasted fields
* and constructs a new tuple with inlined fields if so. We still need
* heap_form_tuple to insert the Datum header fields, because otherwise this
* code would have no way to obtain a tupledesc for the tuple.
*
* Note that if we do build a new tuple, it's palloc'd in the current
* memory context. Beware of code that changes context between the initial
* heap_form_tuple/etc call and calling HeapTuple(Header)GetDatum.
*
* For performance-critical callers, it could be worthwhile to take extra
* steps to ensure that there aren't TOAST pointers in the output of
* heap_form_tuple to begin with. It's likely however that the costs of the
* typcache lookup and tuple disassembly/reassembly are swamped by TOAST
* dereference costs, so that the benefits of such extra effort would be
* minimal.
*
* XXX it would likely be better to create wrapper functions that produce
* a composite Datum from the field values in one step. However, there's
* enough code using the existing APIs that we couldn't get rid of this
* hack anytime soon.
*/
Datum
HeapTupleHeaderGetDatum(HeapTupleHeader tuple)
{
Datum result;
TupleDesc tupDesc;
/* No work if there are no external TOAST pointers in the tuple */
if (!HeapTupleHeaderHasExternal(tuple))
return PointerGetDatum(tuple);
/* Use the type data saved by heap_form_tuple to look up the rowtype */
tupDesc = lookup_rowtype_tupdesc(HeapTupleHeaderGetTypeId(tuple),
HeapTupleHeaderGetTypMod(tuple));
/* And do the flattening */
result = toast_flatten_tuple_to_datum(tuple,
HeapTupleHeaderGetDatumLength(tuple),
tupDesc);
ReleaseTupleDesc(tupDesc);
return result;
}
/*
* Functions for sending tuples to the frontend (or other specified destination)
* as though it is a SELECT result. These are used by utility commands that
* need to project directly to the destination and don't need or want full
* table function capability. Currently used by EXPLAIN and SHOW ALL.
*/
TupOutputState *
begin_tup_output_tupdesc(DestReceiver *dest,
TupleDesc tupdesc,
const TupleTableSlotOps *tts_ops)
{
TupOutputState *tstate;
tstate = (TupOutputState *) palloc(sizeof(TupOutputState));
tstate->slot = MakeSingleTupleTableSlot(tupdesc, tts_ops);
tstate->dest = dest;
tstate->dest->rStartup(tstate->dest, (int) CMD_SELECT, tupdesc);
return tstate;
}
/*
* write a single tuple
*/
void
do_tup_output(TupOutputState *tstate, Datum *values, bool *isnull)
{
TupleTableSlot *slot = tstate->slot;
int natts = slot->tts_tupleDescriptor->natts;
/* make sure the slot is clear */
ExecClearTuple(slot);
/* insert data */
memcpy(slot->tts_values, values, natts * sizeof(Datum));
memcpy(slot->tts_isnull, isnull, natts * sizeof(bool));
/* mark slot as containing a virtual tuple */
ExecStoreVirtualTuple(slot);
/* send the tuple to the receiver */
(void) tstate->dest->receiveSlot(slot, tstate->dest);
/* clean up */
ExecClearTuple(slot);
}
/*
* write a chunk of text, breaking at newline characters
*
* Should only be used with a single-TEXT-attribute tupdesc.
*/
void
do_text_output_multiline(TupOutputState *tstate, const char *txt)
{
Datum values[1];
bool isnull[1] = {false};
while (*txt)
{
const char *eol;
int len;
eol = strchr(txt, '\n');
if (eol)
{
len = eol - txt;
eol++;
}
else
{
len = strlen(txt);
eol = txt + len;
}
values[0] = PointerGetDatum(cstring_to_text_with_len(txt, len));
do_tup_output(tstate, values, isnull);
pfree(DatumGetPointer(values[0]));
txt = eol;
}
}
void
end_tup_output(TupOutputState *tstate)
{
tstate->dest->rShutdown(tstate->dest);
/* note that destroying the dest is not ours to do */
ExecDropSingleTupleTableSlot(tstate->slot);
pfree(tstate);
}