mirror of
				https://github.com/postgres/postgres.git
				synced 2025-10-29 22:49:41 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			843 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			843 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /******************************************************************************
 | |
|   This file contains routines that can be bound to a Postgres backend and
 | |
|   called by the backend in the process of processing queries.  The calling
 | |
|   format for these routines is dictated by Postgres architecture.
 | |
| ******************************************************************************/
 | |
| 
 | |
| #include "postgres.h"
 | |
| 
 | |
| #include <float.h>
 | |
| #include <string.h>
 | |
| 
 | |
| #include "access/gist.h"
 | |
| #include "access/itup.h"
 | |
| #include "access/rtree.h"
 | |
| #include "utils/elog.h"
 | |
| #include "utils/palloc.h"
 | |
| #include "utils/array.h"
 | |
| #include "utils/builtins.h"
 | |
| #include "storage/bufpage.h"
 | |
| 
 | |
| #define MAXNUMRANGE 100 
 | |
| 
 | |
| #define max(a,b)        ((a) >  (b) ? (a) : (b))
 | |
| #define min(a,b)        ((a) <= (b) ? (a) : (b))
 | |
| #define abs(a)          ((a) <  (0) ? (-a) : (a))
 | |
| 
 | |
| #define ARRPTR(x)  ( (int4 *) ARR_DATA_PTR(x) )
 | |
| #ifdef PGSQL71
 | |
| #define ARRSIZE(x)  ArrayGetNItems( ARR_NDIM(x), ARR_DIMS(x))
 | |
| #else
 | |
| #define ARRSIZE(x)  getNitems( ARR_NDIM(x), ARR_DIMS(x))
 | |
| #endif
 | |
| 
 | |
| #define NDIM 1
 | |
| #define ARRISNULL(x) ( (x) ? ( ( ARR_NDIM(x) == NDIM ) ? ( ( ARRSIZE( x ) ) ? 0 : 1 ) : 1  ) : 1 )
 | |
| #define SORT(x) if ( ARRSIZE( x ) > 1 ) isort( (void*)ARRPTR( x ), ARRSIZE( x ) );
 | |
| #define PREPAREARR(x) \
 | |
| 	if ( ARRSIZE( x ) > 1 ) {\
 | |
| 		if ( isort( (void*)ARRPTR( x ), ARRSIZE( x ) ) )\
 | |
| 			x = _int_unique( x );\
 | |
| 	}
 | |
| /*
 | |
| #define GIST_DEBUG
 | |
| #define GIST_QUERY_DEBUG 
 | |
| */
 | |
| #ifdef GIST_DEBUG
 | |
| static void printarr ( ArrayType * a, int num ) {
 | |
| 	char bbb[16384];
 | |
| 	char *cur;
 | |
| 	int l;
 | |
| 	int *d;
 | |
| 	d = ARRPTR( a );
 | |
| 	*bbb = '\0';
 | |
| 	cur = bbb;
 | |
| 	for(l=0; l<min( num, ARRSIZE( a ));l++) {
 | |
| 		sprintf(cur,"%d ", d[l] );
 | |
| 		cur = strchr( cur, '\0' ) ;
 | |
| 	}
 | |
| 	elog(NOTICE, "\t\t%s", bbb);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** usefull function
 | |
| */
 | |
| bool isort( int *a, const int len );
 | |
| ArrayType * new_intArrayType( int num );
 | |
| ArrayType * copy_intArrayType( ArrayType * a );
 | |
| ArrayType * resize_intArrayType( ArrayType * a, int num );
 | |
| int internal_size( int *a, int len );
 | |
| ArrayType * _int_unique( ArrayType * a );
 | |
| 
 | |
| /* 
 | |
| ** GiST support methods
 | |
| */
 | |
| bool             g_int_consistent(GISTENTRY *entry, ArrayType *query, StrategyNumber strategy);
 | |
| GISTENTRY *      g_int_compress(GISTENTRY *entry);
 | |
| GISTENTRY *      g_int_decompress(GISTENTRY *entry);
 | |
| float *          g_int_penalty(GISTENTRY *origentry, GISTENTRY *newentry, float *result);
 | |
| GIST_SPLITVEC *  g_int_picksplit(bytea *entryvec, GIST_SPLITVEC *v);
 | |
| bool             g_int_internal_consistent(ArrayType *key, ArrayType *query, StrategyNumber strategy);
 | |
| ArrayType *            g_int_union(bytea *entryvec, int *sizep);
 | |
| bool *           g_int_same(ArrayType *b1, ArrayType *b2, bool *result);
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** R-tree suport functions
 | |
| */
 | |
| bool     inner_int_contains(ArrayType *a, ArrayType *b);
 | |
| bool     inner_int_overlap(ArrayType *a, ArrayType *b);
 | |
| ArrayType *    inner_int_union(ArrayType *a, ArrayType *b);
 | |
| ArrayType *    inner_int_inter(ArrayType *a, ArrayType *b);
 | |
| 
 | |
| bool     _int_different(ArrayType *a, ArrayType *b);
 | |
| bool     _int_same(ArrayType *a, ArrayType *b);
 | |
| bool     _int_contains(ArrayType *a, ArrayType *b);
 | |
| bool     _int_contained(ArrayType *a, ArrayType *b);
 | |
| bool     _int_overlap(ArrayType *a, ArrayType *b);
 | |
| ArrayType *    _int_union(ArrayType *a, ArrayType *b);
 | |
| ArrayType *    _int_inter(ArrayType *a, ArrayType *b);
 | |
| void     rt__int_size(ArrayType *a, float* sz);
 | |
| 
 | |
| 
 | |
| /*****************************************************************************
 | |
|  *                         GiST functions
 | |
|  *****************************************************************************/
 | |
| 
 | |
| /*
 | |
| ** The GiST Consistent method for _intments
 | |
| ** Should return false if for all data items x below entry,
 | |
| ** the predicate x op query == FALSE, where op is the oper
 | |
| ** corresponding to strategy in the pg_amop table.
 | |
| */
 | |
| bool 
 | |
| g_int_consistent(GISTENTRY *entry,
 | |
| 	       ArrayType *query,
 | |
| 	       StrategyNumber strategy)
 | |
| {
 | |
|    
 | |
|     /* sort query for fast search, key is already sorted */
 | |
|     if ( ARRISNULL( query ) ) return FALSE; 
 | |
|     PREPAREARR( query );    
 | |
|     /*
 | |
|     ** if entry is not leaf, use g_int_internal_consistent,
 | |
|     ** else use g_int_leaf_consistent
 | |
|     */
 | |
|     return(g_int_internal_consistent((ArrayType *)(entry->pred), query, strategy));
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The GiST Union method for _intments
 | |
| ** returns the minimal set that encloses all the entries in entryvec
 | |
| */
 | |
| ArrayType *
 | |
| g_int_union(bytea *entryvec, int *sizep)
 | |
| {
 | |
|     int numranges, i;
 | |
|     ArrayType *out = (ArrayType *)NULL;
 | |
|     ArrayType *tmp;
 | |
| 
 | |
|     numranges = (VARSIZE(entryvec) - VARHDRSZ)/sizeof(GISTENTRY); 
 | |
|     tmp = (ArrayType *)(((GISTENTRY *)(VARDATA(entryvec)))[0]).pred;
 | |
| 
 | |
| #ifdef GIST_DEBUG
 | |
|     elog(NOTICE, "union %d", numranges);
 | |
| #endif
 | |
| 
 | |
|     for (i = 1; i < numranges; i++) {
 | |
| 	out = inner_int_union(tmp, (ArrayType *)
 | |
| 				 (((GISTENTRY *)(VARDATA(entryvec)))[i]).pred);
 | |
| 	if (i > 1 && tmp) pfree(tmp);
 | |
| 	tmp = out;
 | |
|     }
 | |
| 
 | |
|     *sizep = VARSIZE( out );
 | |
| #ifdef GIST_DEBUG
 | |
|     elog(NOTICE, "\t ENDunion %d %d", *sizep, ARRSIZE( out ) );
 | |
| #endif
 | |
|     if ( *sizep == 0 ) {
 | |
| 	pfree( out );
 | |
| 	return NULL;
 | |
|     }
 | |
|     return(out);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** GiST Compress and Decompress methods
 | |
| */
 | |
| GISTENTRY *
 | |
| g_int_compress(GISTENTRY *entry)
 | |
| {
 | |
|     GISTENTRY *retval;
 | |
|     ArrayType * r;
 | |
|     int len;
 | |
|     int *dr;
 | |
|     int i,min,cand;
 | |
| 
 | |
|     retval = palloc(sizeof(GISTENTRY));
 | |
|     if ( ! retval ) 
 | |
| 	elog(ERROR,"Can't allocate memory for compression");
 | |
| 
 | |
|     if ( ARRISNULL( (ArrayType *) entry->pred ) )  {
 | |
| #ifdef GIST_DEBUG
 | |
| 	elog(NOTICE,"COMP IN: NULL"); 
 | |
| #endif
 | |
|     	gistentryinit(*retval, (char *)NULL, entry->rel, entry->page, entry->offset, 
 | |
| 		0, FALSE);
 | |
| 	return( retval ); 
 | |
|     }
 | |
| 
 | |
|     r = copy_intArrayType( (ArrayType *) entry->pred ); 
 | |
|     if ( entry->leafkey ) PREPAREARR( r );
 | |
|     len = ARRSIZE( r );
 | |
| 
 | |
| #ifdef GIST_DEBUG
 | |
|     elog(NOTICE, "COMP IN: %d leaf; %d rel; %d page; %d offset; %d bytes; %d elems", entry->leafkey, (int)entry->rel, (int)entry->page, (int)entry->offset, (int)entry->bytes, len);
 | |
|     /* printarr( r, len ); */
 | |
| #endif
 | |
| 
 | |
|     if ( len >= 2*MAXNUMRANGE ) {  /*compress*/
 | |
|     	r = resize_intArrayType( r, 2*( len ) );
 | |
|    
 | |
|     	dr = ARRPTR( r );
 | |
| 
 | |
|     	for(i=len-1; i>=0;i--)
 | |
|     		dr[2*i] = dr[2*i+1] = dr[i];
 | |
|     
 | |
|     	len *= 2;
 | |
|     	cand = 1;
 | |
|     	while( len > MAXNUMRANGE * 2 ) {
 | |
| 		min = 0x7fffffff;
 | |
| 		for( i=2; i<len;i+=2 )
 | |
| 			if ( min > (dr[i] - dr[i-1]) ) {
 | |
| 				min = (dr[i] - dr[i-1]);
 | |
| 				cand = i;
 | |
| 			}
 | |
| 		memmove( (void*)&dr[cand-1], (void*)&dr[cand+1], (len - cand - 1)*sizeof(int) );
 | |
| 		len -= 2;
 | |
| 	}
 | |
|     	r = resize_intArrayType(r, len );
 | |
|     }
 | |
| 
 | |
|     gistentryinit(*retval, (char *)r, entry->rel, entry->page, entry->offset, VARSIZE( r ), FALSE);
 | |
| 
 | |
|     return(retval);
 | |
| }
 | |
| 
 | |
| GISTENTRY *
 | |
| g_int_decompress(GISTENTRY *entry)
 | |
| {
 | |
|     GISTENTRY *retval;
 | |
|     ArrayType * r; 
 | |
|     int *dr, lenr;
 | |
|     ArrayType * in; 
 | |
|     int lenin;
 | |
|     int *din;
 | |
|     int i,j;
 | |
| 
 | |
|     if ( entry->bytes < ARR_OVERHEAD( NDIM ) || ARRISNULL( (ArrayType *) entry->pred ) ) { 
 | |
|     	retval = palloc(sizeof(GISTENTRY));
 | |
|     	if ( ! retval ) 
 | |
| 		elog(ERROR,"Can't allocate memory for decompression");
 | |
|     	gistentryinit(*retval, (char *)NULL, entry->rel, entry->page, entry->offset, 0, FALSE);
 | |
| #ifdef GIST_DEBUG
 | |
| 	elog(NOTICE,"DECOMP IN: NULL"); 
 | |
| #endif
 | |
| 	return( retval ); 
 | |
|     }
 | |
|     
 | |
| 
 | |
|     in = (ArrayType *) entry->pred; 
 | |
|     lenin = ARRSIZE(in);
 | |
|     din = ARRPTR(in);
 | |
| 
 | |
|     if ( lenin < 2*MAXNUMRANGE ) { /*not comressed value*/
 | |
| 	/* sometimes strange bytesize */
 | |
|     	gistentryinit(*entry, (char *)in, entry->rel, entry->page, entry->offset, VARSIZE( in ), FALSE);
 | |
| 	return (entry);
 | |
|     }
 | |
| 
 | |
| #ifdef GIST_DEBUG
 | |
|     elog(NOTICE, "DECOMP IN: %d leaf; %d rel; %d page; %d offset; %d bytes; %d elems", entry->leafkey, (int)entry->rel, (int)entry->page, (int)entry->offset, (int)entry->bytes, lenin);
 | |
|     /* printarr( in, lenin ); */
 | |
| #endif
 | |
| 
 | |
|     lenr = internal_size(din, lenin);
 | |
| 
 | |
|     r = new_intArrayType( lenr );
 | |
|     dr = ARRPTR( r );
 | |
| 
 | |
|     for(i=0;i<lenin;i+=2)
 | |
| 	for(j=din[i]; j<=din[i+1]; j++)
 | |
| 		if ( (!i) || *(dr-1) != j )
 | |
| 			*dr++ = j;
 | |
| 
 | |
|     retval = palloc(sizeof(GISTENTRY));
 | |
|     if ( ! retval ) 
 | |
| 	elog(ERROR,"Can't allocate memory for decompression");
 | |
|     gistentryinit(*retval, (char *)r, entry->rel, entry->page, entry->offset, VARSIZE( r ), FALSE);
 | |
| 
 | |
|     return(retval);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The GiST Penalty method for _intments
 | |
| */
 | |
| float *
 | |
| g_int_penalty(GISTENTRY *origentry, GISTENTRY *newentry, float *result)
 | |
| {
 | |
|     Datum ud;
 | |
|     float tmp1, tmp2;
 | |
|     
 | |
| #ifdef GIST_DEBUG
 | |
|     elog(NOTICE, "penalty");
 | |
| #endif
 | |
|     ud = (Datum)inner_int_union((ArrayType *)(origentry->pred), (ArrayType *)(newentry->pred));
 | |
|     rt__int_size((ArrayType *)ud, &tmp1);
 | |
|     rt__int_size((ArrayType *)(origentry->pred), &tmp2);
 | |
|     *result = tmp1 - tmp2;
 | |
|     pfree((char *)ud);
 | |
| 
 | |
| #ifdef GIST_DEBUG
 | |
|     elog(NOTICE, "--penalty\t%g", *result);
 | |
| #endif
 | |
| 
 | |
|     return(result);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** The GiST PickSplit method for _intments
 | |
| ** We use Guttman's poly time split algorithm 
 | |
| */
 | |
| GIST_SPLITVEC *
 | |
| g_int_picksplit(bytea *entryvec,
 | |
| 	      GIST_SPLITVEC *v)
 | |
| {
 | |
|     OffsetNumber i, j;
 | |
|     ArrayType *datum_alpha, *datum_beta;
 | |
|     ArrayType *datum_l, *datum_r;
 | |
|     ArrayType *union_d, *union_dl, *union_dr;
 | |
|     ArrayType *inter_d;
 | |
|     bool firsttime;
 | |
|     float size_alpha, size_beta, size_union, size_inter;
 | |
|     float size_waste, waste;
 | |
|     float size_l, size_r;
 | |
|     int nbytes;
 | |
|     OffsetNumber seed_1 = 0, seed_2 = 0;
 | |
|     OffsetNumber *left, *right;
 | |
|     OffsetNumber maxoff;
 | |
| 
 | |
| #ifdef GIST_DEBUG
 | |
|     elog(NOTICE, "--------picksplit %d",(VARSIZE(entryvec) - VARHDRSZ)/sizeof(GISTENTRY));
 | |
| #endif
 | |
| 
 | |
|     maxoff = ((VARSIZE(entryvec) - VARHDRSZ)/sizeof(GISTENTRY)) - 2;
 | |
|     nbytes =  (maxoff + 2) * sizeof(OffsetNumber);
 | |
|     v->spl_left = (OffsetNumber *) palloc(nbytes);
 | |
|     v->spl_right = (OffsetNumber *) palloc(nbytes);
 | |
|     
 | |
|     firsttime = true;
 | |
|     waste = 0.0;
 | |
|     
 | |
|     for (i = FirstOffsetNumber; i < maxoff; i = OffsetNumberNext(i)) {
 | |
| 	datum_alpha = (ArrayType *)(((GISTENTRY *)(VARDATA(entryvec)))[i].pred);
 | |
| 	for (j = OffsetNumberNext(i); j <= maxoff; j = OffsetNumberNext(j)) {
 | |
| 	    datum_beta = (ArrayType *)(((GISTENTRY *)(VARDATA(entryvec)))[j].pred);
 | |
| 	    
 | |
| 	    /* compute the wasted space by unioning these guys */
 | |
| 	    /* size_waste = size_union - size_inter; */
 | |
| 	    union_d = (ArrayType *)inner_int_union(datum_alpha, datum_beta);
 | |
| 	    rt__int_size(union_d, &size_union);
 | |
| 	    inter_d = (ArrayType *)inner_int_inter(datum_alpha, datum_beta);
 | |
| 	    rt__int_size(inter_d, &size_inter);
 | |
| 	    size_waste = size_union - size_inter;
 | |
| 	    
 | |
| 	    pfree(union_d);
 | |
| 	    
 | |
| 	    if (inter_d != (ArrayType *) NULL)
 | |
| 		pfree(inter_d);
 | |
| 	    
 | |
| 	    /*
 | |
| 	     *  are these a more promising split that what we've
 | |
| 	     *  already seen?
 | |
| 	     */
 | |
| 	    
 | |
| 	    if (size_waste > waste || firsttime) {
 | |
| 		waste = size_waste;
 | |
| 		seed_1 = i;
 | |
| 		seed_2 = j;
 | |
| 		firsttime = false;
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
|    
 | |
|     left = v->spl_left;
 | |
|     v->spl_nleft = 0;
 | |
|     right = v->spl_right;
 | |
|     v->spl_nright = 0;
 | |
|   
 | |
|     datum_alpha = (ArrayType *)(((GISTENTRY *)(VARDATA(entryvec)))[seed_1].pred);
 | |
|     datum_l     = copy_intArrayType( datum_alpha ); 
 | |
|     rt__int_size((ArrayType *)datum_l, &size_l);
 | |
|     datum_beta  = (ArrayType *)(((GISTENTRY *)(VARDATA(entryvec)))[seed_2].pred);
 | |
|     datum_r     = copy_intArrayType( datum_beta  ); 
 | |
|     rt__int_size((ArrayType *)datum_r, &size_r);
 | |
|     
 | |
|     /*
 | |
|      *  Now split up the regions between the two seeds.  An important
 | |
|      *  property of this split algorithm is that the split vector v
 | |
|      *  has the indices of items to be split in order in its left and
 | |
|      *  right vectors.  We exploit this property by doing a merge in
 | |
|      *  the code that actually splits the page.
 | |
|      *
 | |
|      *  For efficiency, we also place the new index tuple in this loop.
 | |
|      *  This is handled at the very end, when we have placed all the
 | |
|      *  existing tuples and i == maxoff + 1.
 | |
|      */
 | |
|     
 | |
|     maxoff = OffsetNumberNext(maxoff);
 | |
|     for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i)) {
 | |
| 
 | |
| 	
 | |
| 	/*
 | |
| 	 *  If we've already decided where to place this item, just
 | |
| 	 *  put it on the right list.  Otherwise, we need to figure
 | |
| 	 *  out which page needs the least enlargement in order to
 | |
| 	 *  store the item.
 | |
| 	 */
 | |
| 	
 | |
| 	if (i == seed_1) {
 | |
| 	    *left++ = i;
 | |
| 	    v->spl_nleft++;
 | |
| 	    continue;
 | |
| 	} else if (i == seed_2) {
 | |
| 	    *right++ = i;
 | |
| 	    v->spl_nright++;
 | |
| 	    continue;
 | |
| 	}
 | |
| 	
 | |
| 	/* okay, which page needs least enlargement? */ 
 | |
| 	datum_alpha = (ArrayType *)(((GISTENTRY *)(VARDATA(entryvec)))[i].pred);
 | |
| 	union_dl = (ArrayType *)inner_int_union(datum_l, datum_alpha);
 | |
| 	union_dr = (ArrayType *)inner_int_union(datum_r, datum_alpha);
 | |
| 	rt__int_size((ArrayType *)union_dl, &size_alpha);
 | |
| 	rt__int_size((ArrayType *)union_dr, &size_beta);
 | |
| 
 | |
| 	/* pick which page to add it to */
 | |
| 	if (size_alpha - size_l < size_beta - size_r) {
 | |
| 	    if ( datum_l ) pfree(datum_l);
 | |
| 	    if ( union_dr ) pfree(union_dr);
 | |
| 	    datum_l = union_dl;
 | |
| 	    size_l = size_alpha;
 | |
| 	    *left++ = i;
 | |
| 	    v->spl_nleft++;
 | |
| 	} else {
 | |
| 	    if ( datum_r ) pfree(datum_r);
 | |
| 	    if ( union_dl ) pfree(union_dl);
 | |
| 	    datum_r = union_dr;
 | |
| 	    size_r = size_beta;
 | |
| 	    *right++ = i;
 | |
| 	    v->spl_nright++;
 | |
| 	}
 | |
|     }
 | |
|     /**left = *right = FirstOffsetNumber;*/  /* sentinel value, see dosplit() */
 | |
| 
 | |
|     if ( *(left-1) > *(right-1) ) { 
 | |
|         *right = FirstOffsetNumber;
 | |
|         *(left-1) = InvalidOffsetNumber;
 | |
|     } else {
 | |
|         *left = FirstOffsetNumber;
 | |
|         *(right-1) = InvalidOffsetNumber;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     v->spl_ldatum = (char *)datum_l;
 | |
|     v->spl_rdatum = (char *)datum_r;
 | |
| 
 | |
| #ifdef GIST_DEBUG
 | |
|     elog(NOTICE, "--------ENDpicksplit %d %d",v->spl_nleft, v->spl_nright);
 | |
| #endif
 | |
|     return v;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Equality methods
 | |
| */
 | |
| 
 | |
| 
 | |
| bool *
 | |
| g_int_same(ArrayType *b1, ArrayType *b2, bool *result)
 | |
| {
 | |
|   if (_int_same(b1, b2))
 | |
|     *result = TRUE;
 | |
|   else *result = FALSE;
 | |
| 
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| bool 
 | |
| g_int_internal_consistent(ArrayType *key,
 | |
| 			ArrayType *query,
 | |
| 			StrategyNumber strategy)
 | |
| {
 | |
|     bool retval;
 | |
| 
 | |
| #ifdef GIST_QUERY_DEBUG
 | |
|   elog(NOTICE, "internal_consistent, %d", strategy);
 | |
| #endif
 | |
| 
 | |
|     switch(strategy) {
 | |
|     case RTOverlapStrategyNumber:
 | |
|       retval = (bool)inner_int_overlap(key, query);
 | |
|       break;
 | |
|     case RTSameStrategyNumber:
 | |
|     case RTContainsStrategyNumber:
 | |
|       retval = (bool)inner_int_contains(key, query);
 | |
|       break;
 | |
|     case RTContainedByStrategyNumber:
 | |
|       retval = (bool)inner_int_overlap(key, query);
 | |
|       break;
 | |
|     default:
 | |
|       retval = FALSE;
 | |
|     }
 | |
|     return(retval);
 | |
| }
 | |
| 
 | |
| bool
 | |
| _int_contained(ArrayType *a, ArrayType *b)
 | |
| {
 | |
|   return ( _int_contains(b, a) );
 | |
| }
 | |
| 
 | |
| bool
 | |
| _int_contains ( ArrayType *a, ArrayType *b ) {
 | |
| 	bool res;
 | |
| 	ArrayType *an, *bn;
 | |
| 	if ( ARRISNULL( a ) || ARRISNULL( b ) ) return FALSE;
 | |
| 
 | |
| 	an = copy_intArrayType( a );
 | |
| 	bn = copy_intArrayType( b );
 | |
| 
 | |
| 	PREPAREARR(an);
 | |
| 	PREPAREARR(bn);
 | |
| 
 | |
|         res = inner_int_contains( an, bn );
 | |
| 	pfree( an ); pfree( bn );
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| bool 
 | |
| inner_int_contains ( ArrayType *a, ArrayType *b ) {
 | |
| 	int na, nb;
 | |
| 	int i,j, n;
 | |
| 	int *da, *db;
 | |
|   
 | |
|         if ( ARRISNULL( a ) || ARRISNULL( b ) ) return FALSE;
 | |
| 
 | |
|         na = ARRSIZE( a );
 | |
| 	nb = ARRSIZE( b );	
 | |
| 	da = ARRPTR( a );
 | |
| 	db = ARRPTR( b );
 | |
| 
 | |
| #ifdef GIST_DEBUG
 | |
|     elog(NOTICE, "contains %d %d", na, nb);
 | |
| #endif
 | |
| 
 | |
| 	i = j = n = 0;
 | |
| 	while( i<na && j<nb )
 | |
| 		if ( da[i] < db[j] )
 | |
| 			i++;
 | |
| 		else if ( da[i] == db[j] ) {
 | |
| 			n++; i++; j++;
 | |
| 		} else 
 | |
| 			j++;
 | |
| 	
 | |
| 	return ( n == nb ) ? TRUE : FALSE;
 | |
| }
 | |
| 
 | |
| /*****************************************************************************
 | |
|  * Operator class for R-tree indexing
 | |
|  *****************************************************************************/
 | |
| 
 | |
| bool
 | |
| _int_different(ArrayType *a, ArrayType *b)
 | |
| {
 | |
|   return ( !_int_same( a, b ) );
 | |
| }
 | |
| 
 | |
| bool 
 | |
| _int_same ( ArrayType *a, ArrayType *b ) {
 | |
|         int na , nb ;
 | |
|         int n; 
 | |
|         int *da, *db;
 | |
| 	bool anull = ARRISNULL( a );
 | |
| 	bool bnull = ARRISNULL( b );
 | |
| 
 | |
| 	if ( anull || bnull ) 
 | |
| 		return ( anull && bnull ) ? TRUE : FALSE; 
 | |
| 	
 | |
| 	SORT( a );
 | |
| 	SORT( b );		
 | |
| 	na = ARRSIZE( a );
 | |
| 	nb = ARRSIZE( b );
 | |
| 	da = ARRPTR( a );
 | |
| 	db = ARRPTR( b );
 | |
| 
 | |
|         if ( na != nb ) return FALSE;
 | |
| 
 | |
|         n = 0;
 | |
|         for(n=0; n<na; n++)
 | |
|                 if ( da[n] != db[n] )
 | |
|                         return FALSE;
 | |
| 
 | |
|         return TRUE; 
 | |
| }
 | |
| 
 | |
| /*  _int_overlap -- does a overlap b?
 | |
|  */
 | |
| bool 
 | |
| _int_overlap ( ArrayType *a, ArrayType *b ) {
 | |
| 	if ( ARRISNULL( a ) || ARRISNULL( b ) ) return FALSE;
 | |
| 	
 | |
| 	SORT(a);
 | |
| 	SORT(b);
 | |
| 
 | |
|         return inner_int_overlap( a, b );
 | |
| }
 | |
| 
 | |
| bool 
 | |
| inner_int_overlap ( ArrayType *a, ArrayType *b ) {
 | |
| 	int na , nb ;
 | |
| 	int i,j;
 | |
| 	int *da, *db;
 | |
| 
 | |
| 	if ( ARRISNULL( a ) || ARRISNULL( b ) ) return FALSE;
 | |
| 	
 | |
| 	na = ARRSIZE( a );
 | |
| 	nb = ARRSIZE( b );
 | |
| 	da = ARRPTR( a );
 | |
| 	db = ARRPTR( b );
 | |
| 
 | |
| #ifdef GIST_DEBUG
 | |
|     elog(NOTICE, "g_int_overlap");
 | |
| #endif
 | |
| 
 | |
| 	i = j = 0;
 | |
| 	while( i<na && j<nb )
 | |
| 		if ( da[i] < db[j] )
 | |
| 			i++;
 | |
| 		else if ( da[i] == db[j] )
 | |
| 			return TRUE; 
 | |
| 		else 
 | |
| 			j++;
 | |
| 	
 | |
| 	return FALSE;
 | |
| }
 | |
| 
 | |
| ArrayType * 
 | |
| _int_union ( ArrayType *a, ArrayType *b ) {
 | |
| 	if ( ! ARRISNULL( a ) ) SORT(a);
 | |
| 	if ( ! ARRISNULL( b ) ) SORT(b);
 | |
| 
 | |
|         return inner_int_union( a, b );
 | |
| }
 | |
| 
 | |
| ArrayType * 
 | |
| inner_int_union ( ArrayType *a, ArrayType *b ) {
 | |
| 	ArrayType * r = NULL;
 | |
| 	int na , nb;
 | |
| 	int *da, *db, *dr;
 | |
| 	int i,j;
 | |
| 
 | |
| #ifdef GIST_DEBUG
 | |
|     /* elog(NOTICE, "inner_union %d %d", ARRISNULL( a ) , ARRISNULL( b ) ); */
 | |
| #endif
 | |
| 
 | |
| 	if ( ARRISNULL( a ) && ARRISNULL( b ) ) return new_intArrayType(0);
 | |
| 	if ( ARRISNULL( a ) ) r = copy_intArrayType( b ); 
 | |
| 	if ( ARRISNULL( b ) ) r = copy_intArrayType( a ); 
 | |
| 
 | |
| 	if ( r ) { 
 | |
| 		dr = ARRPTR( r );
 | |
| 	} else {
 | |
| 		na = ARRSIZE( a );
 | |
| 		nb = ARRSIZE( b );
 | |
| 		da = ARRPTR( a );
 | |
| 		db = ARRPTR( b );
 | |
| 
 | |
| 		r = new_intArrayType( na + nb ); 
 | |
| 		dr = ARRPTR( r );
 | |
| 
 | |
| 		/* union */	
 | |
| 		i = j = 0;
 | |
| 		while( i<na && j<nb ) 
 | |
| 			if ( da[i] < db[j] )
 | |
| 				*dr++ = da[i++];
 | |
| 			else
 | |
| 				*dr++ = db[j++];
 | |
| 	
 | |
| 		while( i<na ) *dr++ = da[i++];
 | |
| 		while( j<nb ) *dr++ = db[j++];
 | |
| 
 | |
| 	}	
 | |
| 
 | |
| 	if ( ARRSIZE(r) > 1 ) 
 | |
| 		r = _int_unique( r );
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| 
 | |
| ArrayType * 
 | |
| _int_inter ( ArrayType *a, ArrayType *b ) {
 | |
| 	if ( ARRISNULL( a ) || ARRISNULL( b ) ) return FALSE;
 | |
| 	
 | |
| 	SORT(a);
 | |
| 	SORT(b);
 | |
| 
 | |
|         return inner_int_inter( a, b );
 | |
| }
 | |
| 
 | |
| ArrayType * 
 | |
| inner_int_inter ( ArrayType *a, ArrayType *b ) {
 | |
| 	ArrayType * r;
 | |
| 	int na , nb ;
 | |
| 	int *da, *db, *dr;
 | |
| 	int i,j;
 | |
| 
 | |
| #ifdef GIST_DEBUG
 | |
|     /* elog(NOTICE, "inner_inter %d %d", ARRISNULL( a ), ARRISNULL( b ) ); */
 | |
| #endif
 | |
| 
 | |
| 	if ( ARRISNULL( a ) || ARRISNULL( b ) ) return NULL;
 | |
| 
 | |
| 	na = ARRSIZE( a );
 | |
| 	nb = ARRSIZE( b );
 | |
| 	da = ARRPTR( a );
 | |
| 	db = ARRPTR( b );
 | |
| 	r = new_intArrayType( min(na, nb) ); 
 | |
| 	dr = ARRPTR( r );
 | |
| 	
 | |
| 	i = j = 0;
 | |
| 	while( i<na && j<nb ) 
 | |
| 		if ( da[i] < db[j] )
 | |
| 			i++;
 | |
| 		else if ( da[i] == db[j] ) { 
 | |
| 			if ( i+j == 0 || ( i+j>0 && *(dr-1) != db[j] ) )  
 | |
| 				*dr++ = db[j];
 | |
| 			i++; j++;
 | |
| 		} else 
 | |
| 			j++;
 | |
| 
 | |
| 	if ( (dr - ARRPTR(r)) == 0 ) {
 | |
| 		pfree( r );
 | |
| 		return NULL;
 | |
| 	} else 
 | |
| 		return resize_intArrayType(r, dr - ARRPTR(r) );
 | |
| }
 | |
| 
 | |
| void
 | |
| rt__int_size(ArrayType *a, float *size)
 | |
| {
 | |
|   if ( ARRISNULL( a ) )
 | |
|     *size = 0.0;
 | |
|   else
 | |
|     *size = (float)ARRSIZE( a );
 | |
|   
 | |
|   return;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*****************************************************************************
 | |
|  *                 Miscellaneous operators and functions
 | |
|  *****************************************************************************/
 | |
| 
 | |
| /* len >= 2 */
 | |
| bool isort ( int *a, int len ) {
 | |
|         int tmp, index;
 | |
|         int *cur, *end;
 | |
| 	bool r = FALSE;
 | |
|         end = a + len;
 | |
|         do {
 | |
|                 index = 0;
 | |
|                 cur = a + 1;
 | |
|                 while( cur < end ) {
 | |
|                         if( *(cur-1) > *cur ) {
 | |
|                                 tmp=*(cur-1); *(cur-1) = *cur; *cur=tmp;
 | |
|                                 index = 1;
 | |
|                         } else if ( ! r && *(cur-1) == *cur )
 | |
| 				r = TRUE;
 | |
|                         cur++;
 | |
|                 }
 | |
|         } while( index );
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| ArrayType * new_intArrayType( int num ) {
 | |
| 	ArrayType * r;
 | |
| 	int nbytes = ARR_OVERHEAD( NDIM ) + sizeof(int)*num;
 | |
| 	
 | |
| 	r = (ArrayType *) palloc( nbytes );
 | |
| 	if ( ! r )
 | |
| 		elog(ERROR, "Can't allocate memory for new array");
 | |
| 	MemSet(r, 0, nbytes);
 | |
| 	r->size = nbytes;
 | |
| 	r->ndim = NDIM;
 | |
| #ifndef PGSQL71
 | |
| 	SET_LO_FLAG(false, r);
 | |
| #endif
 | |
| 	*( (int*)ARR_DIMS(r) ) = num;
 | |
| 	*( (int*)ARR_LBOUND(r) ) = 1;
 | |
| 	
 | |
| 	return r;	
 | |
| } 
 | |
| 
 | |
| ArrayType * resize_intArrayType( ArrayType * a, int num ) {
 | |
| 	int nbytes = ARR_OVERHEAD( NDIM ) + sizeof(int)*num;
 | |
| 
 | |
| 	if ( num == ARRSIZE(a) ) return a;
 | |
| 
 | |
| 	a = (ArrayType *) repalloc( a, nbytes );
 | |
| 	if ( ! a )
 | |
| 		elog(ERROR, "Can't reallocate memory for new array");
 | |
| 	
 | |
| 	a->size = nbytes;
 | |
| 	*( (int*)ARR_DIMS(a) ) = num; 
 | |
| 	return a;
 | |
| }
 | |
| 
 | |
| ArrayType * copy_intArrayType( ArrayType * a ) {
 | |
| 	ArrayType * r;
 | |
| 	if ( ! a ) return NULL;
 | |
| 	r = new_intArrayType( ARRSIZE(a) );
 | |
| 	memmove(r,a,VARSIZE(a));
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| /* num for compressed key */
 | |
| int internal_size (int *a, int len ) {
 | |
|         int i,size=0;
 | |
| 
 | |
|         for(i=0;i<len;i+=2)
 | |
|                 if ( ! i || a[i] != a[i-1]  ) /* do not count repeated range */
 | |
|                         size += a[i+1] - a[i] + 1;
 | |
| 
 | |
|         return size;
 | |
| }
 | |
| 
 | |
| /* r is sorted and size of r > 1 */
 | |
| ArrayType * _int_unique( ArrayType * r ) {
 | |
| 	int *tmp, *dr, *data;
 | |
| 	int num = ARRSIZE(r);
 | |
| 	data = tmp = dr = ARRPTR( r );
 | |
| 	while( tmp - data < num ) 
 | |
| 		if ( *tmp != *dr ) 
 | |
| 			*(++dr) = *tmp++;
 | |
| 		else 
 | |
| 			tmp++; 
 | |
| 	return resize_intArrayType(r, dr + 1 - ARRPTR(r) );
 | |
| }	
 |