1
0
mirror of https://github.com/postgres/postgres.git synced 2025-04-29 13:56:47 +03:00
Tom Lane 14f67192c2 Remove assumptions that not-equals operators cannot be in any opclass.
get_op_btree_interpretation assumed this in order to save some duplication
of code, but it's not true in general anymore because we added <> support
to btree_gist.  (We still assume it for btree opclasses, though.)

Also, essentially the same logic was baked into predtest.c.  Get rid of
that duplication by generalizing get_op_btree_interpretation so that it
can be used by predtest.c.

Per bug report from Denis de Bernardy and investigation by Jeff Davis,
though I didn't use Jeff's patch exactly as-is.

Back-patch to 9.1; we do not support this usage before that.
2011-07-06 14:53:16 -04:00

1757 lines
49 KiB
C

/*-------------------------------------------------------------------------
*
* predtest.c
* Routines to attempt to prove logical implications between predicate
* expressions.
*
* Portions Copyright (c) 1996-2011, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/backend/optimizer/util/predtest.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "catalog/pg_am.h"
#include "catalog/pg_amop.h"
#include "catalog/pg_proc.h"
#include "catalog/pg_type.h"
#include "executor/executor.h"
#include "miscadmin.h"
#include "nodes/nodeFuncs.h"
#include "optimizer/clauses.h"
#include "optimizer/planmain.h"
#include "optimizer/predtest.h"
#include "utils/array.h"
#include "utils/inval.h"
#include "utils/lsyscache.h"
#include "utils/syscache.h"
/*
* Proof attempts involving large arrays in ScalarArrayOpExpr nodes are
* likely to require O(N^2) time, and more often than not fail anyway.
* So we set an arbitrary limit on the number of array elements that
* we will allow to be treated as an AND or OR clause.
* XXX is it worth exposing this as a GUC knob?
*/
#define MAX_SAOP_ARRAY_SIZE 100
/*
* To avoid redundant coding in predicate_implied_by_recurse and
* predicate_refuted_by_recurse, we need to abstract out the notion of
* iterating over the components of an expression that is logically an AND
* or OR structure. There are multiple sorts of expression nodes that can
* be treated as ANDs or ORs, and we don't want to code each one separately.
* Hence, these types and support routines.
*/
typedef enum
{
CLASS_ATOM, /* expression that's not AND or OR */
CLASS_AND, /* expression with AND semantics */
CLASS_OR /* expression with OR semantics */
} PredClass;
typedef struct PredIterInfoData *PredIterInfo;
typedef struct PredIterInfoData
{
/* node-type-specific iteration state */
void *state;
/* initialize to do the iteration */
void (*startup_fn) (Node *clause, PredIterInfo info);
/* next-component iteration function */
Node *(*next_fn) (PredIterInfo info);
/* release resources when done with iteration */
void (*cleanup_fn) (PredIterInfo info);
} PredIterInfoData;
#define iterate_begin(item, clause, info) \
do { \
Node *item; \
(info).startup_fn((clause), &(info)); \
while ((item = (info).next_fn(&(info))) != NULL)
#define iterate_end(info) \
(info).cleanup_fn(&(info)); \
} while (0)
static bool predicate_implied_by_recurse(Node *clause, Node *predicate);
static bool predicate_refuted_by_recurse(Node *clause, Node *predicate);
static PredClass predicate_classify(Node *clause, PredIterInfo info);
static void list_startup_fn(Node *clause, PredIterInfo info);
static Node *list_next_fn(PredIterInfo info);
static void list_cleanup_fn(PredIterInfo info);
static void boolexpr_startup_fn(Node *clause, PredIterInfo info);
static void arrayconst_startup_fn(Node *clause, PredIterInfo info);
static Node *arrayconst_next_fn(PredIterInfo info);
static void arrayconst_cleanup_fn(PredIterInfo info);
static void arrayexpr_startup_fn(Node *clause, PredIterInfo info);
static Node *arrayexpr_next_fn(PredIterInfo info);
static void arrayexpr_cleanup_fn(PredIterInfo info);
static bool predicate_implied_by_simple_clause(Expr *predicate, Node *clause);
static bool predicate_refuted_by_simple_clause(Expr *predicate, Node *clause);
static Node *extract_not_arg(Node *clause);
static Node *extract_strong_not_arg(Node *clause);
static bool list_member_strip(List *list, Expr *datum);
static bool btree_predicate_proof(Expr *predicate, Node *clause,
bool refute_it);
static Oid get_btree_test_op(Oid pred_op, Oid clause_op, bool refute_it);
static void InvalidateOprProofCacheCallBack(Datum arg, int cacheid, ItemPointer tuplePtr);
/*
* predicate_implied_by
* Recursively checks whether the clauses in restrictinfo_list imply
* that the given predicate is true.
*
* The top-level List structure of each list corresponds to an AND list.
* We assume that eval_const_expressions() has been applied and so there
* are no un-flattened ANDs or ORs (e.g., no AND immediately within an AND,
* including AND just below the top-level List structure).
* If this is not true we might fail to prove an implication that is
* valid, but no worse consequences will ensue.
*
* We assume the predicate has already been checked to contain only
* immutable functions and operators. (In most current uses this is true
* because the predicate is part of an index predicate that has passed
* CheckPredicate().) We dare not make deductions based on non-immutable
* functions, because they might change answers between the time we make
* the plan and the time we execute the plan.
*/
bool
predicate_implied_by(List *predicate_list, List *restrictinfo_list)
{
Node *p,
*r;
if (predicate_list == NIL)
return true; /* no predicate: implication is vacuous */
if (restrictinfo_list == NIL)
return false; /* no restriction: implication must fail */
/*
* If either input is a single-element list, replace it with its lone
* member; this avoids one useless level of AND-recursion. We only need
* to worry about this at top level, since eval_const_expressions should
* have gotten rid of any trivial ANDs or ORs below that.
*/
if (list_length(predicate_list) == 1)
p = (Node *) linitial(predicate_list);
else
p = (Node *) predicate_list;
if (list_length(restrictinfo_list) == 1)
r = (Node *) linitial(restrictinfo_list);
else
r = (Node *) restrictinfo_list;
/* And away we go ... */
return predicate_implied_by_recurse(r, p);
}
/*
* predicate_refuted_by
* Recursively checks whether the clauses in restrictinfo_list refute
* the given predicate (that is, prove it false).
*
* This is NOT the same as !(predicate_implied_by), though it is similar
* in the technique and structure of the code.
*
* An important fine point is that truth of the clauses must imply that
* the predicate returns FALSE, not that it does not return TRUE. This
* is normally used to try to refute CHECK constraints, and the only
* thing we can assume about a CHECK constraint is that it didn't return
* FALSE --- a NULL result isn't a violation per the SQL spec. (Someday
* perhaps this code should be extended to support both "strong" and
* "weak" refutation, but for now we only need "strong".)
*
* The top-level List structure of each list corresponds to an AND list.
* We assume that eval_const_expressions() has been applied and so there
* are no un-flattened ANDs or ORs (e.g., no AND immediately within an AND,
* including AND just below the top-level List structure).
* If this is not true we might fail to prove an implication that is
* valid, but no worse consequences will ensue.
*
* We assume the predicate has already been checked to contain only
* immutable functions and operators. We dare not make deductions based on
* non-immutable functions, because they might change answers between the
* time we make the plan and the time we execute the plan.
*/
bool
predicate_refuted_by(List *predicate_list, List *restrictinfo_list)
{
Node *p,
*r;
if (predicate_list == NIL)
return false; /* no predicate: no refutation is possible */
if (restrictinfo_list == NIL)
return false; /* no restriction: refutation must fail */
/*
* If either input is a single-element list, replace it with its lone
* member; this avoids one useless level of AND-recursion. We only need
* to worry about this at top level, since eval_const_expressions should
* have gotten rid of any trivial ANDs or ORs below that.
*/
if (list_length(predicate_list) == 1)
p = (Node *) linitial(predicate_list);
else
p = (Node *) predicate_list;
if (list_length(restrictinfo_list) == 1)
r = (Node *) linitial(restrictinfo_list);
else
r = (Node *) restrictinfo_list;
/* And away we go ... */
return predicate_refuted_by_recurse(r, p);
}
/*----------
* predicate_implied_by_recurse
* Does the predicate implication test for non-NULL restriction and
* predicate clauses.
*
* The logic followed here is ("=>" means "implies"):
* atom A => atom B iff: predicate_implied_by_simple_clause says so
* atom A => AND-expr B iff: A => each of B's components
* atom A => OR-expr B iff: A => any of B's components
* AND-expr A => atom B iff: any of A's components => B
* AND-expr A => AND-expr B iff: A => each of B's components
* AND-expr A => OR-expr B iff: A => any of B's components,
* *or* any of A's components => B
* OR-expr A => atom B iff: each of A's components => B
* OR-expr A => AND-expr B iff: A => each of B's components
* OR-expr A => OR-expr B iff: each of A's components => any of B's
*
* An "atom" is anything other than an AND or OR node. Notice that we don't
* have any special logic to handle NOT nodes; these should have been pushed
* down or eliminated where feasible by prepqual.c.
*
* We can't recursively expand either side first, but have to interleave
* the expansions per the above rules, to be sure we handle all of these
* examples:
* (x OR y) => (x OR y OR z)
* (x AND y AND z) => (x AND y)
* (x AND y) => ((x AND y) OR z)
* ((x OR y) AND z) => (x OR y)
* This is still not an exhaustive test, but it handles most normal cases
* under the assumption that both inputs have been AND/OR flattened.
*
* We have to be prepared to handle RestrictInfo nodes in the restrictinfo
* tree, though not in the predicate tree.
*----------
*/
static bool
predicate_implied_by_recurse(Node *clause, Node *predicate)
{
PredIterInfoData clause_info;
PredIterInfoData pred_info;
PredClass pclass;
bool result;
/* skip through RestrictInfo */
Assert(clause != NULL);
if (IsA(clause, RestrictInfo))
clause = (Node *) ((RestrictInfo *) clause)->clause;
pclass = predicate_classify(predicate, &pred_info);
switch (predicate_classify(clause, &clause_info))
{
case CLASS_AND:
switch (pclass)
{
case CLASS_AND:
/*
* AND-clause => AND-clause if A implies each of B's items
*/
result = true;
iterate_begin(pitem, predicate, pred_info)
{
if (!predicate_implied_by_recurse(clause, pitem))
{
result = false;
break;
}
}
iterate_end(pred_info);
return result;
case CLASS_OR:
/*
* AND-clause => OR-clause if A implies any of B's items
*
* Needed to handle (x AND y) => ((x AND y) OR z)
*/
result = false;
iterate_begin(pitem, predicate, pred_info)
{
if (predicate_implied_by_recurse(clause, pitem))
{
result = true;
break;
}
}
iterate_end(pred_info);
if (result)
return result;
/*
* Also check if any of A's items implies B
*
* Needed to handle ((x OR y) AND z) => (x OR y)
*/
iterate_begin(citem, clause, clause_info)
{
if (predicate_implied_by_recurse(citem, predicate))
{
result = true;
break;
}
}
iterate_end(clause_info);
return result;
case CLASS_ATOM:
/*
* AND-clause => atom if any of A's items implies B
*/
result = false;
iterate_begin(citem, clause, clause_info)
{
if (predicate_implied_by_recurse(citem, predicate))
{
result = true;
break;
}
}
iterate_end(clause_info);
return result;
}
break;
case CLASS_OR:
switch (pclass)
{
case CLASS_OR:
/*
* OR-clause => OR-clause if each of A's items implies any
* of B's items. Messy but can't do it any more simply.
*/
result = true;
iterate_begin(citem, clause, clause_info)
{
bool presult = false;
iterate_begin(pitem, predicate, pred_info)
{
if (predicate_implied_by_recurse(citem, pitem))
{
presult = true;
break;
}
}
iterate_end(pred_info);
if (!presult)
{
result = false; /* doesn't imply any of B's */
break;
}
}
iterate_end(clause_info);
return result;
case CLASS_AND:
case CLASS_ATOM:
/*
* OR-clause => AND-clause if each of A's items implies B
*
* OR-clause => atom if each of A's items implies B
*/
result = true;
iterate_begin(citem, clause, clause_info)
{
if (!predicate_implied_by_recurse(citem, predicate))
{
result = false;
break;
}
}
iterate_end(clause_info);
return result;
}
break;
case CLASS_ATOM:
switch (pclass)
{
case CLASS_AND:
/*
* atom => AND-clause if A implies each of B's items
*/
result = true;
iterate_begin(pitem, predicate, pred_info)
{
if (!predicate_implied_by_recurse(clause, pitem))
{
result = false;
break;
}
}
iterate_end(pred_info);
return result;
case CLASS_OR:
/*
* atom => OR-clause if A implies any of B's items
*/
result = false;
iterate_begin(pitem, predicate, pred_info)
{
if (predicate_implied_by_recurse(clause, pitem))
{
result = true;
break;
}
}
iterate_end(pred_info);
return result;
case CLASS_ATOM:
/*
* atom => atom is the base case
*/
return
predicate_implied_by_simple_clause((Expr *) predicate,
clause);
}
break;
}
/* can't get here */
elog(ERROR, "predicate_classify returned a bogus value");
return false;
}
/*----------
* predicate_refuted_by_recurse
* Does the predicate refutation test for non-NULL restriction and
* predicate clauses.
*
* The logic followed here is ("R=>" means "refutes"):
* atom A R=> atom B iff: predicate_refuted_by_simple_clause says so
* atom A R=> AND-expr B iff: A R=> any of B's components
* atom A R=> OR-expr B iff: A R=> each of B's components
* AND-expr A R=> atom B iff: any of A's components R=> B
* AND-expr A R=> AND-expr B iff: A R=> any of B's components,
* *or* any of A's components R=> B
* AND-expr A R=> OR-expr B iff: A R=> each of B's components
* OR-expr A R=> atom B iff: each of A's components R=> B
* OR-expr A R=> AND-expr B iff: each of A's components R=> any of B's
* OR-expr A R=> OR-expr B iff: A R=> each of B's components
*
* In addition, if the predicate is a NOT-clause then we can use
* A R=> NOT B if: A => B
* This works for several different SQL constructs that assert the non-truth
* of their argument, ie NOT, IS FALSE, IS NOT TRUE, IS UNKNOWN.
* Unfortunately we *cannot* use
* NOT A R=> B if: B => A
* because this type of reasoning fails to prove that B doesn't yield NULL.
* We can however make the more limited deduction that
* NOT A R=> A
*
* Other comments are as for predicate_implied_by_recurse().
*----------
*/
static bool
predicate_refuted_by_recurse(Node *clause, Node *predicate)
{
PredIterInfoData clause_info;
PredIterInfoData pred_info;
PredClass pclass;
Node *not_arg;
bool result;
/* skip through RestrictInfo */
Assert(clause != NULL);
if (IsA(clause, RestrictInfo))
clause = (Node *) ((RestrictInfo *) clause)->clause;
pclass = predicate_classify(predicate, &pred_info);
switch (predicate_classify(clause, &clause_info))
{
case CLASS_AND:
switch (pclass)
{
case CLASS_AND:
/*
* AND-clause R=> AND-clause if A refutes any of B's items
*
* Needed to handle (x AND y) R=> ((!x OR !y) AND z)
*/
result = false;
iterate_begin(pitem, predicate, pred_info)
{
if (predicate_refuted_by_recurse(clause, pitem))
{
result = true;
break;
}
}
iterate_end(pred_info);
if (result)
return result;
/*
* Also check if any of A's items refutes B
*
* Needed to handle ((x OR y) AND z) R=> (!x AND !y)
*/
iterate_begin(citem, clause, clause_info)
{
if (predicate_refuted_by_recurse(citem, predicate))
{
result = true;
break;
}
}
iterate_end(clause_info);
return result;
case CLASS_OR:
/*
* AND-clause R=> OR-clause if A refutes each of B's items
*/
result = true;
iterate_begin(pitem, predicate, pred_info)
{
if (!predicate_refuted_by_recurse(clause, pitem))
{
result = false;
break;
}
}
iterate_end(pred_info);
return result;
case CLASS_ATOM:
/*
* If B is a NOT-clause, A R=> B if A => B's arg
*/
not_arg = extract_not_arg(predicate);
if (not_arg &&
predicate_implied_by_recurse(clause, not_arg))
return true;
/*
* AND-clause R=> atom if any of A's items refutes B
*/
result = false;
iterate_begin(citem, clause, clause_info)
{
if (predicate_refuted_by_recurse(citem, predicate))
{
result = true;
break;
}
}
iterate_end(clause_info);
return result;
}
break;
case CLASS_OR:
switch (pclass)
{
case CLASS_OR:
/*
* OR-clause R=> OR-clause if A refutes each of B's items
*/
result = true;
iterate_begin(pitem, predicate, pred_info)
{
if (!predicate_refuted_by_recurse(clause, pitem))
{
result = false;
break;
}
}
iterate_end(pred_info);
return result;
case CLASS_AND:
/*
* OR-clause R=> AND-clause if each of A's items refutes
* any of B's items.
*/
result = true;
iterate_begin(citem, clause, clause_info)
{
bool presult = false;
iterate_begin(pitem, predicate, pred_info)
{
if (predicate_refuted_by_recurse(citem, pitem))
{
presult = true;
break;
}
}
iterate_end(pred_info);
if (!presult)
{
result = false; /* citem refutes nothing */
break;
}
}
iterate_end(clause_info);
return result;
case CLASS_ATOM:
/*
* If B is a NOT-clause, A R=> B if A => B's arg
*/
not_arg = extract_not_arg(predicate);
if (not_arg &&
predicate_implied_by_recurse(clause, not_arg))
return true;
/*
* OR-clause R=> atom if each of A's items refutes B
*/
result = true;
iterate_begin(citem, clause, clause_info)
{
if (!predicate_refuted_by_recurse(citem, predicate))
{
result = false;
break;
}
}
iterate_end(clause_info);
return result;
}
break;
case CLASS_ATOM:
/*
* If A is a strong NOT-clause, A R=> B if B equals A's arg
*
* We cannot make the stronger conclusion that B is refuted if B
* implies A's arg; that would only prove that B is not-TRUE, not
* that it's not NULL either. Hence use equal() rather than
* predicate_implied_by_recurse(). We could do the latter if we
* ever had a need for the weak form of refutation.
*/
not_arg = extract_strong_not_arg(clause);
if (not_arg && equal(predicate, not_arg))
return true;
switch (pclass)
{
case CLASS_AND:
/*
* atom R=> AND-clause if A refutes any of B's items
*/
result = false;
iterate_begin(pitem, predicate, pred_info)
{
if (predicate_refuted_by_recurse(clause, pitem))
{
result = true;
break;
}
}
iterate_end(pred_info);
return result;
case CLASS_OR:
/*
* atom R=> OR-clause if A refutes each of B's items
*/
result = true;
iterate_begin(pitem, predicate, pred_info)
{
if (!predicate_refuted_by_recurse(clause, pitem))
{
result = false;
break;
}
}
iterate_end(pred_info);
return result;
case CLASS_ATOM:
/*
* If B is a NOT-clause, A R=> B if A => B's arg
*/
not_arg = extract_not_arg(predicate);
if (not_arg &&
predicate_implied_by_recurse(clause, not_arg))
return true;
/*
* atom R=> atom is the base case
*/
return
predicate_refuted_by_simple_clause((Expr *) predicate,
clause);
}
break;
}
/* can't get here */
elog(ERROR, "predicate_classify returned a bogus value");
return false;
}
/*
* predicate_classify
* Classify an expression node as AND-type, OR-type, or neither (an atom).
*
* If the expression is classified as AND- or OR-type, then *info is filled
* in with the functions needed to iterate over its components.
*
* This function also implements enforcement of MAX_SAOP_ARRAY_SIZE: if a
* ScalarArrayOpExpr's array has too many elements, we just classify it as an
* atom. (This will result in its being passed as-is to the simple_clause
* functions, which will fail to prove anything about it.) Note that we
* cannot just stop after considering MAX_SAOP_ARRAY_SIZE elements; in general
* that would result in wrong proofs, rather than failing to prove anything.
*/
static PredClass
predicate_classify(Node *clause, PredIterInfo info)
{
/* Caller should not pass us NULL, nor a RestrictInfo clause */
Assert(clause != NULL);
Assert(!IsA(clause, RestrictInfo));
/*
* If we see a List, assume it's an implicit-AND list; this is the correct
* semantics for lists of RestrictInfo nodes.
*/
if (IsA(clause, List))
{
info->startup_fn = list_startup_fn;
info->next_fn = list_next_fn;
info->cleanup_fn = list_cleanup_fn;
return CLASS_AND;
}
/* Handle normal AND and OR boolean clauses */
if (and_clause(clause))
{
info->startup_fn = boolexpr_startup_fn;
info->next_fn = list_next_fn;
info->cleanup_fn = list_cleanup_fn;
return CLASS_AND;
}
if (or_clause(clause))
{
info->startup_fn = boolexpr_startup_fn;
info->next_fn = list_next_fn;
info->cleanup_fn = list_cleanup_fn;
return CLASS_OR;
}
/* Handle ScalarArrayOpExpr */
if (IsA(clause, ScalarArrayOpExpr))
{
ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) clause;
Node *arraynode = (Node *) lsecond(saop->args);
/*
* We can break this down into an AND or OR structure, but only if we
* know how to iterate through expressions for the array's elements.
* We can do that if the array operand is a non-null constant or a
* simple ArrayExpr.
*/
if (arraynode && IsA(arraynode, Const) &&
!((Const *) arraynode)->constisnull)
{
ArrayType *arrayval;
int nelems;
arrayval = DatumGetArrayTypeP(((Const *) arraynode)->constvalue);
nelems = ArrayGetNItems(ARR_NDIM(arrayval), ARR_DIMS(arrayval));
if (nelems <= MAX_SAOP_ARRAY_SIZE)
{
info->startup_fn = arrayconst_startup_fn;
info->next_fn = arrayconst_next_fn;
info->cleanup_fn = arrayconst_cleanup_fn;
return saop->useOr ? CLASS_OR : CLASS_AND;
}
}
else if (arraynode && IsA(arraynode, ArrayExpr) &&
!((ArrayExpr *) arraynode)->multidims &&
list_length(((ArrayExpr *) arraynode)->elements) <= MAX_SAOP_ARRAY_SIZE)
{
info->startup_fn = arrayexpr_startup_fn;
info->next_fn = arrayexpr_next_fn;
info->cleanup_fn = arrayexpr_cleanup_fn;
return saop->useOr ? CLASS_OR : CLASS_AND;
}
}
/* None of the above, so it's an atom */
return CLASS_ATOM;
}
/*
* PredIterInfo routines for iterating over regular Lists. The iteration
* state variable is the next ListCell to visit.
*/
static void
list_startup_fn(Node *clause, PredIterInfo info)
{
info->state = (void *) list_head((List *) clause);
}
static Node *
list_next_fn(PredIterInfo info)
{
ListCell *l = (ListCell *) info->state;
Node *n;
if (l == NULL)
return NULL;
n = lfirst(l);
info->state = (void *) lnext(l);
return n;
}
static void
list_cleanup_fn(PredIterInfo info)
{
/* Nothing to clean up */
}
/*
* BoolExpr needs its own startup function, but can use list_next_fn and
* list_cleanup_fn.
*/
static void
boolexpr_startup_fn(Node *clause, PredIterInfo info)
{
info->state = (void *) list_head(((BoolExpr *) clause)->args);
}
/*
* PredIterInfo routines for iterating over a ScalarArrayOpExpr with a
* constant array operand.
*/
typedef struct
{
OpExpr opexpr;
Const constexpr;
int next_elem;
int num_elems;
Datum *elem_values;
bool *elem_nulls;
} ArrayConstIterState;
static void
arrayconst_startup_fn(Node *clause, PredIterInfo info)
{
ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) clause;
ArrayConstIterState *state;
Const *arrayconst;
ArrayType *arrayval;
int16 elmlen;
bool elmbyval;
char elmalign;
/* Create working state struct */
state = (ArrayConstIterState *) palloc(sizeof(ArrayConstIterState));
info->state = (void *) state;
/* Deconstruct the array literal */
arrayconst = (Const *) lsecond(saop->args);
arrayval = DatumGetArrayTypeP(arrayconst->constvalue);
get_typlenbyvalalign(ARR_ELEMTYPE(arrayval),
&elmlen, &elmbyval, &elmalign);
deconstruct_array(arrayval,
ARR_ELEMTYPE(arrayval),
elmlen, elmbyval, elmalign,
&state->elem_values, &state->elem_nulls,
&state->num_elems);
/* Set up a dummy OpExpr to return as the per-item node */
state->opexpr.xpr.type = T_OpExpr;
state->opexpr.opno = saop->opno;
state->opexpr.opfuncid = saop->opfuncid;
state->opexpr.opresulttype = BOOLOID;
state->opexpr.opretset = false;
state->opexpr.opcollid = InvalidOid;
state->opexpr.inputcollid = saop->inputcollid;
state->opexpr.args = list_copy(saop->args);
/* Set up a dummy Const node to hold the per-element values */
state->constexpr.xpr.type = T_Const;
state->constexpr.consttype = ARR_ELEMTYPE(arrayval);
state->constexpr.consttypmod = -1;
state->constexpr.constcollid = arrayconst->constcollid;
state->constexpr.constlen = elmlen;
state->constexpr.constbyval = elmbyval;
lsecond(state->opexpr.args) = &state->constexpr;
/* Initialize iteration state */
state->next_elem = 0;
}
static Node *
arrayconst_next_fn(PredIterInfo info)
{
ArrayConstIterState *state = (ArrayConstIterState *) info->state;
if (state->next_elem >= state->num_elems)
return NULL;
state->constexpr.constvalue = state->elem_values[state->next_elem];
state->constexpr.constisnull = state->elem_nulls[state->next_elem];
state->next_elem++;
return (Node *) &(state->opexpr);
}
static void
arrayconst_cleanup_fn(PredIterInfo info)
{
ArrayConstIterState *state = (ArrayConstIterState *) info->state;
pfree(state->elem_values);
pfree(state->elem_nulls);
list_free(state->opexpr.args);
pfree(state);
}
/*
* PredIterInfo routines for iterating over a ScalarArrayOpExpr with a
* one-dimensional ArrayExpr array operand.
*/
typedef struct
{
OpExpr opexpr;
ListCell *next;
} ArrayExprIterState;
static void
arrayexpr_startup_fn(Node *clause, PredIterInfo info)
{
ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) clause;
ArrayExprIterState *state;
ArrayExpr *arrayexpr;
/* Create working state struct */
state = (ArrayExprIterState *) palloc(sizeof(ArrayExprIterState));
info->state = (void *) state;
/* Set up a dummy OpExpr to return as the per-item node */
state->opexpr.xpr.type = T_OpExpr;
state->opexpr.opno = saop->opno;
state->opexpr.opfuncid = saop->opfuncid;
state->opexpr.opresulttype = BOOLOID;
state->opexpr.opretset = false;
state->opexpr.opcollid = InvalidOid;
state->opexpr.inputcollid = saop->inputcollid;
state->opexpr.args = list_copy(saop->args);
/* Initialize iteration variable to first member of ArrayExpr */
arrayexpr = (ArrayExpr *) lsecond(saop->args);
state->next = list_head(arrayexpr->elements);
}
static Node *
arrayexpr_next_fn(PredIterInfo info)
{
ArrayExprIterState *state = (ArrayExprIterState *) info->state;
if (state->next == NULL)
return NULL;
lsecond(state->opexpr.args) = lfirst(state->next);
state->next = lnext(state->next);
return (Node *) &(state->opexpr);
}
static void
arrayexpr_cleanup_fn(PredIterInfo info)
{
ArrayExprIterState *state = (ArrayExprIterState *) info->state;
list_free(state->opexpr.args);
pfree(state);
}
/*----------
* predicate_implied_by_simple_clause
* Does the predicate implication test for a "simple clause" predicate
* and a "simple clause" restriction.
*
* We return TRUE if able to prove the implication, FALSE if not.
*
* We have three strategies for determining whether one simple clause
* implies another:
*
* A simple and general way is to see if they are equal(); this works for any
* kind of expression. (Actually, there is an implied assumption that the
* functions in the expression are immutable, ie dependent only on their input
* arguments --- but this was checked for the predicate by the caller.)
*
* When the predicate is of the form "foo IS NOT NULL", we can conclude that
* the predicate is implied if the clause is a strict operator or function
* that has "foo" as an input. In this case the clause must yield NULL when
* "foo" is NULL, which we can take as equivalent to FALSE because we know
* we are within an AND/OR subtree of a WHERE clause. (Again, "foo" is
* already known immutable, so the clause will certainly always fail.)
*
* Finally, we may be able to deduce something using knowledge about btree
* operator families; this is encapsulated in btree_predicate_proof().
*----------
*/
static bool
predicate_implied_by_simple_clause(Expr *predicate, Node *clause)
{
/* Allow interrupting long proof attempts */
CHECK_FOR_INTERRUPTS();
/* First try the equal() test */
if (equal((Node *) predicate, clause))
return true;
/* Next try the IS NOT NULL case */
if (predicate && IsA(predicate, NullTest) &&
((NullTest *) predicate)->nulltesttype == IS_NOT_NULL)
{
Expr *nonnullarg = ((NullTest *) predicate)->arg;
/* row IS NOT NULL does not act in the simple way we have in mind */
if (!((NullTest *) predicate)->argisrow)
{
if (is_opclause(clause) &&
list_member_strip(((OpExpr *) clause)->args, nonnullarg) &&
op_strict(((OpExpr *) clause)->opno))
return true;
if (is_funcclause(clause) &&
list_member_strip(((FuncExpr *) clause)->args, nonnullarg) &&
func_strict(((FuncExpr *) clause)->funcid))
return true;
}
return false; /* we can't succeed below... */
}
/* Else try btree operator knowledge */
return btree_predicate_proof(predicate, clause, false);
}
/*----------
* predicate_refuted_by_simple_clause
* Does the predicate refutation test for a "simple clause" predicate
* and a "simple clause" restriction.
*
* We return TRUE if able to prove the refutation, FALSE if not.
*
* Unlike the implication case, checking for equal() clauses isn't
* helpful.
*
* When the predicate is of the form "foo IS NULL", we can conclude that
* the predicate is refuted if the clause is a strict operator or function
* that has "foo" as an input (see notes for implication case), or if the
* clause is "foo IS NOT NULL". A clause "foo IS NULL" refutes a predicate
* "foo IS NOT NULL", but unfortunately does not refute strict predicates,
* because we are looking for strong refutation. (The motivation for covering
* these cases is to support using IS NULL/IS NOT NULL as partition-defining
* constraints.)
*
* Finally, we may be able to deduce something using knowledge about btree
* operator families; this is encapsulated in btree_predicate_proof().
*----------
*/
static bool
predicate_refuted_by_simple_clause(Expr *predicate, Node *clause)
{
/* Allow interrupting long proof attempts */
CHECK_FOR_INTERRUPTS();
/* A simple clause can't refute itself */
/* Worth checking because of relation_excluded_by_constraints() */
if ((Node *) predicate == clause)
return false;
/* Try the predicate-IS-NULL case */
if (predicate && IsA(predicate, NullTest) &&
((NullTest *) predicate)->nulltesttype == IS_NULL)
{
Expr *isnullarg = ((NullTest *) predicate)->arg;
/* row IS NULL does not act in the simple way we have in mind */
if (((NullTest *) predicate)->argisrow)
return false;
/* Any strict op/func on foo refutes foo IS NULL */
if (is_opclause(clause) &&
list_member_strip(((OpExpr *) clause)->args, isnullarg) &&
op_strict(((OpExpr *) clause)->opno))
return true;
if (is_funcclause(clause) &&
list_member_strip(((FuncExpr *) clause)->args, isnullarg) &&
func_strict(((FuncExpr *) clause)->funcid))
return true;
/* foo IS NOT NULL refutes foo IS NULL */
if (clause && IsA(clause, NullTest) &&
((NullTest *) clause)->nulltesttype == IS_NOT_NULL &&
!((NullTest *) clause)->argisrow &&
equal(((NullTest *) clause)->arg, isnullarg))
return true;
return false; /* we can't succeed below... */
}
/* Try the clause-IS-NULL case */
if (clause && IsA(clause, NullTest) &&
((NullTest *) clause)->nulltesttype == IS_NULL)
{
Expr *isnullarg = ((NullTest *) clause)->arg;
/* row IS NULL does not act in the simple way we have in mind */
if (((NullTest *) clause)->argisrow)
return false;
/* foo IS NULL refutes foo IS NOT NULL */
if (predicate && IsA(predicate, NullTest) &&
((NullTest *) predicate)->nulltesttype == IS_NOT_NULL &&
!((NullTest *) predicate)->argisrow &&
equal(((NullTest *) predicate)->arg, isnullarg))
return true;
return false; /* we can't succeed below... */
}
/* Else try btree operator knowledge */
return btree_predicate_proof(predicate, clause, true);
}
/*
* If clause asserts the non-truth of a subclause, return that subclause;
* otherwise return NULL.
*/
static Node *
extract_not_arg(Node *clause)
{
if (clause == NULL)
return NULL;
if (IsA(clause, BoolExpr))
{
BoolExpr *bexpr = (BoolExpr *) clause;
if (bexpr->boolop == NOT_EXPR)
return (Node *) linitial(bexpr->args);
}
else if (IsA(clause, BooleanTest))
{
BooleanTest *btest = (BooleanTest *) clause;
if (btest->booltesttype == IS_NOT_TRUE ||
btest->booltesttype == IS_FALSE ||
btest->booltesttype == IS_UNKNOWN)
return (Node *) btest->arg;
}
return NULL;
}
/*
* If clause asserts the falsity of a subclause, return that subclause;
* otherwise return NULL.
*/
static Node *
extract_strong_not_arg(Node *clause)
{
if (clause == NULL)
return NULL;
if (IsA(clause, BoolExpr))
{
BoolExpr *bexpr = (BoolExpr *) clause;
if (bexpr->boolop == NOT_EXPR)
return (Node *) linitial(bexpr->args);
}
else if (IsA(clause, BooleanTest))
{
BooleanTest *btest = (BooleanTest *) clause;
if (btest->booltesttype == IS_FALSE)
return (Node *) btest->arg;
}
return NULL;
}
/*
* Check whether an Expr is equal() to any member of a list, ignoring
* any top-level RelabelType nodes. This is legitimate for the purposes
* we use it for (matching IS [NOT] NULL arguments to arguments of strict
* functions) because RelabelType doesn't change null-ness. It's helpful
* for cases such as a varchar argument of a strict function on text.
*/
static bool
list_member_strip(List *list, Expr *datum)
{
ListCell *cell;
if (datum && IsA(datum, RelabelType))
datum = ((RelabelType *) datum)->arg;
foreach(cell, list)
{
Expr *elem = (Expr *) lfirst(cell);
if (elem && IsA(elem, RelabelType))
elem = ((RelabelType *) elem)->arg;
if (equal(elem, datum))
return true;
}
return false;
}
/*
* Define an "operator implication table" for btree operators ("strategies"),
* and a similar table for refutation.
*
* The strategy numbers defined by btree indexes (see access/skey.h) are:
* (1) < (2) <= (3) = (4) >= (5) >
* and in addition we use (6) to represent <>. <> is not a btree-indexable
* operator, but we assume here that if an equality operator of a btree
* opfamily has a negator operator, the negator behaves as <> for the opfamily.
* (This convention is also known to get_op_btree_interpretation().)
*
* The interpretation of:
*
* test_op = BT_implic_table[given_op-1][target_op-1]
*
* where test_op, given_op and target_op are strategy numbers (from 1 to 6)
* of btree operators, is as follows:
*
* If you know, for some ATTR, that "ATTR given_op CONST1" is true, and you
* want to determine whether "ATTR target_op CONST2" must also be true, then
* you can use "CONST2 test_op CONST1" as a test. If this test returns true,
* then the target expression must be true; if the test returns false, then
* the target expression may be false.
*
* For example, if clause is "Quantity > 10" and pred is "Quantity > 5"
* then we test "5 <= 10" which evals to true, so clause implies pred.
*
* Similarly, the interpretation of a BT_refute_table entry is:
*
* If you know, for some ATTR, that "ATTR given_op CONST1" is true, and you
* want to determine whether "ATTR target_op CONST2" must be false, then
* you can use "CONST2 test_op CONST1" as a test. If this test returns true,
* then the target expression must be false; if the test returns false, then
* the target expression may be true.
*
* For example, if clause is "Quantity > 10" and pred is "Quantity < 5"
* then we test "5 <= 10" which evals to true, so clause refutes pred.
*
* An entry where test_op == 0 means the implication cannot be determined.
*/
#define BTLT BTLessStrategyNumber
#define BTLE BTLessEqualStrategyNumber
#define BTEQ BTEqualStrategyNumber
#define BTGE BTGreaterEqualStrategyNumber
#define BTGT BTGreaterStrategyNumber
#define BTNE ROWCOMPARE_NE
static const StrategyNumber BT_implic_table[6][6] = {
/*
* The target operator:
*
* LT LE EQ GE GT NE
*/
{BTGE, BTGE, 0, 0, 0, BTGE}, /* LT */
{BTGT, BTGE, 0, 0, 0, BTGT}, /* LE */
{BTGT, BTGE, BTEQ, BTLE, BTLT, BTNE}, /* EQ */
{0, 0, 0, BTLE, BTLT, BTLT}, /* GE */
{0, 0, 0, BTLE, BTLE, BTLE}, /* GT */
{0, 0, 0, 0, 0, BTEQ} /* NE */
};
static const StrategyNumber BT_refute_table[6][6] = {
/*
* The target operator:
*
* LT LE EQ GE GT NE
*/
{0, 0, BTGE, BTGE, BTGE, 0}, /* LT */
{0, 0, BTGT, BTGT, BTGE, 0}, /* LE */
{BTLE, BTLT, BTNE, BTGT, BTGE, BTEQ}, /* EQ */
{BTLE, BTLT, BTLT, 0, 0, 0}, /* GE */
{BTLE, BTLE, BTLE, 0, 0, 0}, /* GT */
{0, 0, BTEQ, 0, 0, 0} /* NE */
};
/*
* btree_predicate_proof
* Does the predicate implication or refutation test for a "simple clause"
* predicate and a "simple clause" restriction, when both are simple
* operator clauses using related btree operators.
*
* When refute_it == false, we want to prove the predicate true;
* when refute_it == true, we want to prove the predicate false.
* (There is enough common code to justify handling these two cases
* in one routine.) We return TRUE if able to make the proof, FALSE
* if not able to prove it.
*
* What we look for here is binary boolean opclauses of the form
* "foo op constant", where "foo" is the same in both clauses. The operators
* and constants can be different but the operators must be in the same btree
* operator family. We use the above operator implication tables to
* derive implications between nonidentical clauses. (Note: "foo" is known
* immutable, and constants are surely immutable, but we have to check that
* the operators are too. As of 8.0 it's possible for opfamilies to contain
* operators that are merely stable, and we dare not make deductions with
* these.)
*/
static bool
btree_predicate_proof(Expr *predicate, Node *clause, bool refute_it)
{
Node *leftop,
*rightop;
Node *pred_var,
*clause_var;
Const *pred_const,
*clause_const;
bool pred_var_on_left,
clause_var_on_left;
Oid pred_collation,
clause_collation;
Oid pred_op,
clause_op,
test_op;
Expr *test_expr;
ExprState *test_exprstate;
Datum test_result;
bool isNull;
EState *estate;
MemoryContext oldcontext;
/*
* Both expressions must be binary opclauses with a Const on one side, and
* identical subexpressions on the other sides. Note we don't have to
* think about binary relabeling of the Const node, since that would have
* been folded right into the Const.
*
* If either Const is null, we also fail right away; this assumes that the
* test operator will always be strict.
*/
if (!is_opclause(predicate))
return false;
leftop = get_leftop(predicate);
rightop = get_rightop(predicate);
if (rightop == NULL)
return false; /* not a binary opclause */
if (IsA(rightop, Const))
{
pred_var = leftop;
pred_const = (Const *) rightop;
pred_var_on_left = true;
}
else if (IsA(leftop, Const))
{
pred_var = rightop;
pred_const = (Const *) leftop;
pred_var_on_left = false;
}
else
return false; /* no Const to be found */
if (pred_const->constisnull)
return false;
if (!is_opclause(clause))
return false;
leftop = get_leftop((Expr *) clause);
rightop = get_rightop((Expr *) clause);
if (rightop == NULL)
return false; /* not a binary opclause */
if (IsA(rightop, Const))
{
clause_var = leftop;
clause_const = (Const *) rightop;
clause_var_on_left = true;
}
else if (IsA(leftop, Const))
{
clause_var = rightop;
clause_const = (Const *) leftop;
clause_var_on_left = false;
}
else
return false; /* no Const to be found */
if (clause_const->constisnull)
return false;
/*
* Check for matching subexpressions on the non-Const sides. We used to
* only allow a simple Var, but it's about as easy to allow any
* expression. Remember we already know that the pred expression does not
* contain any non-immutable functions, so identical expressions should
* yield identical results.
*/
if (!equal(pred_var, clause_var))
return false;
/*
* They'd better have the same collation, too.
*/
pred_collation = ((OpExpr *) predicate)->inputcollid;
clause_collation = ((OpExpr *) clause)->inputcollid;
if (pred_collation != clause_collation)
return false;
/*
* Okay, get the operators in the two clauses we're comparing. Commute
* them if needed so that we can assume the variables are on the left.
*/
pred_op = ((OpExpr *) predicate)->opno;
if (!pred_var_on_left)
{
pred_op = get_commutator(pred_op);
if (!OidIsValid(pred_op))
return false;
}
clause_op = ((OpExpr *) clause)->opno;
if (!clause_var_on_left)
{
clause_op = get_commutator(clause_op);
if (!OidIsValid(clause_op))
return false;
}
/*
* Lookup the comparison operator using the system catalogs and the
* operator implication tables.
*/
test_op = get_btree_test_op(pred_op, clause_op, refute_it);
if (!OidIsValid(test_op))
{
/* couldn't find a suitable comparison operator */
return false;
}
/*
* Evaluate the test. For this we need an EState.
*/
estate = CreateExecutorState();
/* We can use the estate's working context to avoid memory leaks. */
oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
/* Build expression tree */
test_expr = make_opclause(test_op,
BOOLOID,
false,
(Expr *) pred_const,
(Expr *) clause_const,
InvalidOid,
pred_collation);
/* Fill in opfuncids */
fix_opfuncids((Node *) test_expr);
/* Prepare it for execution */
test_exprstate = ExecInitExpr(test_expr, NULL);
/* And execute it. */
test_result = ExecEvalExprSwitchContext(test_exprstate,
GetPerTupleExprContext(estate),
&isNull, NULL);
/* Get back to outer memory context */
MemoryContextSwitchTo(oldcontext);
/* Release all the junk we just created */
FreeExecutorState(estate);
if (isNull)
{
/* Treat a null result as non-proof ... but it's a tad fishy ... */
elog(DEBUG2, "null predicate test result");
return false;
}
return DatumGetBool(test_result);
}
/*
* We use a lookaside table to cache the result of btree proof operator
* lookups, since the actual lookup is pretty expensive and doesn't change
* for any given pair of operators (at least as long as pg_amop doesn't
* change). A single hash entry stores both positive and negative results
* for a given pair of operators.
*/
typedef struct OprProofCacheKey
{
Oid pred_op; /* predicate operator */
Oid clause_op; /* clause operator */
} OprProofCacheKey;
typedef struct OprProofCacheEntry
{
/* the hash lookup key MUST BE FIRST */
OprProofCacheKey key;
bool have_implic; /* do we know the implication result? */
bool have_refute; /* do we know the refutation result? */
Oid implic_test_op; /* OID of the operator, or 0 if none */
Oid refute_test_op; /* OID of the operator, or 0 if none */
} OprProofCacheEntry;
static HTAB *OprProofCacheHash = NULL;
/*
* get_btree_test_op
* Identify the comparison operator needed for a btree-operator
* proof or refutation.
*
* Given the truth of a predicate "var pred_op const1", we are attempting to
* prove or refute a clause "var clause_op const2". The identities of the two
* operators are sufficient to determine the operator (if any) to compare
* const2 to const1 with.
*
* Returns the OID of the operator to use, or InvalidOid if no proof is
* possible.
*/
static Oid
get_btree_test_op(Oid pred_op, Oid clause_op, bool refute_it)
{
OprProofCacheKey key;
OprProofCacheEntry *cache_entry;
bool cfound;
Oid test_op = InvalidOid;
bool found = false;
List *pred_op_infos,
*clause_op_infos;
ListCell *lcp,
*lcc;
/*
* Find or make a cache entry for this pair of operators.
*/
if (OprProofCacheHash == NULL)
{
/* First time through: initialize the hash table */
HASHCTL ctl;
MemSet(&ctl, 0, sizeof(ctl));
ctl.keysize = sizeof(OprProofCacheKey);
ctl.entrysize = sizeof(OprProofCacheEntry);
ctl.hash = tag_hash;
OprProofCacheHash = hash_create("Btree proof lookup cache", 256,
&ctl, HASH_ELEM | HASH_FUNCTION);
/* Arrange to flush cache on pg_amop changes */
CacheRegisterSyscacheCallback(AMOPOPID,
InvalidateOprProofCacheCallBack,
(Datum) 0);
}
key.pred_op = pred_op;
key.clause_op = clause_op;
cache_entry = (OprProofCacheEntry *) hash_search(OprProofCacheHash,
(void *) &key,
HASH_ENTER, &cfound);
if (!cfound)
{
/* new cache entry, set it invalid */
cache_entry->have_implic = false;
cache_entry->have_refute = false;
}
else
{
/* pre-existing cache entry, see if we know the answer */
if (refute_it)
{
if (cache_entry->have_refute)
return cache_entry->refute_test_op;
}
else
{
if (cache_entry->have_implic)
return cache_entry->implic_test_op;
}
}
/*
* Try to find a btree opfamily containing the given operators.
*
* We must find a btree opfamily that contains both operators, else the
* implication can't be determined. Also, the opfamily must contain a
* suitable test operator taking the operators' righthand datatypes.
*
* If there are multiple matching opfamilies, assume we can use any one to
* determine the logical relationship of the two operators and the correct
* corresponding test operator. This should work for any logically
* consistent opfamilies.
*/
clause_op_infos = get_op_btree_interpretation(clause_op);
if (clause_op_infos)
pred_op_infos = get_op_btree_interpretation(pred_op);
else /* no point in looking */
pred_op_infos = NIL;
foreach(lcp, pred_op_infos)
{
OpBtreeInterpretation *pred_op_info = lfirst(lcp);
Oid opfamily_id = pred_op_info->opfamily_id;
foreach(lcc, clause_op_infos)
{
OpBtreeInterpretation *clause_op_info = lfirst(lcc);
StrategyNumber pred_strategy,
clause_strategy,
test_strategy;
/* Must find them in same opfamily */
if (opfamily_id != clause_op_info->opfamily_id)
continue;
/* Lefttypes should match */
Assert(clause_op_info->oplefttype == pred_op_info->oplefttype);
pred_strategy = pred_op_info->strategy;
clause_strategy = clause_op_info->strategy;
/*
* Look up the "test" strategy number in the implication table
*/
if (refute_it)
test_strategy = BT_refute_table[clause_strategy - 1][pred_strategy - 1];
else
test_strategy = BT_implic_table[clause_strategy - 1][pred_strategy - 1];
if (test_strategy == 0)
{
/* Can't determine implication using this interpretation */
continue;
}
/*
* See if opfamily has an operator for the test strategy and the
* datatypes.
*/
if (test_strategy == BTNE)
{
test_op = get_opfamily_member(opfamily_id,
pred_op_info->oprighttype,
clause_op_info->oprighttype,
BTEqualStrategyNumber);
if (OidIsValid(test_op))
test_op = get_negator(test_op);
}
else
{
test_op = get_opfamily_member(opfamily_id,
pred_op_info->oprighttype,
clause_op_info->oprighttype,
test_strategy);
}
if (!OidIsValid(test_op))
continue;
/*
* Last check: test_op must be immutable.
*
* Note that we require only the test_op to be immutable, not the
* original clause_op. (pred_op is assumed to have been checked
* immutable by the caller.) Essentially we are assuming that the
* opfamily is consistent even if it contains operators that are
* merely stable.
*/
if (op_volatile(test_op) == PROVOLATILE_IMMUTABLE)
{
found = true;
break;
}
}
if (found)
break;
}
list_free_deep(pred_op_infos);
list_free_deep(clause_op_infos);
if (!found)
{
/* couldn't find a suitable comparison operator */
test_op = InvalidOid;
}
/* Cache the result, whether positive or negative */
if (refute_it)
{
cache_entry->refute_test_op = test_op;
cache_entry->have_refute = true;
}
else
{
cache_entry->implic_test_op = test_op;
cache_entry->have_implic = true;
}
return test_op;
}
/*
* Callback for pg_amop inval events
*/
static void
InvalidateOprProofCacheCallBack(Datum arg, int cacheid, ItemPointer tuplePtr)
{
HASH_SEQ_STATUS status;
OprProofCacheEntry *hentry;
Assert(OprProofCacheHash != NULL);
/* Currently we just reset all entries; hard to be smarter ... */
hash_seq_init(&status, OprProofCacheHash);
while ((hentry = (OprProofCacheEntry *) hash_seq_search(&status)) != NULL)
{
hentry->have_implic = false;
hentry->have_refute = false;
}
}