mirror of
https://github.com/postgres/postgres.git
synced 2025-04-29 13:56:47 +03:00
get_op_btree_interpretation assumed this in order to save some duplication of code, but it's not true in general anymore because we added <> support to btree_gist. (We still assume it for btree opclasses, though.) Also, essentially the same logic was baked into predtest.c. Get rid of that duplication by generalizing get_op_btree_interpretation so that it can be used by predtest.c. Per bug report from Denis de Bernardy and investigation by Jeff Davis, though I didn't use Jeff's patch exactly as-is. Back-patch to 9.1; we do not support this usage before that.
1757 lines
49 KiB
C
1757 lines
49 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* predtest.c
|
|
* Routines to attempt to prove logical implications between predicate
|
|
* expressions.
|
|
*
|
|
* Portions Copyright (c) 1996-2011, PostgreSQL Global Development Group
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
|
*
|
|
*
|
|
* IDENTIFICATION
|
|
* src/backend/optimizer/util/predtest.c
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
#include "postgres.h"
|
|
|
|
#include "catalog/pg_am.h"
|
|
#include "catalog/pg_amop.h"
|
|
#include "catalog/pg_proc.h"
|
|
#include "catalog/pg_type.h"
|
|
#include "executor/executor.h"
|
|
#include "miscadmin.h"
|
|
#include "nodes/nodeFuncs.h"
|
|
#include "optimizer/clauses.h"
|
|
#include "optimizer/planmain.h"
|
|
#include "optimizer/predtest.h"
|
|
#include "utils/array.h"
|
|
#include "utils/inval.h"
|
|
#include "utils/lsyscache.h"
|
|
#include "utils/syscache.h"
|
|
|
|
|
|
/*
|
|
* Proof attempts involving large arrays in ScalarArrayOpExpr nodes are
|
|
* likely to require O(N^2) time, and more often than not fail anyway.
|
|
* So we set an arbitrary limit on the number of array elements that
|
|
* we will allow to be treated as an AND or OR clause.
|
|
* XXX is it worth exposing this as a GUC knob?
|
|
*/
|
|
#define MAX_SAOP_ARRAY_SIZE 100
|
|
|
|
/*
|
|
* To avoid redundant coding in predicate_implied_by_recurse and
|
|
* predicate_refuted_by_recurse, we need to abstract out the notion of
|
|
* iterating over the components of an expression that is logically an AND
|
|
* or OR structure. There are multiple sorts of expression nodes that can
|
|
* be treated as ANDs or ORs, and we don't want to code each one separately.
|
|
* Hence, these types and support routines.
|
|
*/
|
|
typedef enum
|
|
{
|
|
CLASS_ATOM, /* expression that's not AND or OR */
|
|
CLASS_AND, /* expression with AND semantics */
|
|
CLASS_OR /* expression with OR semantics */
|
|
} PredClass;
|
|
|
|
typedef struct PredIterInfoData *PredIterInfo;
|
|
|
|
typedef struct PredIterInfoData
|
|
{
|
|
/* node-type-specific iteration state */
|
|
void *state;
|
|
/* initialize to do the iteration */
|
|
void (*startup_fn) (Node *clause, PredIterInfo info);
|
|
/* next-component iteration function */
|
|
Node *(*next_fn) (PredIterInfo info);
|
|
/* release resources when done with iteration */
|
|
void (*cleanup_fn) (PredIterInfo info);
|
|
} PredIterInfoData;
|
|
|
|
#define iterate_begin(item, clause, info) \
|
|
do { \
|
|
Node *item; \
|
|
(info).startup_fn((clause), &(info)); \
|
|
while ((item = (info).next_fn(&(info))) != NULL)
|
|
|
|
#define iterate_end(info) \
|
|
(info).cleanup_fn(&(info)); \
|
|
} while (0)
|
|
|
|
|
|
static bool predicate_implied_by_recurse(Node *clause, Node *predicate);
|
|
static bool predicate_refuted_by_recurse(Node *clause, Node *predicate);
|
|
static PredClass predicate_classify(Node *clause, PredIterInfo info);
|
|
static void list_startup_fn(Node *clause, PredIterInfo info);
|
|
static Node *list_next_fn(PredIterInfo info);
|
|
static void list_cleanup_fn(PredIterInfo info);
|
|
static void boolexpr_startup_fn(Node *clause, PredIterInfo info);
|
|
static void arrayconst_startup_fn(Node *clause, PredIterInfo info);
|
|
static Node *arrayconst_next_fn(PredIterInfo info);
|
|
static void arrayconst_cleanup_fn(PredIterInfo info);
|
|
static void arrayexpr_startup_fn(Node *clause, PredIterInfo info);
|
|
static Node *arrayexpr_next_fn(PredIterInfo info);
|
|
static void arrayexpr_cleanup_fn(PredIterInfo info);
|
|
static bool predicate_implied_by_simple_clause(Expr *predicate, Node *clause);
|
|
static bool predicate_refuted_by_simple_clause(Expr *predicate, Node *clause);
|
|
static Node *extract_not_arg(Node *clause);
|
|
static Node *extract_strong_not_arg(Node *clause);
|
|
static bool list_member_strip(List *list, Expr *datum);
|
|
static bool btree_predicate_proof(Expr *predicate, Node *clause,
|
|
bool refute_it);
|
|
static Oid get_btree_test_op(Oid pred_op, Oid clause_op, bool refute_it);
|
|
static void InvalidateOprProofCacheCallBack(Datum arg, int cacheid, ItemPointer tuplePtr);
|
|
|
|
|
|
/*
|
|
* predicate_implied_by
|
|
* Recursively checks whether the clauses in restrictinfo_list imply
|
|
* that the given predicate is true.
|
|
*
|
|
* The top-level List structure of each list corresponds to an AND list.
|
|
* We assume that eval_const_expressions() has been applied and so there
|
|
* are no un-flattened ANDs or ORs (e.g., no AND immediately within an AND,
|
|
* including AND just below the top-level List structure).
|
|
* If this is not true we might fail to prove an implication that is
|
|
* valid, but no worse consequences will ensue.
|
|
*
|
|
* We assume the predicate has already been checked to contain only
|
|
* immutable functions and operators. (In most current uses this is true
|
|
* because the predicate is part of an index predicate that has passed
|
|
* CheckPredicate().) We dare not make deductions based on non-immutable
|
|
* functions, because they might change answers between the time we make
|
|
* the plan and the time we execute the plan.
|
|
*/
|
|
bool
|
|
predicate_implied_by(List *predicate_list, List *restrictinfo_list)
|
|
{
|
|
Node *p,
|
|
*r;
|
|
|
|
if (predicate_list == NIL)
|
|
return true; /* no predicate: implication is vacuous */
|
|
if (restrictinfo_list == NIL)
|
|
return false; /* no restriction: implication must fail */
|
|
|
|
/*
|
|
* If either input is a single-element list, replace it with its lone
|
|
* member; this avoids one useless level of AND-recursion. We only need
|
|
* to worry about this at top level, since eval_const_expressions should
|
|
* have gotten rid of any trivial ANDs or ORs below that.
|
|
*/
|
|
if (list_length(predicate_list) == 1)
|
|
p = (Node *) linitial(predicate_list);
|
|
else
|
|
p = (Node *) predicate_list;
|
|
if (list_length(restrictinfo_list) == 1)
|
|
r = (Node *) linitial(restrictinfo_list);
|
|
else
|
|
r = (Node *) restrictinfo_list;
|
|
|
|
/* And away we go ... */
|
|
return predicate_implied_by_recurse(r, p);
|
|
}
|
|
|
|
/*
|
|
* predicate_refuted_by
|
|
* Recursively checks whether the clauses in restrictinfo_list refute
|
|
* the given predicate (that is, prove it false).
|
|
*
|
|
* This is NOT the same as !(predicate_implied_by), though it is similar
|
|
* in the technique and structure of the code.
|
|
*
|
|
* An important fine point is that truth of the clauses must imply that
|
|
* the predicate returns FALSE, not that it does not return TRUE. This
|
|
* is normally used to try to refute CHECK constraints, and the only
|
|
* thing we can assume about a CHECK constraint is that it didn't return
|
|
* FALSE --- a NULL result isn't a violation per the SQL spec. (Someday
|
|
* perhaps this code should be extended to support both "strong" and
|
|
* "weak" refutation, but for now we only need "strong".)
|
|
*
|
|
* The top-level List structure of each list corresponds to an AND list.
|
|
* We assume that eval_const_expressions() has been applied and so there
|
|
* are no un-flattened ANDs or ORs (e.g., no AND immediately within an AND,
|
|
* including AND just below the top-level List structure).
|
|
* If this is not true we might fail to prove an implication that is
|
|
* valid, but no worse consequences will ensue.
|
|
*
|
|
* We assume the predicate has already been checked to contain only
|
|
* immutable functions and operators. We dare not make deductions based on
|
|
* non-immutable functions, because they might change answers between the
|
|
* time we make the plan and the time we execute the plan.
|
|
*/
|
|
bool
|
|
predicate_refuted_by(List *predicate_list, List *restrictinfo_list)
|
|
{
|
|
Node *p,
|
|
*r;
|
|
|
|
if (predicate_list == NIL)
|
|
return false; /* no predicate: no refutation is possible */
|
|
if (restrictinfo_list == NIL)
|
|
return false; /* no restriction: refutation must fail */
|
|
|
|
/*
|
|
* If either input is a single-element list, replace it with its lone
|
|
* member; this avoids one useless level of AND-recursion. We only need
|
|
* to worry about this at top level, since eval_const_expressions should
|
|
* have gotten rid of any trivial ANDs or ORs below that.
|
|
*/
|
|
if (list_length(predicate_list) == 1)
|
|
p = (Node *) linitial(predicate_list);
|
|
else
|
|
p = (Node *) predicate_list;
|
|
if (list_length(restrictinfo_list) == 1)
|
|
r = (Node *) linitial(restrictinfo_list);
|
|
else
|
|
r = (Node *) restrictinfo_list;
|
|
|
|
/* And away we go ... */
|
|
return predicate_refuted_by_recurse(r, p);
|
|
}
|
|
|
|
/*----------
|
|
* predicate_implied_by_recurse
|
|
* Does the predicate implication test for non-NULL restriction and
|
|
* predicate clauses.
|
|
*
|
|
* The logic followed here is ("=>" means "implies"):
|
|
* atom A => atom B iff: predicate_implied_by_simple_clause says so
|
|
* atom A => AND-expr B iff: A => each of B's components
|
|
* atom A => OR-expr B iff: A => any of B's components
|
|
* AND-expr A => atom B iff: any of A's components => B
|
|
* AND-expr A => AND-expr B iff: A => each of B's components
|
|
* AND-expr A => OR-expr B iff: A => any of B's components,
|
|
* *or* any of A's components => B
|
|
* OR-expr A => atom B iff: each of A's components => B
|
|
* OR-expr A => AND-expr B iff: A => each of B's components
|
|
* OR-expr A => OR-expr B iff: each of A's components => any of B's
|
|
*
|
|
* An "atom" is anything other than an AND or OR node. Notice that we don't
|
|
* have any special logic to handle NOT nodes; these should have been pushed
|
|
* down or eliminated where feasible by prepqual.c.
|
|
*
|
|
* We can't recursively expand either side first, but have to interleave
|
|
* the expansions per the above rules, to be sure we handle all of these
|
|
* examples:
|
|
* (x OR y) => (x OR y OR z)
|
|
* (x AND y AND z) => (x AND y)
|
|
* (x AND y) => ((x AND y) OR z)
|
|
* ((x OR y) AND z) => (x OR y)
|
|
* This is still not an exhaustive test, but it handles most normal cases
|
|
* under the assumption that both inputs have been AND/OR flattened.
|
|
*
|
|
* We have to be prepared to handle RestrictInfo nodes in the restrictinfo
|
|
* tree, though not in the predicate tree.
|
|
*----------
|
|
*/
|
|
static bool
|
|
predicate_implied_by_recurse(Node *clause, Node *predicate)
|
|
{
|
|
PredIterInfoData clause_info;
|
|
PredIterInfoData pred_info;
|
|
PredClass pclass;
|
|
bool result;
|
|
|
|
/* skip through RestrictInfo */
|
|
Assert(clause != NULL);
|
|
if (IsA(clause, RestrictInfo))
|
|
clause = (Node *) ((RestrictInfo *) clause)->clause;
|
|
|
|
pclass = predicate_classify(predicate, &pred_info);
|
|
|
|
switch (predicate_classify(clause, &clause_info))
|
|
{
|
|
case CLASS_AND:
|
|
switch (pclass)
|
|
{
|
|
case CLASS_AND:
|
|
|
|
/*
|
|
* AND-clause => AND-clause if A implies each of B's items
|
|
*/
|
|
result = true;
|
|
iterate_begin(pitem, predicate, pred_info)
|
|
{
|
|
if (!predicate_implied_by_recurse(clause, pitem))
|
|
{
|
|
result = false;
|
|
break;
|
|
}
|
|
}
|
|
iterate_end(pred_info);
|
|
return result;
|
|
|
|
case CLASS_OR:
|
|
|
|
/*
|
|
* AND-clause => OR-clause if A implies any of B's items
|
|
*
|
|
* Needed to handle (x AND y) => ((x AND y) OR z)
|
|
*/
|
|
result = false;
|
|
iterate_begin(pitem, predicate, pred_info)
|
|
{
|
|
if (predicate_implied_by_recurse(clause, pitem))
|
|
{
|
|
result = true;
|
|
break;
|
|
}
|
|
}
|
|
iterate_end(pred_info);
|
|
if (result)
|
|
return result;
|
|
|
|
/*
|
|
* Also check if any of A's items implies B
|
|
*
|
|
* Needed to handle ((x OR y) AND z) => (x OR y)
|
|
*/
|
|
iterate_begin(citem, clause, clause_info)
|
|
{
|
|
if (predicate_implied_by_recurse(citem, predicate))
|
|
{
|
|
result = true;
|
|
break;
|
|
}
|
|
}
|
|
iterate_end(clause_info);
|
|
return result;
|
|
|
|
case CLASS_ATOM:
|
|
|
|
/*
|
|
* AND-clause => atom if any of A's items implies B
|
|
*/
|
|
result = false;
|
|
iterate_begin(citem, clause, clause_info)
|
|
{
|
|
if (predicate_implied_by_recurse(citem, predicate))
|
|
{
|
|
result = true;
|
|
break;
|
|
}
|
|
}
|
|
iterate_end(clause_info);
|
|
return result;
|
|
}
|
|
break;
|
|
|
|
case CLASS_OR:
|
|
switch (pclass)
|
|
{
|
|
case CLASS_OR:
|
|
|
|
/*
|
|
* OR-clause => OR-clause if each of A's items implies any
|
|
* of B's items. Messy but can't do it any more simply.
|
|
*/
|
|
result = true;
|
|
iterate_begin(citem, clause, clause_info)
|
|
{
|
|
bool presult = false;
|
|
|
|
iterate_begin(pitem, predicate, pred_info)
|
|
{
|
|
if (predicate_implied_by_recurse(citem, pitem))
|
|
{
|
|
presult = true;
|
|
break;
|
|
}
|
|
}
|
|
iterate_end(pred_info);
|
|
if (!presult)
|
|
{
|
|
result = false; /* doesn't imply any of B's */
|
|
break;
|
|
}
|
|
}
|
|
iterate_end(clause_info);
|
|
return result;
|
|
|
|
case CLASS_AND:
|
|
case CLASS_ATOM:
|
|
|
|
/*
|
|
* OR-clause => AND-clause if each of A's items implies B
|
|
*
|
|
* OR-clause => atom if each of A's items implies B
|
|
*/
|
|
result = true;
|
|
iterate_begin(citem, clause, clause_info)
|
|
{
|
|
if (!predicate_implied_by_recurse(citem, predicate))
|
|
{
|
|
result = false;
|
|
break;
|
|
}
|
|
}
|
|
iterate_end(clause_info);
|
|
return result;
|
|
}
|
|
break;
|
|
|
|
case CLASS_ATOM:
|
|
switch (pclass)
|
|
{
|
|
case CLASS_AND:
|
|
|
|
/*
|
|
* atom => AND-clause if A implies each of B's items
|
|
*/
|
|
result = true;
|
|
iterate_begin(pitem, predicate, pred_info)
|
|
{
|
|
if (!predicate_implied_by_recurse(clause, pitem))
|
|
{
|
|
result = false;
|
|
break;
|
|
}
|
|
}
|
|
iterate_end(pred_info);
|
|
return result;
|
|
|
|
case CLASS_OR:
|
|
|
|
/*
|
|
* atom => OR-clause if A implies any of B's items
|
|
*/
|
|
result = false;
|
|
iterate_begin(pitem, predicate, pred_info)
|
|
{
|
|
if (predicate_implied_by_recurse(clause, pitem))
|
|
{
|
|
result = true;
|
|
break;
|
|
}
|
|
}
|
|
iterate_end(pred_info);
|
|
return result;
|
|
|
|
case CLASS_ATOM:
|
|
|
|
/*
|
|
* atom => atom is the base case
|
|
*/
|
|
return
|
|
predicate_implied_by_simple_clause((Expr *) predicate,
|
|
clause);
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* can't get here */
|
|
elog(ERROR, "predicate_classify returned a bogus value");
|
|
return false;
|
|
}
|
|
|
|
/*----------
|
|
* predicate_refuted_by_recurse
|
|
* Does the predicate refutation test for non-NULL restriction and
|
|
* predicate clauses.
|
|
*
|
|
* The logic followed here is ("R=>" means "refutes"):
|
|
* atom A R=> atom B iff: predicate_refuted_by_simple_clause says so
|
|
* atom A R=> AND-expr B iff: A R=> any of B's components
|
|
* atom A R=> OR-expr B iff: A R=> each of B's components
|
|
* AND-expr A R=> atom B iff: any of A's components R=> B
|
|
* AND-expr A R=> AND-expr B iff: A R=> any of B's components,
|
|
* *or* any of A's components R=> B
|
|
* AND-expr A R=> OR-expr B iff: A R=> each of B's components
|
|
* OR-expr A R=> atom B iff: each of A's components R=> B
|
|
* OR-expr A R=> AND-expr B iff: each of A's components R=> any of B's
|
|
* OR-expr A R=> OR-expr B iff: A R=> each of B's components
|
|
*
|
|
* In addition, if the predicate is a NOT-clause then we can use
|
|
* A R=> NOT B if: A => B
|
|
* This works for several different SQL constructs that assert the non-truth
|
|
* of their argument, ie NOT, IS FALSE, IS NOT TRUE, IS UNKNOWN.
|
|
* Unfortunately we *cannot* use
|
|
* NOT A R=> B if: B => A
|
|
* because this type of reasoning fails to prove that B doesn't yield NULL.
|
|
* We can however make the more limited deduction that
|
|
* NOT A R=> A
|
|
*
|
|
* Other comments are as for predicate_implied_by_recurse().
|
|
*----------
|
|
*/
|
|
static bool
|
|
predicate_refuted_by_recurse(Node *clause, Node *predicate)
|
|
{
|
|
PredIterInfoData clause_info;
|
|
PredIterInfoData pred_info;
|
|
PredClass pclass;
|
|
Node *not_arg;
|
|
bool result;
|
|
|
|
/* skip through RestrictInfo */
|
|
Assert(clause != NULL);
|
|
if (IsA(clause, RestrictInfo))
|
|
clause = (Node *) ((RestrictInfo *) clause)->clause;
|
|
|
|
pclass = predicate_classify(predicate, &pred_info);
|
|
|
|
switch (predicate_classify(clause, &clause_info))
|
|
{
|
|
case CLASS_AND:
|
|
switch (pclass)
|
|
{
|
|
case CLASS_AND:
|
|
|
|
/*
|
|
* AND-clause R=> AND-clause if A refutes any of B's items
|
|
*
|
|
* Needed to handle (x AND y) R=> ((!x OR !y) AND z)
|
|
*/
|
|
result = false;
|
|
iterate_begin(pitem, predicate, pred_info)
|
|
{
|
|
if (predicate_refuted_by_recurse(clause, pitem))
|
|
{
|
|
result = true;
|
|
break;
|
|
}
|
|
}
|
|
iterate_end(pred_info);
|
|
if (result)
|
|
return result;
|
|
|
|
/*
|
|
* Also check if any of A's items refutes B
|
|
*
|
|
* Needed to handle ((x OR y) AND z) R=> (!x AND !y)
|
|
*/
|
|
iterate_begin(citem, clause, clause_info)
|
|
{
|
|
if (predicate_refuted_by_recurse(citem, predicate))
|
|
{
|
|
result = true;
|
|
break;
|
|
}
|
|
}
|
|
iterate_end(clause_info);
|
|
return result;
|
|
|
|
case CLASS_OR:
|
|
|
|
/*
|
|
* AND-clause R=> OR-clause if A refutes each of B's items
|
|
*/
|
|
result = true;
|
|
iterate_begin(pitem, predicate, pred_info)
|
|
{
|
|
if (!predicate_refuted_by_recurse(clause, pitem))
|
|
{
|
|
result = false;
|
|
break;
|
|
}
|
|
}
|
|
iterate_end(pred_info);
|
|
return result;
|
|
|
|
case CLASS_ATOM:
|
|
|
|
/*
|
|
* If B is a NOT-clause, A R=> B if A => B's arg
|
|
*/
|
|
not_arg = extract_not_arg(predicate);
|
|
if (not_arg &&
|
|
predicate_implied_by_recurse(clause, not_arg))
|
|
return true;
|
|
|
|
/*
|
|
* AND-clause R=> atom if any of A's items refutes B
|
|
*/
|
|
result = false;
|
|
iterate_begin(citem, clause, clause_info)
|
|
{
|
|
if (predicate_refuted_by_recurse(citem, predicate))
|
|
{
|
|
result = true;
|
|
break;
|
|
}
|
|
}
|
|
iterate_end(clause_info);
|
|
return result;
|
|
}
|
|
break;
|
|
|
|
case CLASS_OR:
|
|
switch (pclass)
|
|
{
|
|
case CLASS_OR:
|
|
|
|
/*
|
|
* OR-clause R=> OR-clause if A refutes each of B's items
|
|
*/
|
|
result = true;
|
|
iterate_begin(pitem, predicate, pred_info)
|
|
{
|
|
if (!predicate_refuted_by_recurse(clause, pitem))
|
|
{
|
|
result = false;
|
|
break;
|
|
}
|
|
}
|
|
iterate_end(pred_info);
|
|
return result;
|
|
|
|
case CLASS_AND:
|
|
|
|
/*
|
|
* OR-clause R=> AND-clause if each of A's items refutes
|
|
* any of B's items.
|
|
*/
|
|
result = true;
|
|
iterate_begin(citem, clause, clause_info)
|
|
{
|
|
bool presult = false;
|
|
|
|
iterate_begin(pitem, predicate, pred_info)
|
|
{
|
|
if (predicate_refuted_by_recurse(citem, pitem))
|
|
{
|
|
presult = true;
|
|
break;
|
|
}
|
|
}
|
|
iterate_end(pred_info);
|
|
if (!presult)
|
|
{
|
|
result = false; /* citem refutes nothing */
|
|
break;
|
|
}
|
|
}
|
|
iterate_end(clause_info);
|
|
return result;
|
|
|
|
case CLASS_ATOM:
|
|
|
|
/*
|
|
* If B is a NOT-clause, A R=> B if A => B's arg
|
|
*/
|
|
not_arg = extract_not_arg(predicate);
|
|
if (not_arg &&
|
|
predicate_implied_by_recurse(clause, not_arg))
|
|
return true;
|
|
|
|
/*
|
|
* OR-clause R=> atom if each of A's items refutes B
|
|
*/
|
|
result = true;
|
|
iterate_begin(citem, clause, clause_info)
|
|
{
|
|
if (!predicate_refuted_by_recurse(citem, predicate))
|
|
{
|
|
result = false;
|
|
break;
|
|
}
|
|
}
|
|
iterate_end(clause_info);
|
|
return result;
|
|
}
|
|
break;
|
|
|
|
case CLASS_ATOM:
|
|
|
|
/*
|
|
* If A is a strong NOT-clause, A R=> B if B equals A's arg
|
|
*
|
|
* We cannot make the stronger conclusion that B is refuted if B
|
|
* implies A's arg; that would only prove that B is not-TRUE, not
|
|
* that it's not NULL either. Hence use equal() rather than
|
|
* predicate_implied_by_recurse(). We could do the latter if we
|
|
* ever had a need for the weak form of refutation.
|
|
*/
|
|
not_arg = extract_strong_not_arg(clause);
|
|
if (not_arg && equal(predicate, not_arg))
|
|
return true;
|
|
|
|
switch (pclass)
|
|
{
|
|
case CLASS_AND:
|
|
|
|
/*
|
|
* atom R=> AND-clause if A refutes any of B's items
|
|
*/
|
|
result = false;
|
|
iterate_begin(pitem, predicate, pred_info)
|
|
{
|
|
if (predicate_refuted_by_recurse(clause, pitem))
|
|
{
|
|
result = true;
|
|
break;
|
|
}
|
|
}
|
|
iterate_end(pred_info);
|
|
return result;
|
|
|
|
case CLASS_OR:
|
|
|
|
/*
|
|
* atom R=> OR-clause if A refutes each of B's items
|
|
*/
|
|
result = true;
|
|
iterate_begin(pitem, predicate, pred_info)
|
|
{
|
|
if (!predicate_refuted_by_recurse(clause, pitem))
|
|
{
|
|
result = false;
|
|
break;
|
|
}
|
|
}
|
|
iterate_end(pred_info);
|
|
return result;
|
|
|
|
case CLASS_ATOM:
|
|
|
|
/*
|
|
* If B is a NOT-clause, A R=> B if A => B's arg
|
|
*/
|
|
not_arg = extract_not_arg(predicate);
|
|
if (not_arg &&
|
|
predicate_implied_by_recurse(clause, not_arg))
|
|
return true;
|
|
|
|
/*
|
|
* atom R=> atom is the base case
|
|
*/
|
|
return
|
|
predicate_refuted_by_simple_clause((Expr *) predicate,
|
|
clause);
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* can't get here */
|
|
elog(ERROR, "predicate_classify returned a bogus value");
|
|
return false;
|
|
}
|
|
|
|
|
|
/*
|
|
* predicate_classify
|
|
* Classify an expression node as AND-type, OR-type, or neither (an atom).
|
|
*
|
|
* If the expression is classified as AND- or OR-type, then *info is filled
|
|
* in with the functions needed to iterate over its components.
|
|
*
|
|
* This function also implements enforcement of MAX_SAOP_ARRAY_SIZE: if a
|
|
* ScalarArrayOpExpr's array has too many elements, we just classify it as an
|
|
* atom. (This will result in its being passed as-is to the simple_clause
|
|
* functions, which will fail to prove anything about it.) Note that we
|
|
* cannot just stop after considering MAX_SAOP_ARRAY_SIZE elements; in general
|
|
* that would result in wrong proofs, rather than failing to prove anything.
|
|
*/
|
|
static PredClass
|
|
predicate_classify(Node *clause, PredIterInfo info)
|
|
{
|
|
/* Caller should not pass us NULL, nor a RestrictInfo clause */
|
|
Assert(clause != NULL);
|
|
Assert(!IsA(clause, RestrictInfo));
|
|
|
|
/*
|
|
* If we see a List, assume it's an implicit-AND list; this is the correct
|
|
* semantics for lists of RestrictInfo nodes.
|
|
*/
|
|
if (IsA(clause, List))
|
|
{
|
|
info->startup_fn = list_startup_fn;
|
|
info->next_fn = list_next_fn;
|
|
info->cleanup_fn = list_cleanup_fn;
|
|
return CLASS_AND;
|
|
}
|
|
|
|
/* Handle normal AND and OR boolean clauses */
|
|
if (and_clause(clause))
|
|
{
|
|
info->startup_fn = boolexpr_startup_fn;
|
|
info->next_fn = list_next_fn;
|
|
info->cleanup_fn = list_cleanup_fn;
|
|
return CLASS_AND;
|
|
}
|
|
if (or_clause(clause))
|
|
{
|
|
info->startup_fn = boolexpr_startup_fn;
|
|
info->next_fn = list_next_fn;
|
|
info->cleanup_fn = list_cleanup_fn;
|
|
return CLASS_OR;
|
|
}
|
|
|
|
/* Handle ScalarArrayOpExpr */
|
|
if (IsA(clause, ScalarArrayOpExpr))
|
|
{
|
|
ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) clause;
|
|
Node *arraynode = (Node *) lsecond(saop->args);
|
|
|
|
/*
|
|
* We can break this down into an AND or OR structure, but only if we
|
|
* know how to iterate through expressions for the array's elements.
|
|
* We can do that if the array operand is a non-null constant or a
|
|
* simple ArrayExpr.
|
|
*/
|
|
if (arraynode && IsA(arraynode, Const) &&
|
|
!((Const *) arraynode)->constisnull)
|
|
{
|
|
ArrayType *arrayval;
|
|
int nelems;
|
|
|
|
arrayval = DatumGetArrayTypeP(((Const *) arraynode)->constvalue);
|
|
nelems = ArrayGetNItems(ARR_NDIM(arrayval), ARR_DIMS(arrayval));
|
|
if (nelems <= MAX_SAOP_ARRAY_SIZE)
|
|
{
|
|
info->startup_fn = arrayconst_startup_fn;
|
|
info->next_fn = arrayconst_next_fn;
|
|
info->cleanup_fn = arrayconst_cleanup_fn;
|
|
return saop->useOr ? CLASS_OR : CLASS_AND;
|
|
}
|
|
}
|
|
else if (arraynode && IsA(arraynode, ArrayExpr) &&
|
|
!((ArrayExpr *) arraynode)->multidims &&
|
|
list_length(((ArrayExpr *) arraynode)->elements) <= MAX_SAOP_ARRAY_SIZE)
|
|
{
|
|
info->startup_fn = arrayexpr_startup_fn;
|
|
info->next_fn = arrayexpr_next_fn;
|
|
info->cleanup_fn = arrayexpr_cleanup_fn;
|
|
return saop->useOr ? CLASS_OR : CLASS_AND;
|
|
}
|
|
}
|
|
|
|
/* None of the above, so it's an atom */
|
|
return CLASS_ATOM;
|
|
}
|
|
|
|
/*
|
|
* PredIterInfo routines for iterating over regular Lists. The iteration
|
|
* state variable is the next ListCell to visit.
|
|
*/
|
|
static void
|
|
list_startup_fn(Node *clause, PredIterInfo info)
|
|
{
|
|
info->state = (void *) list_head((List *) clause);
|
|
}
|
|
|
|
static Node *
|
|
list_next_fn(PredIterInfo info)
|
|
{
|
|
ListCell *l = (ListCell *) info->state;
|
|
Node *n;
|
|
|
|
if (l == NULL)
|
|
return NULL;
|
|
n = lfirst(l);
|
|
info->state = (void *) lnext(l);
|
|
return n;
|
|
}
|
|
|
|
static void
|
|
list_cleanup_fn(PredIterInfo info)
|
|
{
|
|
/* Nothing to clean up */
|
|
}
|
|
|
|
/*
|
|
* BoolExpr needs its own startup function, but can use list_next_fn and
|
|
* list_cleanup_fn.
|
|
*/
|
|
static void
|
|
boolexpr_startup_fn(Node *clause, PredIterInfo info)
|
|
{
|
|
info->state = (void *) list_head(((BoolExpr *) clause)->args);
|
|
}
|
|
|
|
/*
|
|
* PredIterInfo routines for iterating over a ScalarArrayOpExpr with a
|
|
* constant array operand.
|
|
*/
|
|
typedef struct
|
|
{
|
|
OpExpr opexpr;
|
|
Const constexpr;
|
|
int next_elem;
|
|
int num_elems;
|
|
Datum *elem_values;
|
|
bool *elem_nulls;
|
|
} ArrayConstIterState;
|
|
|
|
static void
|
|
arrayconst_startup_fn(Node *clause, PredIterInfo info)
|
|
{
|
|
ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) clause;
|
|
ArrayConstIterState *state;
|
|
Const *arrayconst;
|
|
ArrayType *arrayval;
|
|
int16 elmlen;
|
|
bool elmbyval;
|
|
char elmalign;
|
|
|
|
/* Create working state struct */
|
|
state = (ArrayConstIterState *) palloc(sizeof(ArrayConstIterState));
|
|
info->state = (void *) state;
|
|
|
|
/* Deconstruct the array literal */
|
|
arrayconst = (Const *) lsecond(saop->args);
|
|
arrayval = DatumGetArrayTypeP(arrayconst->constvalue);
|
|
get_typlenbyvalalign(ARR_ELEMTYPE(arrayval),
|
|
&elmlen, &elmbyval, &elmalign);
|
|
deconstruct_array(arrayval,
|
|
ARR_ELEMTYPE(arrayval),
|
|
elmlen, elmbyval, elmalign,
|
|
&state->elem_values, &state->elem_nulls,
|
|
&state->num_elems);
|
|
|
|
/* Set up a dummy OpExpr to return as the per-item node */
|
|
state->opexpr.xpr.type = T_OpExpr;
|
|
state->opexpr.opno = saop->opno;
|
|
state->opexpr.opfuncid = saop->opfuncid;
|
|
state->opexpr.opresulttype = BOOLOID;
|
|
state->opexpr.opretset = false;
|
|
state->opexpr.opcollid = InvalidOid;
|
|
state->opexpr.inputcollid = saop->inputcollid;
|
|
state->opexpr.args = list_copy(saop->args);
|
|
|
|
/* Set up a dummy Const node to hold the per-element values */
|
|
state->constexpr.xpr.type = T_Const;
|
|
state->constexpr.consttype = ARR_ELEMTYPE(arrayval);
|
|
state->constexpr.consttypmod = -1;
|
|
state->constexpr.constcollid = arrayconst->constcollid;
|
|
state->constexpr.constlen = elmlen;
|
|
state->constexpr.constbyval = elmbyval;
|
|
lsecond(state->opexpr.args) = &state->constexpr;
|
|
|
|
/* Initialize iteration state */
|
|
state->next_elem = 0;
|
|
}
|
|
|
|
static Node *
|
|
arrayconst_next_fn(PredIterInfo info)
|
|
{
|
|
ArrayConstIterState *state = (ArrayConstIterState *) info->state;
|
|
|
|
if (state->next_elem >= state->num_elems)
|
|
return NULL;
|
|
state->constexpr.constvalue = state->elem_values[state->next_elem];
|
|
state->constexpr.constisnull = state->elem_nulls[state->next_elem];
|
|
state->next_elem++;
|
|
return (Node *) &(state->opexpr);
|
|
}
|
|
|
|
static void
|
|
arrayconst_cleanup_fn(PredIterInfo info)
|
|
{
|
|
ArrayConstIterState *state = (ArrayConstIterState *) info->state;
|
|
|
|
pfree(state->elem_values);
|
|
pfree(state->elem_nulls);
|
|
list_free(state->opexpr.args);
|
|
pfree(state);
|
|
}
|
|
|
|
/*
|
|
* PredIterInfo routines for iterating over a ScalarArrayOpExpr with a
|
|
* one-dimensional ArrayExpr array operand.
|
|
*/
|
|
typedef struct
|
|
{
|
|
OpExpr opexpr;
|
|
ListCell *next;
|
|
} ArrayExprIterState;
|
|
|
|
static void
|
|
arrayexpr_startup_fn(Node *clause, PredIterInfo info)
|
|
{
|
|
ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) clause;
|
|
ArrayExprIterState *state;
|
|
ArrayExpr *arrayexpr;
|
|
|
|
/* Create working state struct */
|
|
state = (ArrayExprIterState *) palloc(sizeof(ArrayExprIterState));
|
|
info->state = (void *) state;
|
|
|
|
/* Set up a dummy OpExpr to return as the per-item node */
|
|
state->opexpr.xpr.type = T_OpExpr;
|
|
state->opexpr.opno = saop->opno;
|
|
state->opexpr.opfuncid = saop->opfuncid;
|
|
state->opexpr.opresulttype = BOOLOID;
|
|
state->opexpr.opretset = false;
|
|
state->opexpr.opcollid = InvalidOid;
|
|
state->opexpr.inputcollid = saop->inputcollid;
|
|
state->opexpr.args = list_copy(saop->args);
|
|
|
|
/* Initialize iteration variable to first member of ArrayExpr */
|
|
arrayexpr = (ArrayExpr *) lsecond(saop->args);
|
|
state->next = list_head(arrayexpr->elements);
|
|
}
|
|
|
|
static Node *
|
|
arrayexpr_next_fn(PredIterInfo info)
|
|
{
|
|
ArrayExprIterState *state = (ArrayExprIterState *) info->state;
|
|
|
|
if (state->next == NULL)
|
|
return NULL;
|
|
lsecond(state->opexpr.args) = lfirst(state->next);
|
|
state->next = lnext(state->next);
|
|
return (Node *) &(state->opexpr);
|
|
}
|
|
|
|
static void
|
|
arrayexpr_cleanup_fn(PredIterInfo info)
|
|
{
|
|
ArrayExprIterState *state = (ArrayExprIterState *) info->state;
|
|
|
|
list_free(state->opexpr.args);
|
|
pfree(state);
|
|
}
|
|
|
|
|
|
/*----------
|
|
* predicate_implied_by_simple_clause
|
|
* Does the predicate implication test for a "simple clause" predicate
|
|
* and a "simple clause" restriction.
|
|
*
|
|
* We return TRUE if able to prove the implication, FALSE if not.
|
|
*
|
|
* We have three strategies for determining whether one simple clause
|
|
* implies another:
|
|
*
|
|
* A simple and general way is to see if they are equal(); this works for any
|
|
* kind of expression. (Actually, there is an implied assumption that the
|
|
* functions in the expression are immutable, ie dependent only on their input
|
|
* arguments --- but this was checked for the predicate by the caller.)
|
|
*
|
|
* When the predicate is of the form "foo IS NOT NULL", we can conclude that
|
|
* the predicate is implied if the clause is a strict operator or function
|
|
* that has "foo" as an input. In this case the clause must yield NULL when
|
|
* "foo" is NULL, which we can take as equivalent to FALSE because we know
|
|
* we are within an AND/OR subtree of a WHERE clause. (Again, "foo" is
|
|
* already known immutable, so the clause will certainly always fail.)
|
|
*
|
|
* Finally, we may be able to deduce something using knowledge about btree
|
|
* operator families; this is encapsulated in btree_predicate_proof().
|
|
*----------
|
|
*/
|
|
static bool
|
|
predicate_implied_by_simple_clause(Expr *predicate, Node *clause)
|
|
{
|
|
/* Allow interrupting long proof attempts */
|
|
CHECK_FOR_INTERRUPTS();
|
|
|
|
/* First try the equal() test */
|
|
if (equal((Node *) predicate, clause))
|
|
return true;
|
|
|
|
/* Next try the IS NOT NULL case */
|
|
if (predicate && IsA(predicate, NullTest) &&
|
|
((NullTest *) predicate)->nulltesttype == IS_NOT_NULL)
|
|
{
|
|
Expr *nonnullarg = ((NullTest *) predicate)->arg;
|
|
|
|
/* row IS NOT NULL does not act in the simple way we have in mind */
|
|
if (!((NullTest *) predicate)->argisrow)
|
|
{
|
|
if (is_opclause(clause) &&
|
|
list_member_strip(((OpExpr *) clause)->args, nonnullarg) &&
|
|
op_strict(((OpExpr *) clause)->opno))
|
|
return true;
|
|
if (is_funcclause(clause) &&
|
|
list_member_strip(((FuncExpr *) clause)->args, nonnullarg) &&
|
|
func_strict(((FuncExpr *) clause)->funcid))
|
|
return true;
|
|
}
|
|
return false; /* we can't succeed below... */
|
|
}
|
|
|
|
/* Else try btree operator knowledge */
|
|
return btree_predicate_proof(predicate, clause, false);
|
|
}
|
|
|
|
/*----------
|
|
* predicate_refuted_by_simple_clause
|
|
* Does the predicate refutation test for a "simple clause" predicate
|
|
* and a "simple clause" restriction.
|
|
*
|
|
* We return TRUE if able to prove the refutation, FALSE if not.
|
|
*
|
|
* Unlike the implication case, checking for equal() clauses isn't
|
|
* helpful.
|
|
*
|
|
* When the predicate is of the form "foo IS NULL", we can conclude that
|
|
* the predicate is refuted if the clause is a strict operator or function
|
|
* that has "foo" as an input (see notes for implication case), or if the
|
|
* clause is "foo IS NOT NULL". A clause "foo IS NULL" refutes a predicate
|
|
* "foo IS NOT NULL", but unfortunately does not refute strict predicates,
|
|
* because we are looking for strong refutation. (The motivation for covering
|
|
* these cases is to support using IS NULL/IS NOT NULL as partition-defining
|
|
* constraints.)
|
|
*
|
|
* Finally, we may be able to deduce something using knowledge about btree
|
|
* operator families; this is encapsulated in btree_predicate_proof().
|
|
*----------
|
|
*/
|
|
static bool
|
|
predicate_refuted_by_simple_clause(Expr *predicate, Node *clause)
|
|
{
|
|
/* Allow interrupting long proof attempts */
|
|
CHECK_FOR_INTERRUPTS();
|
|
|
|
/* A simple clause can't refute itself */
|
|
/* Worth checking because of relation_excluded_by_constraints() */
|
|
if ((Node *) predicate == clause)
|
|
return false;
|
|
|
|
/* Try the predicate-IS-NULL case */
|
|
if (predicate && IsA(predicate, NullTest) &&
|
|
((NullTest *) predicate)->nulltesttype == IS_NULL)
|
|
{
|
|
Expr *isnullarg = ((NullTest *) predicate)->arg;
|
|
|
|
/* row IS NULL does not act in the simple way we have in mind */
|
|
if (((NullTest *) predicate)->argisrow)
|
|
return false;
|
|
|
|
/* Any strict op/func on foo refutes foo IS NULL */
|
|
if (is_opclause(clause) &&
|
|
list_member_strip(((OpExpr *) clause)->args, isnullarg) &&
|
|
op_strict(((OpExpr *) clause)->opno))
|
|
return true;
|
|
if (is_funcclause(clause) &&
|
|
list_member_strip(((FuncExpr *) clause)->args, isnullarg) &&
|
|
func_strict(((FuncExpr *) clause)->funcid))
|
|
return true;
|
|
|
|
/* foo IS NOT NULL refutes foo IS NULL */
|
|
if (clause && IsA(clause, NullTest) &&
|
|
((NullTest *) clause)->nulltesttype == IS_NOT_NULL &&
|
|
!((NullTest *) clause)->argisrow &&
|
|
equal(((NullTest *) clause)->arg, isnullarg))
|
|
return true;
|
|
|
|
return false; /* we can't succeed below... */
|
|
}
|
|
|
|
/* Try the clause-IS-NULL case */
|
|
if (clause && IsA(clause, NullTest) &&
|
|
((NullTest *) clause)->nulltesttype == IS_NULL)
|
|
{
|
|
Expr *isnullarg = ((NullTest *) clause)->arg;
|
|
|
|
/* row IS NULL does not act in the simple way we have in mind */
|
|
if (((NullTest *) clause)->argisrow)
|
|
return false;
|
|
|
|
/* foo IS NULL refutes foo IS NOT NULL */
|
|
if (predicate && IsA(predicate, NullTest) &&
|
|
((NullTest *) predicate)->nulltesttype == IS_NOT_NULL &&
|
|
!((NullTest *) predicate)->argisrow &&
|
|
equal(((NullTest *) predicate)->arg, isnullarg))
|
|
return true;
|
|
|
|
return false; /* we can't succeed below... */
|
|
}
|
|
|
|
/* Else try btree operator knowledge */
|
|
return btree_predicate_proof(predicate, clause, true);
|
|
}
|
|
|
|
|
|
/*
|
|
* If clause asserts the non-truth of a subclause, return that subclause;
|
|
* otherwise return NULL.
|
|
*/
|
|
static Node *
|
|
extract_not_arg(Node *clause)
|
|
{
|
|
if (clause == NULL)
|
|
return NULL;
|
|
if (IsA(clause, BoolExpr))
|
|
{
|
|
BoolExpr *bexpr = (BoolExpr *) clause;
|
|
|
|
if (bexpr->boolop == NOT_EXPR)
|
|
return (Node *) linitial(bexpr->args);
|
|
}
|
|
else if (IsA(clause, BooleanTest))
|
|
{
|
|
BooleanTest *btest = (BooleanTest *) clause;
|
|
|
|
if (btest->booltesttype == IS_NOT_TRUE ||
|
|
btest->booltesttype == IS_FALSE ||
|
|
btest->booltesttype == IS_UNKNOWN)
|
|
return (Node *) btest->arg;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* If clause asserts the falsity of a subclause, return that subclause;
|
|
* otherwise return NULL.
|
|
*/
|
|
static Node *
|
|
extract_strong_not_arg(Node *clause)
|
|
{
|
|
if (clause == NULL)
|
|
return NULL;
|
|
if (IsA(clause, BoolExpr))
|
|
{
|
|
BoolExpr *bexpr = (BoolExpr *) clause;
|
|
|
|
if (bexpr->boolop == NOT_EXPR)
|
|
return (Node *) linitial(bexpr->args);
|
|
}
|
|
else if (IsA(clause, BooleanTest))
|
|
{
|
|
BooleanTest *btest = (BooleanTest *) clause;
|
|
|
|
if (btest->booltesttype == IS_FALSE)
|
|
return (Node *) btest->arg;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/*
|
|
* Check whether an Expr is equal() to any member of a list, ignoring
|
|
* any top-level RelabelType nodes. This is legitimate for the purposes
|
|
* we use it for (matching IS [NOT] NULL arguments to arguments of strict
|
|
* functions) because RelabelType doesn't change null-ness. It's helpful
|
|
* for cases such as a varchar argument of a strict function on text.
|
|
*/
|
|
static bool
|
|
list_member_strip(List *list, Expr *datum)
|
|
{
|
|
ListCell *cell;
|
|
|
|
if (datum && IsA(datum, RelabelType))
|
|
datum = ((RelabelType *) datum)->arg;
|
|
|
|
foreach(cell, list)
|
|
{
|
|
Expr *elem = (Expr *) lfirst(cell);
|
|
|
|
if (elem && IsA(elem, RelabelType))
|
|
elem = ((RelabelType *) elem)->arg;
|
|
|
|
if (equal(elem, datum))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
/*
|
|
* Define an "operator implication table" for btree operators ("strategies"),
|
|
* and a similar table for refutation.
|
|
*
|
|
* The strategy numbers defined by btree indexes (see access/skey.h) are:
|
|
* (1) < (2) <= (3) = (4) >= (5) >
|
|
* and in addition we use (6) to represent <>. <> is not a btree-indexable
|
|
* operator, but we assume here that if an equality operator of a btree
|
|
* opfamily has a negator operator, the negator behaves as <> for the opfamily.
|
|
* (This convention is also known to get_op_btree_interpretation().)
|
|
*
|
|
* The interpretation of:
|
|
*
|
|
* test_op = BT_implic_table[given_op-1][target_op-1]
|
|
*
|
|
* where test_op, given_op and target_op are strategy numbers (from 1 to 6)
|
|
* of btree operators, is as follows:
|
|
*
|
|
* If you know, for some ATTR, that "ATTR given_op CONST1" is true, and you
|
|
* want to determine whether "ATTR target_op CONST2" must also be true, then
|
|
* you can use "CONST2 test_op CONST1" as a test. If this test returns true,
|
|
* then the target expression must be true; if the test returns false, then
|
|
* the target expression may be false.
|
|
*
|
|
* For example, if clause is "Quantity > 10" and pred is "Quantity > 5"
|
|
* then we test "5 <= 10" which evals to true, so clause implies pred.
|
|
*
|
|
* Similarly, the interpretation of a BT_refute_table entry is:
|
|
*
|
|
* If you know, for some ATTR, that "ATTR given_op CONST1" is true, and you
|
|
* want to determine whether "ATTR target_op CONST2" must be false, then
|
|
* you can use "CONST2 test_op CONST1" as a test. If this test returns true,
|
|
* then the target expression must be false; if the test returns false, then
|
|
* the target expression may be true.
|
|
*
|
|
* For example, if clause is "Quantity > 10" and pred is "Quantity < 5"
|
|
* then we test "5 <= 10" which evals to true, so clause refutes pred.
|
|
*
|
|
* An entry where test_op == 0 means the implication cannot be determined.
|
|
*/
|
|
|
|
#define BTLT BTLessStrategyNumber
|
|
#define BTLE BTLessEqualStrategyNumber
|
|
#define BTEQ BTEqualStrategyNumber
|
|
#define BTGE BTGreaterEqualStrategyNumber
|
|
#define BTGT BTGreaterStrategyNumber
|
|
#define BTNE ROWCOMPARE_NE
|
|
|
|
static const StrategyNumber BT_implic_table[6][6] = {
|
|
/*
|
|
* The target operator:
|
|
*
|
|
* LT LE EQ GE GT NE
|
|
*/
|
|
{BTGE, BTGE, 0, 0, 0, BTGE}, /* LT */
|
|
{BTGT, BTGE, 0, 0, 0, BTGT}, /* LE */
|
|
{BTGT, BTGE, BTEQ, BTLE, BTLT, BTNE}, /* EQ */
|
|
{0, 0, 0, BTLE, BTLT, BTLT}, /* GE */
|
|
{0, 0, 0, BTLE, BTLE, BTLE}, /* GT */
|
|
{0, 0, 0, 0, 0, BTEQ} /* NE */
|
|
};
|
|
|
|
static const StrategyNumber BT_refute_table[6][6] = {
|
|
/*
|
|
* The target operator:
|
|
*
|
|
* LT LE EQ GE GT NE
|
|
*/
|
|
{0, 0, BTGE, BTGE, BTGE, 0}, /* LT */
|
|
{0, 0, BTGT, BTGT, BTGE, 0}, /* LE */
|
|
{BTLE, BTLT, BTNE, BTGT, BTGE, BTEQ}, /* EQ */
|
|
{BTLE, BTLT, BTLT, 0, 0, 0}, /* GE */
|
|
{BTLE, BTLE, BTLE, 0, 0, 0}, /* GT */
|
|
{0, 0, BTEQ, 0, 0, 0} /* NE */
|
|
};
|
|
|
|
|
|
/*
|
|
* btree_predicate_proof
|
|
* Does the predicate implication or refutation test for a "simple clause"
|
|
* predicate and a "simple clause" restriction, when both are simple
|
|
* operator clauses using related btree operators.
|
|
*
|
|
* When refute_it == false, we want to prove the predicate true;
|
|
* when refute_it == true, we want to prove the predicate false.
|
|
* (There is enough common code to justify handling these two cases
|
|
* in one routine.) We return TRUE if able to make the proof, FALSE
|
|
* if not able to prove it.
|
|
*
|
|
* What we look for here is binary boolean opclauses of the form
|
|
* "foo op constant", where "foo" is the same in both clauses. The operators
|
|
* and constants can be different but the operators must be in the same btree
|
|
* operator family. We use the above operator implication tables to
|
|
* derive implications between nonidentical clauses. (Note: "foo" is known
|
|
* immutable, and constants are surely immutable, but we have to check that
|
|
* the operators are too. As of 8.0 it's possible for opfamilies to contain
|
|
* operators that are merely stable, and we dare not make deductions with
|
|
* these.)
|
|
*/
|
|
static bool
|
|
btree_predicate_proof(Expr *predicate, Node *clause, bool refute_it)
|
|
{
|
|
Node *leftop,
|
|
*rightop;
|
|
Node *pred_var,
|
|
*clause_var;
|
|
Const *pred_const,
|
|
*clause_const;
|
|
bool pred_var_on_left,
|
|
clause_var_on_left;
|
|
Oid pred_collation,
|
|
clause_collation;
|
|
Oid pred_op,
|
|
clause_op,
|
|
test_op;
|
|
Expr *test_expr;
|
|
ExprState *test_exprstate;
|
|
Datum test_result;
|
|
bool isNull;
|
|
EState *estate;
|
|
MemoryContext oldcontext;
|
|
|
|
/*
|
|
* Both expressions must be binary opclauses with a Const on one side, and
|
|
* identical subexpressions on the other sides. Note we don't have to
|
|
* think about binary relabeling of the Const node, since that would have
|
|
* been folded right into the Const.
|
|
*
|
|
* If either Const is null, we also fail right away; this assumes that the
|
|
* test operator will always be strict.
|
|
*/
|
|
if (!is_opclause(predicate))
|
|
return false;
|
|
leftop = get_leftop(predicate);
|
|
rightop = get_rightop(predicate);
|
|
if (rightop == NULL)
|
|
return false; /* not a binary opclause */
|
|
if (IsA(rightop, Const))
|
|
{
|
|
pred_var = leftop;
|
|
pred_const = (Const *) rightop;
|
|
pred_var_on_left = true;
|
|
}
|
|
else if (IsA(leftop, Const))
|
|
{
|
|
pred_var = rightop;
|
|
pred_const = (Const *) leftop;
|
|
pred_var_on_left = false;
|
|
}
|
|
else
|
|
return false; /* no Const to be found */
|
|
if (pred_const->constisnull)
|
|
return false;
|
|
|
|
if (!is_opclause(clause))
|
|
return false;
|
|
leftop = get_leftop((Expr *) clause);
|
|
rightop = get_rightop((Expr *) clause);
|
|
if (rightop == NULL)
|
|
return false; /* not a binary opclause */
|
|
if (IsA(rightop, Const))
|
|
{
|
|
clause_var = leftop;
|
|
clause_const = (Const *) rightop;
|
|
clause_var_on_left = true;
|
|
}
|
|
else if (IsA(leftop, Const))
|
|
{
|
|
clause_var = rightop;
|
|
clause_const = (Const *) leftop;
|
|
clause_var_on_left = false;
|
|
}
|
|
else
|
|
return false; /* no Const to be found */
|
|
if (clause_const->constisnull)
|
|
return false;
|
|
|
|
/*
|
|
* Check for matching subexpressions on the non-Const sides. We used to
|
|
* only allow a simple Var, but it's about as easy to allow any
|
|
* expression. Remember we already know that the pred expression does not
|
|
* contain any non-immutable functions, so identical expressions should
|
|
* yield identical results.
|
|
*/
|
|
if (!equal(pred_var, clause_var))
|
|
return false;
|
|
|
|
/*
|
|
* They'd better have the same collation, too.
|
|
*/
|
|
pred_collation = ((OpExpr *) predicate)->inputcollid;
|
|
clause_collation = ((OpExpr *) clause)->inputcollid;
|
|
if (pred_collation != clause_collation)
|
|
return false;
|
|
|
|
/*
|
|
* Okay, get the operators in the two clauses we're comparing. Commute
|
|
* them if needed so that we can assume the variables are on the left.
|
|
*/
|
|
pred_op = ((OpExpr *) predicate)->opno;
|
|
if (!pred_var_on_left)
|
|
{
|
|
pred_op = get_commutator(pred_op);
|
|
if (!OidIsValid(pred_op))
|
|
return false;
|
|
}
|
|
|
|
clause_op = ((OpExpr *) clause)->opno;
|
|
if (!clause_var_on_left)
|
|
{
|
|
clause_op = get_commutator(clause_op);
|
|
if (!OidIsValid(clause_op))
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Lookup the comparison operator using the system catalogs and the
|
|
* operator implication tables.
|
|
*/
|
|
test_op = get_btree_test_op(pred_op, clause_op, refute_it);
|
|
|
|
if (!OidIsValid(test_op))
|
|
{
|
|
/* couldn't find a suitable comparison operator */
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Evaluate the test. For this we need an EState.
|
|
*/
|
|
estate = CreateExecutorState();
|
|
|
|
/* We can use the estate's working context to avoid memory leaks. */
|
|
oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
|
|
|
|
/* Build expression tree */
|
|
test_expr = make_opclause(test_op,
|
|
BOOLOID,
|
|
false,
|
|
(Expr *) pred_const,
|
|
(Expr *) clause_const,
|
|
InvalidOid,
|
|
pred_collation);
|
|
|
|
/* Fill in opfuncids */
|
|
fix_opfuncids((Node *) test_expr);
|
|
|
|
/* Prepare it for execution */
|
|
test_exprstate = ExecInitExpr(test_expr, NULL);
|
|
|
|
/* And execute it. */
|
|
test_result = ExecEvalExprSwitchContext(test_exprstate,
|
|
GetPerTupleExprContext(estate),
|
|
&isNull, NULL);
|
|
|
|
/* Get back to outer memory context */
|
|
MemoryContextSwitchTo(oldcontext);
|
|
|
|
/* Release all the junk we just created */
|
|
FreeExecutorState(estate);
|
|
|
|
if (isNull)
|
|
{
|
|
/* Treat a null result as non-proof ... but it's a tad fishy ... */
|
|
elog(DEBUG2, "null predicate test result");
|
|
return false;
|
|
}
|
|
return DatumGetBool(test_result);
|
|
}
|
|
|
|
|
|
/*
|
|
* We use a lookaside table to cache the result of btree proof operator
|
|
* lookups, since the actual lookup is pretty expensive and doesn't change
|
|
* for any given pair of operators (at least as long as pg_amop doesn't
|
|
* change). A single hash entry stores both positive and negative results
|
|
* for a given pair of operators.
|
|
*/
|
|
typedef struct OprProofCacheKey
|
|
{
|
|
Oid pred_op; /* predicate operator */
|
|
Oid clause_op; /* clause operator */
|
|
} OprProofCacheKey;
|
|
|
|
typedef struct OprProofCacheEntry
|
|
{
|
|
/* the hash lookup key MUST BE FIRST */
|
|
OprProofCacheKey key;
|
|
|
|
bool have_implic; /* do we know the implication result? */
|
|
bool have_refute; /* do we know the refutation result? */
|
|
Oid implic_test_op; /* OID of the operator, or 0 if none */
|
|
Oid refute_test_op; /* OID of the operator, or 0 if none */
|
|
} OprProofCacheEntry;
|
|
|
|
static HTAB *OprProofCacheHash = NULL;
|
|
|
|
|
|
/*
|
|
* get_btree_test_op
|
|
* Identify the comparison operator needed for a btree-operator
|
|
* proof or refutation.
|
|
*
|
|
* Given the truth of a predicate "var pred_op const1", we are attempting to
|
|
* prove or refute a clause "var clause_op const2". The identities of the two
|
|
* operators are sufficient to determine the operator (if any) to compare
|
|
* const2 to const1 with.
|
|
*
|
|
* Returns the OID of the operator to use, or InvalidOid if no proof is
|
|
* possible.
|
|
*/
|
|
static Oid
|
|
get_btree_test_op(Oid pred_op, Oid clause_op, bool refute_it)
|
|
{
|
|
OprProofCacheKey key;
|
|
OprProofCacheEntry *cache_entry;
|
|
bool cfound;
|
|
Oid test_op = InvalidOid;
|
|
bool found = false;
|
|
List *pred_op_infos,
|
|
*clause_op_infos;
|
|
ListCell *lcp,
|
|
*lcc;
|
|
|
|
/*
|
|
* Find or make a cache entry for this pair of operators.
|
|
*/
|
|
if (OprProofCacheHash == NULL)
|
|
{
|
|
/* First time through: initialize the hash table */
|
|
HASHCTL ctl;
|
|
|
|
MemSet(&ctl, 0, sizeof(ctl));
|
|
ctl.keysize = sizeof(OprProofCacheKey);
|
|
ctl.entrysize = sizeof(OprProofCacheEntry);
|
|
ctl.hash = tag_hash;
|
|
OprProofCacheHash = hash_create("Btree proof lookup cache", 256,
|
|
&ctl, HASH_ELEM | HASH_FUNCTION);
|
|
|
|
/* Arrange to flush cache on pg_amop changes */
|
|
CacheRegisterSyscacheCallback(AMOPOPID,
|
|
InvalidateOprProofCacheCallBack,
|
|
(Datum) 0);
|
|
}
|
|
|
|
key.pred_op = pred_op;
|
|
key.clause_op = clause_op;
|
|
cache_entry = (OprProofCacheEntry *) hash_search(OprProofCacheHash,
|
|
(void *) &key,
|
|
HASH_ENTER, &cfound);
|
|
if (!cfound)
|
|
{
|
|
/* new cache entry, set it invalid */
|
|
cache_entry->have_implic = false;
|
|
cache_entry->have_refute = false;
|
|
}
|
|
else
|
|
{
|
|
/* pre-existing cache entry, see if we know the answer */
|
|
if (refute_it)
|
|
{
|
|
if (cache_entry->have_refute)
|
|
return cache_entry->refute_test_op;
|
|
}
|
|
else
|
|
{
|
|
if (cache_entry->have_implic)
|
|
return cache_entry->implic_test_op;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Try to find a btree opfamily containing the given operators.
|
|
*
|
|
* We must find a btree opfamily that contains both operators, else the
|
|
* implication can't be determined. Also, the opfamily must contain a
|
|
* suitable test operator taking the operators' righthand datatypes.
|
|
*
|
|
* If there are multiple matching opfamilies, assume we can use any one to
|
|
* determine the logical relationship of the two operators and the correct
|
|
* corresponding test operator. This should work for any logically
|
|
* consistent opfamilies.
|
|
*/
|
|
clause_op_infos = get_op_btree_interpretation(clause_op);
|
|
if (clause_op_infos)
|
|
pred_op_infos = get_op_btree_interpretation(pred_op);
|
|
else /* no point in looking */
|
|
pred_op_infos = NIL;
|
|
|
|
foreach(lcp, pred_op_infos)
|
|
{
|
|
OpBtreeInterpretation *pred_op_info = lfirst(lcp);
|
|
Oid opfamily_id = pred_op_info->opfamily_id;
|
|
|
|
foreach(lcc, clause_op_infos)
|
|
{
|
|
OpBtreeInterpretation *clause_op_info = lfirst(lcc);
|
|
StrategyNumber pred_strategy,
|
|
clause_strategy,
|
|
test_strategy;
|
|
|
|
/* Must find them in same opfamily */
|
|
if (opfamily_id != clause_op_info->opfamily_id)
|
|
continue;
|
|
/* Lefttypes should match */
|
|
Assert(clause_op_info->oplefttype == pred_op_info->oplefttype);
|
|
|
|
pred_strategy = pred_op_info->strategy;
|
|
clause_strategy = clause_op_info->strategy;
|
|
|
|
/*
|
|
* Look up the "test" strategy number in the implication table
|
|
*/
|
|
if (refute_it)
|
|
test_strategy = BT_refute_table[clause_strategy - 1][pred_strategy - 1];
|
|
else
|
|
test_strategy = BT_implic_table[clause_strategy - 1][pred_strategy - 1];
|
|
|
|
if (test_strategy == 0)
|
|
{
|
|
/* Can't determine implication using this interpretation */
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* See if opfamily has an operator for the test strategy and the
|
|
* datatypes.
|
|
*/
|
|
if (test_strategy == BTNE)
|
|
{
|
|
test_op = get_opfamily_member(opfamily_id,
|
|
pred_op_info->oprighttype,
|
|
clause_op_info->oprighttype,
|
|
BTEqualStrategyNumber);
|
|
if (OidIsValid(test_op))
|
|
test_op = get_negator(test_op);
|
|
}
|
|
else
|
|
{
|
|
test_op = get_opfamily_member(opfamily_id,
|
|
pred_op_info->oprighttype,
|
|
clause_op_info->oprighttype,
|
|
test_strategy);
|
|
}
|
|
|
|
if (!OidIsValid(test_op))
|
|
continue;
|
|
|
|
/*
|
|
* Last check: test_op must be immutable.
|
|
*
|
|
* Note that we require only the test_op to be immutable, not the
|
|
* original clause_op. (pred_op is assumed to have been checked
|
|
* immutable by the caller.) Essentially we are assuming that the
|
|
* opfamily is consistent even if it contains operators that are
|
|
* merely stable.
|
|
*/
|
|
if (op_volatile(test_op) == PROVOLATILE_IMMUTABLE)
|
|
{
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (found)
|
|
break;
|
|
}
|
|
|
|
list_free_deep(pred_op_infos);
|
|
list_free_deep(clause_op_infos);
|
|
|
|
if (!found)
|
|
{
|
|
/* couldn't find a suitable comparison operator */
|
|
test_op = InvalidOid;
|
|
}
|
|
|
|
/* Cache the result, whether positive or negative */
|
|
if (refute_it)
|
|
{
|
|
cache_entry->refute_test_op = test_op;
|
|
cache_entry->have_refute = true;
|
|
}
|
|
else
|
|
{
|
|
cache_entry->implic_test_op = test_op;
|
|
cache_entry->have_implic = true;
|
|
}
|
|
|
|
return test_op;
|
|
}
|
|
|
|
|
|
/*
|
|
* Callback for pg_amop inval events
|
|
*/
|
|
static void
|
|
InvalidateOprProofCacheCallBack(Datum arg, int cacheid, ItemPointer tuplePtr)
|
|
{
|
|
HASH_SEQ_STATUS status;
|
|
OprProofCacheEntry *hentry;
|
|
|
|
Assert(OprProofCacheHash != NULL);
|
|
|
|
/* Currently we just reset all entries; hard to be smarter ... */
|
|
hash_seq_init(&status, OprProofCacheHash);
|
|
|
|
while ((hentry = (OprProofCacheEntry *) hash_seq_search(&status)) != NULL)
|
|
{
|
|
hentry->have_implic = false;
|
|
hentry->have_refute = false;
|
|
}
|
|
}
|