mirror of
https://github.com/postgres/postgres.git
synced 2025-05-06 19:59:18 +03:00
All postgres internal usages are replaced, it's just libpq example usages that haven't been converted. External users of libpq can't generally rely on including postgres internal headers. Note that this includes replacing open-coded byte swapping of 64bit integers (using two 32 bit swaps) with a single 64bit swap. Where it looked applicable, I have removed netinet/in.h and arpa/inet.h usage, which previously provided the relevant functionality. It's perfectly possible that I missed other reasons for including those, the buildfarm will tell. Author: Andres Freund Discussion: https://postgr.es/m/20170927172019.gheidqy6xvlxb325@alap3.anarazel.de
245 lines
5.9 KiB
C
245 lines
5.9 KiB
C
/*-------------------------------------------------------------------------
|
|
* scram-common.c
|
|
* Shared frontend/backend code for SCRAM authentication
|
|
*
|
|
* This contains the common low-level functions needed in both frontend and
|
|
* backend, for implement the Salted Challenge Response Authentication
|
|
* Mechanism (SCRAM), per IETF's RFC 5802.
|
|
*
|
|
* Portions Copyright (c) 2017, PostgreSQL Global Development Group
|
|
*
|
|
* IDENTIFICATION
|
|
* src/common/scram-common.c
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
#ifndef FRONTEND
|
|
#include "postgres.h"
|
|
#else
|
|
#include "postgres_fe.h"
|
|
#endif
|
|
|
|
#include "common/base64.h"
|
|
#include "common/scram-common.h"
|
|
#include "port/pg_bswap.h"
|
|
|
|
#define HMAC_IPAD 0x36
|
|
#define HMAC_OPAD 0x5C
|
|
|
|
/*
|
|
* Calculate HMAC per RFC2104.
|
|
*
|
|
* The hash function used is SHA-256.
|
|
*/
|
|
void
|
|
scram_HMAC_init(scram_HMAC_ctx *ctx, const uint8 *key, int keylen)
|
|
{
|
|
uint8 k_ipad[SHA256_HMAC_B];
|
|
int i;
|
|
uint8 keybuf[SCRAM_KEY_LEN];
|
|
|
|
/*
|
|
* If the key is longer than the block size (64 bytes for SHA-256), pass
|
|
* it through SHA-256 once to shrink it down.
|
|
*/
|
|
if (keylen > SHA256_HMAC_B)
|
|
{
|
|
pg_sha256_ctx sha256_ctx;
|
|
|
|
pg_sha256_init(&sha256_ctx);
|
|
pg_sha256_update(&sha256_ctx, key, keylen);
|
|
pg_sha256_final(&sha256_ctx, keybuf);
|
|
key = keybuf;
|
|
keylen = SCRAM_KEY_LEN;
|
|
}
|
|
|
|
memset(k_ipad, HMAC_IPAD, SHA256_HMAC_B);
|
|
memset(ctx->k_opad, HMAC_OPAD, SHA256_HMAC_B);
|
|
|
|
for (i = 0; i < keylen; i++)
|
|
{
|
|
k_ipad[i] ^= key[i];
|
|
ctx->k_opad[i] ^= key[i];
|
|
}
|
|
|
|
/* tmp = H(K XOR ipad, text) */
|
|
pg_sha256_init(&ctx->sha256ctx);
|
|
pg_sha256_update(&ctx->sha256ctx, k_ipad, SHA256_HMAC_B);
|
|
}
|
|
|
|
/*
|
|
* Update HMAC calculation
|
|
* The hash function used is SHA-256.
|
|
*/
|
|
void
|
|
scram_HMAC_update(scram_HMAC_ctx *ctx, const char *str, int slen)
|
|
{
|
|
pg_sha256_update(&ctx->sha256ctx, (const uint8 *) str, slen);
|
|
}
|
|
|
|
/*
|
|
* Finalize HMAC calculation.
|
|
* The hash function used is SHA-256.
|
|
*/
|
|
void
|
|
scram_HMAC_final(uint8 *result, scram_HMAC_ctx *ctx)
|
|
{
|
|
uint8 h[SCRAM_KEY_LEN];
|
|
|
|
pg_sha256_final(&ctx->sha256ctx, h);
|
|
|
|
/* H(K XOR opad, tmp) */
|
|
pg_sha256_init(&ctx->sha256ctx);
|
|
pg_sha256_update(&ctx->sha256ctx, ctx->k_opad, SHA256_HMAC_B);
|
|
pg_sha256_update(&ctx->sha256ctx, h, SCRAM_KEY_LEN);
|
|
pg_sha256_final(&ctx->sha256ctx, result);
|
|
}
|
|
|
|
/*
|
|
* Calculate SaltedPassword.
|
|
*
|
|
* The password should already be normalized by SASLprep.
|
|
*/
|
|
void
|
|
scram_SaltedPassword(const char *password,
|
|
const char *salt, int saltlen, int iterations,
|
|
uint8 *result)
|
|
{
|
|
int password_len = strlen(password);
|
|
uint32 one = pg_hton32(1);
|
|
int i,
|
|
j;
|
|
uint8 Ui[SCRAM_KEY_LEN];
|
|
uint8 Ui_prev[SCRAM_KEY_LEN];
|
|
scram_HMAC_ctx hmac_ctx;
|
|
|
|
/*
|
|
* Iterate hash calculation of HMAC entry using given salt. This is
|
|
* essentially PBKDF2 (see RFC2898) with HMAC() as the pseudorandom
|
|
* function.
|
|
*/
|
|
|
|
/* First iteration */
|
|
scram_HMAC_init(&hmac_ctx, (uint8 *) password, password_len);
|
|
scram_HMAC_update(&hmac_ctx, salt, saltlen);
|
|
scram_HMAC_update(&hmac_ctx, (char *) &one, sizeof(uint32));
|
|
scram_HMAC_final(Ui_prev, &hmac_ctx);
|
|
memcpy(result, Ui_prev, SCRAM_KEY_LEN);
|
|
|
|
/* Subsequent iterations */
|
|
for (i = 2; i <= iterations; i++)
|
|
{
|
|
scram_HMAC_init(&hmac_ctx, (uint8 *) password, password_len);
|
|
scram_HMAC_update(&hmac_ctx, (const char *) Ui_prev, SCRAM_KEY_LEN);
|
|
scram_HMAC_final(Ui, &hmac_ctx);
|
|
for (j = 0; j < SCRAM_KEY_LEN; j++)
|
|
result[j] ^= Ui[j];
|
|
memcpy(Ui_prev, Ui, SCRAM_KEY_LEN);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Calculate SHA-256 hash for a NULL-terminated string. (The NULL terminator is
|
|
* not included in the hash).
|
|
*/
|
|
void
|
|
scram_H(const uint8 *input, int len, uint8 *result)
|
|
{
|
|
pg_sha256_ctx ctx;
|
|
|
|
pg_sha256_init(&ctx);
|
|
pg_sha256_update(&ctx, input, len);
|
|
pg_sha256_final(&ctx, result);
|
|
}
|
|
|
|
/*
|
|
* Calculate ClientKey.
|
|
*/
|
|
void
|
|
scram_ClientKey(const uint8 *salted_password, uint8 *result)
|
|
{
|
|
scram_HMAC_ctx ctx;
|
|
|
|
scram_HMAC_init(&ctx, salted_password, SCRAM_KEY_LEN);
|
|
scram_HMAC_update(&ctx, "Client Key", strlen("Client Key"));
|
|
scram_HMAC_final(result, &ctx);
|
|
}
|
|
|
|
/*
|
|
* Calculate ServerKey.
|
|
*/
|
|
void
|
|
scram_ServerKey(const uint8 *salted_password, uint8 *result)
|
|
{
|
|
scram_HMAC_ctx ctx;
|
|
|
|
scram_HMAC_init(&ctx, salted_password, SCRAM_KEY_LEN);
|
|
scram_HMAC_update(&ctx, "Server Key", strlen("Server Key"));
|
|
scram_HMAC_final(result, &ctx);
|
|
}
|
|
|
|
|
|
/*
|
|
* Construct a verifier string for SCRAM, stored in pg_authid.rolpassword.
|
|
*
|
|
* The password should already have been processed with SASLprep, if necessary!
|
|
*
|
|
* If iterations is 0, default number of iterations is used. The result is
|
|
* palloc'd or malloc'd, so caller is responsible for freeing it.
|
|
*/
|
|
char *
|
|
scram_build_verifier(const char *salt, int saltlen, int iterations,
|
|
const char *password)
|
|
{
|
|
uint8 salted_password[SCRAM_KEY_LEN];
|
|
uint8 stored_key[SCRAM_KEY_LEN];
|
|
uint8 server_key[SCRAM_KEY_LEN];
|
|
char *result;
|
|
char *p;
|
|
int maxlen;
|
|
|
|
if (iterations <= 0)
|
|
iterations = SCRAM_DEFAULT_ITERATIONS;
|
|
|
|
/* Calculate StoredKey and ServerKey */
|
|
scram_SaltedPassword(password, salt, saltlen, iterations,
|
|
salted_password);
|
|
scram_ClientKey(salted_password, stored_key);
|
|
scram_H(stored_key, SCRAM_KEY_LEN, stored_key);
|
|
|
|
scram_ServerKey(salted_password, server_key);
|
|
|
|
/*----------
|
|
* The format is:
|
|
* SCRAM-SHA-256$<iteration count>:<salt>$<StoredKey>:<ServerKey>
|
|
*----------
|
|
*/
|
|
maxlen = strlen("SCRAM-SHA-256") + 1
|
|
+ 10 + 1 /* iteration count */
|
|
+ pg_b64_enc_len(saltlen) + 1 /* Base64-encoded salt */
|
|
+ pg_b64_enc_len(SCRAM_KEY_LEN) + 1 /* Base64-encoded StoredKey */
|
|
+ pg_b64_enc_len(SCRAM_KEY_LEN) + 1; /* Base64-encoded ServerKey */
|
|
|
|
#ifdef FRONTEND
|
|
result = malloc(maxlen);
|
|
if (!result)
|
|
return NULL;
|
|
#else
|
|
result = palloc(maxlen);
|
|
#endif
|
|
|
|
p = result + sprintf(result, "SCRAM-SHA-256$%d:", iterations);
|
|
|
|
p += pg_b64_encode(salt, saltlen, p);
|
|
*(p++) = '$';
|
|
p += pg_b64_encode((char *) stored_key, SCRAM_KEY_LEN, p);
|
|
*(p++) = ':';
|
|
p += pg_b64_encode((char *) server_key, SCRAM_KEY_LEN, p);
|
|
*(p++) = '\0';
|
|
|
|
Assert(p - result <= maxlen);
|
|
|
|
return result;
|
|
}
|