mirror of
https://github.com/postgres/postgres.git
synced 2025-04-22 23:02:54 +03:00
This includes removing tabs after periods in C comments, which was applied to back branches, so this change should not effect backpatching.
655 lines
17 KiB
C
655 lines
17 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* nodeSetOp.c
|
|
* Routines to handle INTERSECT and EXCEPT selection
|
|
*
|
|
* The input of a SetOp node consists of tuples from two relations,
|
|
* which have been combined into one dataset, with a junk attribute added
|
|
* that shows which relation each tuple came from. In SETOP_SORTED mode,
|
|
* the input has furthermore been sorted according to all the grouping
|
|
* columns (ie, all the non-junk attributes). The SetOp node scans each
|
|
* group of identical tuples to determine how many came from each input
|
|
* relation. Then it is a simple matter to emit the output demanded by the
|
|
* SQL spec for INTERSECT, INTERSECT ALL, EXCEPT, or EXCEPT ALL.
|
|
*
|
|
* In SETOP_HASHED mode, the input is delivered in no particular order,
|
|
* except that we know all the tuples from one input relation will come before
|
|
* all the tuples of the other. The planner guarantees that the first input
|
|
* relation is the left-hand one for EXCEPT, and tries to make the smaller
|
|
* input relation come first for INTERSECT. We build a hash table in memory
|
|
* with one entry for each group of identical tuples, and count the number of
|
|
* tuples in the group from each relation. After seeing all the input, we
|
|
* scan the hashtable and generate the correct output using those counts.
|
|
* We can avoid making hashtable entries for any tuples appearing only in the
|
|
* second input relation, since they cannot result in any output.
|
|
*
|
|
* This node type is not used for UNION or UNION ALL, since those can be
|
|
* implemented more cheaply (there's no need for the junk attribute to
|
|
* identify the source relation).
|
|
*
|
|
* Note that SetOp does no qual checking nor projection. The delivered
|
|
* output tuples are just copies of the first-to-arrive tuple in each
|
|
* input group.
|
|
*
|
|
*
|
|
* Portions Copyright (c) 1996-2014, PostgreSQL Global Development Group
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
|
*
|
|
*
|
|
* IDENTIFICATION
|
|
* src/backend/executor/nodeSetOp.c
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
|
|
#include "postgres.h"
|
|
|
|
#include "access/htup_details.h"
|
|
#include "executor/executor.h"
|
|
#include "executor/nodeSetOp.h"
|
|
#include "utils/memutils.h"
|
|
|
|
|
|
/*
|
|
* SetOpStatePerGroupData - per-group working state
|
|
*
|
|
* These values are working state that is initialized at the start of
|
|
* an input tuple group and updated for each input tuple.
|
|
*
|
|
* In SETOP_SORTED mode, we need only one of these structs, and it's kept in
|
|
* the plan state node. In SETOP_HASHED mode, the hash table contains one
|
|
* of these for each tuple group.
|
|
*/
|
|
typedef struct SetOpStatePerGroupData
|
|
{
|
|
long numLeft; /* number of left-input dups in group */
|
|
long numRight; /* number of right-input dups in group */
|
|
} SetOpStatePerGroupData;
|
|
|
|
/*
|
|
* To implement hashed mode, we need a hashtable that stores a
|
|
* representative tuple and the duplicate counts for each distinct set
|
|
* of grouping columns. We compute the hash key from the grouping columns.
|
|
*/
|
|
typedef struct SetOpHashEntryData *SetOpHashEntry;
|
|
|
|
typedef struct SetOpHashEntryData
|
|
{
|
|
TupleHashEntryData shared; /* common header for hash table entries */
|
|
SetOpStatePerGroupData pergroup;
|
|
} SetOpHashEntryData;
|
|
|
|
|
|
static TupleTableSlot *setop_retrieve_direct(SetOpState *setopstate);
|
|
static void setop_fill_hash_table(SetOpState *setopstate);
|
|
static TupleTableSlot *setop_retrieve_hash_table(SetOpState *setopstate);
|
|
|
|
|
|
/*
|
|
* Initialize state for a new group of input values.
|
|
*/
|
|
static inline void
|
|
initialize_counts(SetOpStatePerGroup pergroup)
|
|
{
|
|
pergroup->numLeft = pergroup->numRight = 0;
|
|
}
|
|
|
|
/*
|
|
* Advance the appropriate counter for one input tuple.
|
|
*/
|
|
static inline void
|
|
advance_counts(SetOpStatePerGroup pergroup, int flag)
|
|
{
|
|
if (flag)
|
|
pergroup->numRight++;
|
|
else
|
|
pergroup->numLeft++;
|
|
}
|
|
|
|
/*
|
|
* Fetch the "flag" column from an input tuple.
|
|
* This is an integer column with value 0 for left side, 1 for right side.
|
|
*/
|
|
static int
|
|
fetch_tuple_flag(SetOpState *setopstate, TupleTableSlot *inputslot)
|
|
{
|
|
SetOp *node = (SetOp *) setopstate->ps.plan;
|
|
int flag;
|
|
bool isNull;
|
|
|
|
flag = DatumGetInt32(slot_getattr(inputslot,
|
|
node->flagColIdx,
|
|
&isNull));
|
|
Assert(!isNull);
|
|
Assert(flag == 0 || flag == 1);
|
|
return flag;
|
|
}
|
|
|
|
/*
|
|
* Initialize the hash table to empty.
|
|
*/
|
|
static void
|
|
build_hash_table(SetOpState *setopstate)
|
|
{
|
|
SetOp *node = (SetOp *) setopstate->ps.plan;
|
|
|
|
Assert(node->strategy == SETOP_HASHED);
|
|
Assert(node->numGroups > 0);
|
|
|
|
setopstate->hashtable = BuildTupleHashTable(node->numCols,
|
|
node->dupColIdx,
|
|
setopstate->eqfunctions,
|
|
setopstate->hashfunctions,
|
|
node->numGroups,
|
|
sizeof(SetOpHashEntryData),
|
|
setopstate->tableContext,
|
|
setopstate->tempContext);
|
|
}
|
|
|
|
/*
|
|
* We've completed processing a tuple group. Decide how many copies (if any)
|
|
* of its representative row to emit, and store the count into numOutput.
|
|
* This logic is straight from the SQL92 specification.
|
|
*/
|
|
static void
|
|
set_output_count(SetOpState *setopstate, SetOpStatePerGroup pergroup)
|
|
{
|
|
SetOp *plannode = (SetOp *) setopstate->ps.plan;
|
|
|
|
switch (plannode->cmd)
|
|
{
|
|
case SETOPCMD_INTERSECT:
|
|
if (pergroup->numLeft > 0 && pergroup->numRight > 0)
|
|
setopstate->numOutput = 1;
|
|
else
|
|
setopstate->numOutput = 0;
|
|
break;
|
|
case SETOPCMD_INTERSECT_ALL:
|
|
setopstate->numOutput =
|
|
(pergroup->numLeft < pergroup->numRight) ?
|
|
pergroup->numLeft : pergroup->numRight;
|
|
break;
|
|
case SETOPCMD_EXCEPT:
|
|
if (pergroup->numLeft > 0 && pergroup->numRight == 0)
|
|
setopstate->numOutput = 1;
|
|
else
|
|
setopstate->numOutput = 0;
|
|
break;
|
|
case SETOPCMD_EXCEPT_ALL:
|
|
setopstate->numOutput =
|
|
(pergroup->numLeft < pergroup->numRight) ?
|
|
0 : (pergroup->numLeft - pergroup->numRight);
|
|
break;
|
|
default:
|
|
elog(ERROR, "unrecognized set op: %d", (int) plannode->cmd);
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecSetOp
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
TupleTableSlot * /* return: a tuple or NULL */
|
|
ExecSetOp(SetOpState *node)
|
|
{
|
|
SetOp *plannode = (SetOp *) node->ps.plan;
|
|
TupleTableSlot *resultTupleSlot = node->ps.ps_ResultTupleSlot;
|
|
|
|
/*
|
|
* If the previously-returned tuple needs to be returned more than once,
|
|
* keep returning it.
|
|
*/
|
|
if (node->numOutput > 0)
|
|
{
|
|
node->numOutput--;
|
|
return resultTupleSlot;
|
|
}
|
|
|
|
/* Otherwise, we're done if we are out of groups */
|
|
if (node->setop_done)
|
|
return NULL;
|
|
|
|
/* Fetch the next tuple group according to the correct strategy */
|
|
if (plannode->strategy == SETOP_HASHED)
|
|
{
|
|
if (!node->table_filled)
|
|
setop_fill_hash_table(node);
|
|
return setop_retrieve_hash_table(node);
|
|
}
|
|
else
|
|
return setop_retrieve_direct(node);
|
|
}
|
|
|
|
/*
|
|
* ExecSetOp for non-hashed case
|
|
*/
|
|
static TupleTableSlot *
|
|
setop_retrieve_direct(SetOpState *setopstate)
|
|
{
|
|
SetOp *node = (SetOp *) setopstate->ps.plan;
|
|
PlanState *outerPlan;
|
|
SetOpStatePerGroup pergroup;
|
|
TupleTableSlot *outerslot;
|
|
TupleTableSlot *resultTupleSlot;
|
|
|
|
/*
|
|
* get state info from node
|
|
*/
|
|
outerPlan = outerPlanState(setopstate);
|
|
pergroup = setopstate->pergroup;
|
|
resultTupleSlot = setopstate->ps.ps_ResultTupleSlot;
|
|
|
|
/*
|
|
* We loop retrieving groups until we find one we should return
|
|
*/
|
|
while (!setopstate->setop_done)
|
|
{
|
|
/*
|
|
* If we don't already have the first tuple of the new group, fetch it
|
|
* from the outer plan.
|
|
*/
|
|
if (setopstate->grp_firstTuple == NULL)
|
|
{
|
|
outerslot = ExecProcNode(outerPlan);
|
|
if (!TupIsNull(outerslot))
|
|
{
|
|
/* Make a copy of the first input tuple */
|
|
setopstate->grp_firstTuple = ExecCopySlotTuple(outerslot);
|
|
}
|
|
else
|
|
{
|
|
/* outer plan produced no tuples at all */
|
|
setopstate->setop_done = true;
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Store the copied first input tuple in the tuple table slot reserved
|
|
* for it. The tuple will be deleted when it is cleared from the
|
|
* slot.
|
|
*/
|
|
ExecStoreTuple(setopstate->grp_firstTuple,
|
|
resultTupleSlot,
|
|
InvalidBuffer,
|
|
true);
|
|
setopstate->grp_firstTuple = NULL; /* don't keep two pointers */
|
|
|
|
/* Initialize working state for a new input tuple group */
|
|
initialize_counts(pergroup);
|
|
|
|
/* Count the first input tuple */
|
|
advance_counts(pergroup,
|
|
fetch_tuple_flag(setopstate, resultTupleSlot));
|
|
|
|
/*
|
|
* Scan the outer plan until we exhaust it or cross a group boundary.
|
|
*/
|
|
for (;;)
|
|
{
|
|
outerslot = ExecProcNode(outerPlan);
|
|
if (TupIsNull(outerslot))
|
|
{
|
|
/* no more outer-plan tuples available */
|
|
setopstate->setop_done = true;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Check whether we've crossed a group boundary.
|
|
*/
|
|
if (!execTuplesMatch(resultTupleSlot,
|
|
outerslot,
|
|
node->numCols, node->dupColIdx,
|
|
setopstate->eqfunctions,
|
|
setopstate->tempContext))
|
|
{
|
|
/*
|
|
* Save the first input tuple of the next group.
|
|
*/
|
|
setopstate->grp_firstTuple = ExecCopySlotTuple(outerslot);
|
|
break;
|
|
}
|
|
|
|
/* Still in same group, so count this tuple */
|
|
advance_counts(pergroup,
|
|
fetch_tuple_flag(setopstate, outerslot));
|
|
}
|
|
|
|
/*
|
|
* Done scanning input tuple group. See if we should emit any copies
|
|
* of result tuple, and if so return the first copy.
|
|
*/
|
|
set_output_count(setopstate, pergroup);
|
|
|
|
if (setopstate->numOutput > 0)
|
|
{
|
|
setopstate->numOutput--;
|
|
return resultTupleSlot;
|
|
}
|
|
}
|
|
|
|
/* No more groups */
|
|
ExecClearTuple(resultTupleSlot);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* ExecSetOp for hashed case: phase 1, read input and build hash table
|
|
*/
|
|
static void
|
|
setop_fill_hash_table(SetOpState *setopstate)
|
|
{
|
|
SetOp *node = (SetOp *) setopstate->ps.plan;
|
|
PlanState *outerPlan;
|
|
int firstFlag;
|
|
bool in_first_rel PG_USED_FOR_ASSERTS_ONLY;
|
|
|
|
/*
|
|
* get state info from node
|
|
*/
|
|
outerPlan = outerPlanState(setopstate);
|
|
firstFlag = node->firstFlag;
|
|
/* verify planner didn't mess up */
|
|
Assert(firstFlag == 0 ||
|
|
(firstFlag == 1 &&
|
|
(node->cmd == SETOPCMD_INTERSECT ||
|
|
node->cmd == SETOPCMD_INTERSECT_ALL)));
|
|
|
|
/*
|
|
* Process each outer-plan tuple, and then fetch the next one, until we
|
|
* exhaust the outer plan.
|
|
*/
|
|
in_first_rel = true;
|
|
for (;;)
|
|
{
|
|
TupleTableSlot *outerslot;
|
|
int flag;
|
|
SetOpHashEntry entry;
|
|
bool isnew;
|
|
|
|
outerslot = ExecProcNode(outerPlan);
|
|
if (TupIsNull(outerslot))
|
|
break;
|
|
|
|
/* Identify whether it's left or right input */
|
|
flag = fetch_tuple_flag(setopstate, outerslot);
|
|
|
|
if (flag == firstFlag)
|
|
{
|
|
/* (still) in first input relation */
|
|
Assert(in_first_rel);
|
|
|
|
/* Find or build hashtable entry for this tuple's group */
|
|
entry = (SetOpHashEntry)
|
|
LookupTupleHashEntry(setopstate->hashtable, outerslot, &isnew);
|
|
|
|
/* If new tuple group, initialize counts */
|
|
if (isnew)
|
|
initialize_counts(&entry->pergroup);
|
|
|
|
/* Advance the counts */
|
|
advance_counts(&entry->pergroup, flag);
|
|
}
|
|
else
|
|
{
|
|
/* reached second relation */
|
|
in_first_rel = false;
|
|
|
|
/* For tuples not seen previously, do not make hashtable entry */
|
|
entry = (SetOpHashEntry)
|
|
LookupTupleHashEntry(setopstate->hashtable, outerslot, NULL);
|
|
|
|
/* Advance the counts if entry is already present */
|
|
if (entry)
|
|
advance_counts(&entry->pergroup, flag);
|
|
}
|
|
|
|
/* Must reset temp context after each hashtable lookup */
|
|
MemoryContextReset(setopstate->tempContext);
|
|
}
|
|
|
|
setopstate->table_filled = true;
|
|
/* Initialize to walk the hash table */
|
|
ResetTupleHashIterator(setopstate->hashtable, &setopstate->hashiter);
|
|
}
|
|
|
|
/*
|
|
* ExecSetOp for hashed case: phase 2, retrieving groups from hash table
|
|
*/
|
|
static TupleTableSlot *
|
|
setop_retrieve_hash_table(SetOpState *setopstate)
|
|
{
|
|
SetOpHashEntry entry;
|
|
TupleTableSlot *resultTupleSlot;
|
|
|
|
/*
|
|
* get state info from node
|
|
*/
|
|
resultTupleSlot = setopstate->ps.ps_ResultTupleSlot;
|
|
|
|
/*
|
|
* We loop retrieving groups until we find one we should return
|
|
*/
|
|
while (!setopstate->setop_done)
|
|
{
|
|
/*
|
|
* Find the next entry in the hash table
|
|
*/
|
|
entry = (SetOpHashEntry) ScanTupleHashTable(&setopstate->hashiter);
|
|
if (entry == NULL)
|
|
{
|
|
/* No more entries in hashtable, so done */
|
|
setopstate->setop_done = true;
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* See if we should emit any copies of this tuple, and if so return
|
|
* the first copy.
|
|
*/
|
|
set_output_count(setopstate, &entry->pergroup);
|
|
|
|
if (setopstate->numOutput > 0)
|
|
{
|
|
setopstate->numOutput--;
|
|
return ExecStoreMinimalTuple(entry->shared.firstTuple,
|
|
resultTupleSlot,
|
|
false);
|
|
}
|
|
}
|
|
|
|
/* No more groups */
|
|
ExecClearTuple(resultTupleSlot);
|
|
return NULL;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecInitSetOp
|
|
*
|
|
* This initializes the setop node state structures and
|
|
* the node's subplan.
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
SetOpState *
|
|
ExecInitSetOp(SetOp *node, EState *estate, int eflags)
|
|
{
|
|
SetOpState *setopstate;
|
|
|
|
/* check for unsupported flags */
|
|
Assert(!(eflags & (EXEC_FLAG_BACKWARD | EXEC_FLAG_MARK)));
|
|
|
|
/*
|
|
* create state structure
|
|
*/
|
|
setopstate = makeNode(SetOpState);
|
|
setopstate->ps.plan = (Plan *) node;
|
|
setopstate->ps.state = estate;
|
|
|
|
setopstate->eqfunctions = NULL;
|
|
setopstate->hashfunctions = NULL;
|
|
setopstate->setop_done = false;
|
|
setopstate->numOutput = 0;
|
|
setopstate->pergroup = NULL;
|
|
setopstate->grp_firstTuple = NULL;
|
|
setopstate->hashtable = NULL;
|
|
setopstate->tableContext = NULL;
|
|
|
|
/*
|
|
* Miscellaneous initialization
|
|
*
|
|
* SetOp nodes have no ExprContext initialization because they never call
|
|
* ExecQual or ExecProject. But they do need a per-tuple memory context
|
|
* anyway for calling execTuplesMatch.
|
|
*/
|
|
setopstate->tempContext =
|
|
AllocSetContextCreate(CurrentMemoryContext,
|
|
"SetOp",
|
|
ALLOCSET_DEFAULT_MINSIZE,
|
|
ALLOCSET_DEFAULT_INITSIZE,
|
|
ALLOCSET_DEFAULT_MAXSIZE);
|
|
|
|
/*
|
|
* If hashing, we also need a longer-lived context to store the hash
|
|
* table. The table can't just be kept in the per-query context because
|
|
* we want to be able to throw it away in ExecReScanSetOp.
|
|
*/
|
|
if (node->strategy == SETOP_HASHED)
|
|
setopstate->tableContext =
|
|
AllocSetContextCreate(CurrentMemoryContext,
|
|
"SetOp hash table",
|
|
ALLOCSET_DEFAULT_MINSIZE,
|
|
ALLOCSET_DEFAULT_INITSIZE,
|
|
ALLOCSET_DEFAULT_MAXSIZE);
|
|
|
|
/*
|
|
* Tuple table initialization
|
|
*/
|
|
ExecInitResultTupleSlot(estate, &setopstate->ps);
|
|
|
|
/*
|
|
* initialize child nodes
|
|
*
|
|
* If we are hashing then the child plan does not need to handle REWIND
|
|
* efficiently; see ExecReScanSetOp.
|
|
*/
|
|
if (node->strategy == SETOP_HASHED)
|
|
eflags &= ~EXEC_FLAG_REWIND;
|
|
outerPlanState(setopstate) = ExecInitNode(outerPlan(node), estate, eflags);
|
|
|
|
/*
|
|
* setop nodes do no projections, so initialize projection info for this
|
|
* node appropriately
|
|
*/
|
|
ExecAssignResultTypeFromTL(&setopstate->ps);
|
|
setopstate->ps.ps_ProjInfo = NULL;
|
|
|
|
/*
|
|
* Precompute fmgr lookup data for inner loop. We need both equality and
|
|
* hashing functions to do it by hashing, but only equality if not
|
|
* hashing.
|
|
*/
|
|
if (node->strategy == SETOP_HASHED)
|
|
execTuplesHashPrepare(node->numCols,
|
|
node->dupOperators,
|
|
&setopstate->eqfunctions,
|
|
&setopstate->hashfunctions);
|
|
else
|
|
setopstate->eqfunctions =
|
|
execTuplesMatchPrepare(node->numCols,
|
|
node->dupOperators);
|
|
|
|
if (node->strategy == SETOP_HASHED)
|
|
{
|
|
build_hash_table(setopstate);
|
|
setopstate->table_filled = false;
|
|
}
|
|
else
|
|
{
|
|
setopstate->pergroup =
|
|
(SetOpStatePerGroup) palloc0(sizeof(SetOpStatePerGroupData));
|
|
}
|
|
|
|
return setopstate;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecEndSetOp
|
|
*
|
|
* This shuts down the subplan and frees resources allocated
|
|
* to this node.
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
void
|
|
ExecEndSetOp(SetOpState *node)
|
|
{
|
|
/* clean up tuple table */
|
|
ExecClearTuple(node->ps.ps_ResultTupleSlot);
|
|
|
|
/* free subsidiary stuff including hashtable */
|
|
MemoryContextDelete(node->tempContext);
|
|
if (node->tableContext)
|
|
MemoryContextDelete(node->tableContext);
|
|
|
|
ExecEndNode(outerPlanState(node));
|
|
}
|
|
|
|
|
|
void
|
|
ExecReScanSetOp(SetOpState *node)
|
|
{
|
|
ExecClearTuple(node->ps.ps_ResultTupleSlot);
|
|
node->setop_done = false;
|
|
node->numOutput = 0;
|
|
|
|
if (((SetOp *) node->ps.plan)->strategy == SETOP_HASHED)
|
|
{
|
|
/*
|
|
* In the hashed case, if we haven't yet built the hash table then we
|
|
* can just return; nothing done yet, so nothing to undo. If subnode's
|
|
* chgParam is not NULL then it will be re-scanned by ExecProcNode,
|
|
* else no reason to re-scan it at all.
|
|
*/
|
|
if (!node->table_filled)
|
|
return;
|
|
|
|
/*
|
|
* If we do have the hash table and the subplan does not have any
|
|
* parameter changes, then we can just rescan the existing hash table;
|
|
* no need to build it again.
|
|
*/
|
|
if (node->ps.lefttree->chgParam == NULL)
|
|
{
|
|
ResetTupleHashIterator(node->hashtable, &node->hashiter);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Release first tuple of group, if we have made a copy */
|
|
if (node->grp_firstTuple != NULL)
|
|
{
|
|
heap_freetuple(node->grp_firstTuple);
|
|
node->grp_firstTuple = NULL;
|
|
}
|
|
|
|
/* Release any hashtable storage */
|
|
if (node->tableContext)
|
|
MemoryContextResetAndDeleteChildren(node->tableContext);
|
|
|
|
/* And rebuild empty hashtable if needed */
|
|
if (((SetOp *) node->ps.plan)->strategy == SETOP_HASHED)
|
|
{
|
|
build_hash_table(node);
|
|
node->table_filled = false;
|
|
}
|
|
|
|
/*
|
|
* if chgParam of subnode is not null then plan will be re-scanned by
|
|
* first ExecProcNode.
|
|
*/
|
|
if (node->ps.lefttree->chgParam == NULL)
|
|
ExecReScan(node->ps.lefttree);
|
|
}
|