1
0
mirror of https://github.com/postgres/postgres.git synced 2025-11-13 16:22:44 +03:00
Files
postgres/src/backend/access/nbtree/nbtxlog.c
Bruce Momjian 0a78320057 pgindent run for 9.4
This includes removing tabs after periods in C comments, which was
applied to back branches, so this change should not effect backpatching.
2014-05-06 12:12:18 -04:00

1166 lines
33 KiB
C

/*-------------------------------------------------------------------------
*
* nbtxlog.c
* WAL replay logic for btrees.
*
*
* Portions Copyright (c) 1996-2014, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* src/backend/access/nbtree/nbtxlog.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/heapam_xlog.h"
#include "access/nbtree.h"
#include "access/transam.h"
#include "storage/procarray.h"
#include "miscadmin.h"
/*
* _bt_restore_page -- re-enter all the index tuples on a page
*
* The page is freshly init'd, and *from (length len) is a copy of what
* had been its upper part (pd_upper to pd_special). We assume that the
* tuples had been added to the page in item-number order, and therefore
* the one with highest item number appears first (lowest on the page).
*/
static void
_bt_restore_page(Page page, char *from, int len)
{
IndexTupleData itupdata;
Size itemsz;
char *end = from + len;
Item items[MaxIndexTuplesPerPage];
uint16 itemsizes[MaxIndexTuplesPerPage];
int i;
int nitems;
/*
* To get the items back in the original order, we add them to the page in
* reverse. To figure out where one tuple ends and another begins, we
* have to scan them in forward order first.
*/
i = 0;
while (from < end)
{
/* Need to copy tuple header due to alignment considerations */
memcpy(&itupdata, from, sizeof(IndexTupleData));
itemsz = IndexTupleDSize(itupdata);
itemsz = MAXALIGN(itemsz);
items[i] = (Item) from;
itemsizes[i] = itemsz;
i++;
from += itemsz;
}
nitems = i;
for (i = nitems - 1; i >= 0; i--)
{
if (PageAddItem(page, items[i], itemsizes[i], nitems - i,
false, false) == InvalidOffsetNumber)
elog(PANIC, "_bt_restore_page: cannot add item to page");
from += itemsz;
}
}
static void
_bt_restore_meta(RelFileNode rnode, XLogRecPtr lsn,
BlockNumber root, uint32 level,
BlockNumber fastroot, uint32 fastlevel)
{
Buffer metabuf;
Page metapg;
BTMetaPageData *md;
BTPageOpaque pageop;
metabuf = XLogReadBuffer(rnode, BTREE_METAPAGE, true);
Assert(BufferIsValid(metabuf));
metapg = BufferGetPage(metabuf);
_bt_pageinit(metapg, BufferGetPageSize(metabuf));
md = BTPageGetMeta(metapg);
md->btm_magic = BTREE_MAGIC;
md->btm_version = BTREE_VERSION;
md->btm_root = root;
md->btm_level = level;
md->btm_fastroot = fastroot;
md->btm_fastlevel = fastlevel;
pageop = (BTPageOpaque) PageGetSpecialPointer(metapg);
pageop->btpo_flags = BTP_META;
/*
* Set pd_lower just past the end of the metadata. This is not essential
* but it makes the page look compressible to xlog.c.
*/
((PageHeader) metapg)->pd_lower =
((char *) md + sizeof(BTMetaPageData)) - (char *) metapg;
PageSetLSN(metapg, lsn);
MarkBufferDirty(metabuf);
UnlockReleaseBuffer(metabuf);
}
/*
* _bt_clear_incomplete_split -- clear INCOMPLETE_SPLIT flag on a page
*
* This is a common subroutine of the redo functions of all the WAL record
* types that can insert a downlink: insert, split, and newroot.
*/
static void
_bt_clear_incomplete_split(XLogRecPtr lsn, XLogRecord *record,
RelFileNode rnode, BlockNumber cblock)
{
Buffer buf;
buf = XLogReadBuffer(rnode, cblock, false);
if (BufferIsValid(buf))
{
Page page = (Page) BufferGetPage(buf);
if (lsn > PageGetLSN(page))
{
BTPageOpaque pageop = (BTPageOpaque) PageGetSpecialPointer(page);
Assert((pageop->btpo_flags & BTP_INCOMPLETE_SPLIT) != 0);
pageop->btpo_flags &= ~BTP_INCOMPLETE_SPLIT;
PageSetLSN(page, lsn);
MarkBufferDirty(buf);
}
UnlockReleaseBuffer(buf);
}
}
static void
btree_xlog_insert(bool isleaf, bool ismeta,
XLogRecPtr lsn, XLogRecord *record)
{
xl_btree_insert *xlrec = (xl_btree_insert *) XLogRecGetData(record);
Buffer buffer;
Page page;
char *datapos;
int datalen;
xl_btree_metadata md;
BlockNumber cblkno = 0;
int main_blk_index;
datapos = (char *) xlrec + SizeOfBtreeInsert;
datalen = record->xl_len - SizeOfBtreeInsert;
/*
* if this insert finishes a split at lower level, extract the block
* number of the (left) child.
*/
if (!isleaf && (record->xl_info & XLR_BKP_BLOCK(0)) == 0)
{
memcpy(&cblkno, datapos, sizeof(BlockNumber));
Assert(cblkno != 0);
datapos += sizeof(BlockNumber);
datalen -= sizeof(BlockNumber);
}
if (ismeta)
{
memcpy(&md, datapos, sizeof(xl_btree_metadata));
datapos += sizeof(xl_btree_metadata);
datalen -= sizeof(xl_btree_metadata);
}
/*
* Insertion to an internal page finishes an incomplete split at the child
* level. Clear the incomplete-split flag in the child. Note: during
* normal operation, the child and parent pages are locked at the same
* time, so that clearing the flag and inserting the downlink appear
* atomic to other backends. We don't bother with that during replay,
* because readers don't care about the incomplete-split flag and there
* cannot be updates happening.
*/
if (!isleaf)
{
if (record->xl_info & XLR_BKP_BLOCK(0))
(void) RestoreBackupBlock(lsn, record, 0, false, false);
else
_bt_clear_incomplete_split(lsn, record, xlrec->target.node, cblkno);
main_blk_index = 1;
}
else
main_blk_index = 0;
if (record->xl_info & XLR_BKP_BLOCK(main_blk_index))
(void) RestoreBackupBlock(lsn, record, main_blk_index, false, false);
else
{
buffer = XLogReadBuffer(xlrec->target.node,
ItemPointerGetBlockNumber(&(xlrec->target.tid)),
false);
if (BufferIsValid(buffer))
{
page = (Page) BufferGetPage(buffer);
if (lsn > PageGetLSN(page))
{
if (PageAddItem(page, (Item) datapos, datalen,
ItemPointerGetOffsetNumber(&(xlrec->target.tid)),
false, false) == InvalidOffsetNumber)
elog(PANIC, "btree_insert_redo: failed to add item");
PageSetLSN(page, lsn);
MarkBufferDirty(buffer);
}
UnlockReleaseBuffer(buffer);
}
}
/*
* Note: in normal operation, we'd update the metapage while still holding
* lock on the page we inserted into. But during replay it's not
* necessary to hold that lock, since no other index updates can be
* happening concurrently, and readers will cope fine with following an
* obsolete link from the metapage.
*/
if (ismeta)
_bt_restore_meta(xlrec->target.node, lsn,
md.root, md.level,
md.fastroot, md.fastlevel);
}
static void
btree_xlog_split(bool onleft, bool isroot,
XLogRecPtr lsn, XLogRecord *record)
{
xl_btree_split *xlrec = (xl_btree_split *) XLogRecGetData(record);
bool isleaf = (xlrec->level == 0);
Buffer lbuf;
Buffer rbuf;
Page rpage;
BTPageOpaque ropaque;
char *datapos;
int datalen;
OffsetNumber newitemoff = 0;
Item newitem = NULL;
Size newitemsz = 0;
Item left_hikey = NULL;
Size left_hikeysz = 0;
BlockNumber cblkno = InvalidBlockNumber;
datapos = (char *) xlrec + SizeOfBtreeSplit;
datalen = record->xl_len - SizeOfBtreeSplit;
/* Extract newitemoff and newitem, if present */
if (onleft)
{
memcpy(&newitemoff, datapos, sizeof(OffsetNumber));
datapos += sizeof(OffsetNumber);
datalen -= sizeof(OffsetNumber);
}
if (onleft && !(record->xl_info & XLR_BKP_BLOCK(0)))
{
/*
* We assume that 16-bit alignment is enough to apply IndexTupleSize
* (since it's fetching from a uint16 field) and also enough for
* PageAddItem to insert the tuple.
*/
newitem = (Item) datapos;
newitemsz = MAXALIGN(IndexTupleSize(newitem));
datapos += newitemsz;
datalen -= newitemsz;
}
/* Extract left hikey and its size (still assuming 16-bit alignment) */
if (!isleaf && !(record->xl_info & XLR_BKP_BLOCK(0)))
{
left_hikey = (Item) datapos;
left_hikeysz = MAXALIGN(IndexTupleSize(left_hikey));
datapos += left_hikeysz;
datalen -= left_hikeysz;
}
/*
* If this insertion finishes an incomplete split, get the block number of
* the child.
*/
if (!isleaf && !(record->xl_info & XLR_BKP_BLOCK(1)))
{
memcpy(&cblkno, datapos, sizeof(BlockNumber));
datapos += sizeof(BlockNumber);
datalen -= sizeof(BlockNumber);
}
/*
* Clear the incomplete split flag on the left sibling of the child page
* this is a downlink for. (Like in btree_xlog_insert, this can be done
* before locking the other pages)
*/
if (!isleaf)
{
if (record->xl_info & XLR_BKP_BLOCK(2))
(void) RestoreBackupBlock(lsn, record, 2, false, false);
else
_bt_clear_incomplete_split(lsn, record, xlrec->node, cblkno);
}
/* Reconstruct right (new) sibling page from scratch */
rbuf = XLogReadBuffer(xlrec->node, xlrec->rightsib, true);
Assert(BufferIsValid(rbuf));
rpage = (Page) BufferGetPage(rbuf);
_bt_pageinit(rpage, BufferGetPageSize(rbuf));
ropaque = (BTPageOpaque) PageGetSpecialPointer(rpage);
ropaque->btpo_prev = xlrec->leftsib;
ropaque->btpo_next = xlrec->rnext;
ropaque->btpo.level = xlrec->level;
ropaque->btpo_flags = isleaf ? BTP_LEAF : 0;
ropaque->btpo_cycleid = 0;
_bt_restore_page(rpage, datapos, datalen);
/*
* On leaf level, the high key of the left page is equal to the first key
* on the right page.
*/
if (isleaf)
{
ItemId hiItemId = PageGetItemId(rpage, P_FIRSTDATAKEY(ropaque));
left_hikey = PageGetItem(rpage, hiItemId);
left_hikeysz = ItemIdGetLength(hiItemId);
}
PageSetLSN(rpage, lsn);
MarkBufferDirty(rbuf);
/* don't release the buffer yet; we touch right page's first item below */
/* Now reconstruct left (original) sibling page */
if (record->xl_info & XLR_BKP_BLOCK(0))
lbuf = RestoreBackupBlock(lsn, record, 0, false, true);
else
{
lbuf = XLogReadBuffer(xlrec->node, xlrec->leftsib, false);
if (BufferIsValid(lbuf))
{
/*
* To retain the same physical order of the tuples that they had,
* we initialize a temporary empty page for the left page and add
* all the items to that in item number order. This mirrors how
* _bt_split() works. It's not strictly required to retain the
* same physical order, as long as the items are in the correct
* item number order, but it helps debugging. See also
* _bt_restore_page(), which does the same for the right page.
*/
Page lpage = (Page) BufferGetPage(lbuf);
BTPageOpaque lopaque = (BTPageOpaque) PageGetSpecialPointer(lpage);
if (lsn > PageGetLSN(lpage))
{
OffsetNumber off;
Page newlpage;
OffsetNumber leftoff;
newlpage = PageGetTempPageCopySpecial(lpage);
/* Set high key */
leftoff = P_HIKEY;
if (PageAddItem(newlpage, left_hikey, left_hikeysz,
P_HIKEY, false, false) == InvalidOffsetNumber)
elog(PANIC, "failed to add high key to left page after split");
leftoff = OffsetNumberNext(leftoff);
for (off = P_FIRSTDATAKEY(lopaque); off < xlrec->firstright; off++)
{
ItemId itemid;
Size itemsz;
Item item;
/* add the new item if it was inserted on left page */
if (onleft && off == newitemoff)
{
if (PageAddItem(newlpage, newitem, newitemsz, leftoff,
false, false) == InvalidOffsetNumber)
elog(ERROR, "failed to add new item to left page after split");
leftoff = OffsetNumberNext(leftoff);
}
itemid = PageGetItemId(lpage, off);
itemsz = ItemIdGetLength(itemid);
item = PageGetItem(lpage, itemid);
if (PageAddItem(newlpage, item, itemsz, leftoff,
false, false) == InvalidOffsetNumber)
elog(ERROR, "failed to add old item to left page after split");
leftoff = OffsetNumberNext(leftoff);
}
/* cope with possibility that newitem goes at the end */
if (onleft && off == newitemoff)
{
if (PageAddItem(newlpage, newitem, newitemsz, leftoff,
false, false) == InvalidOffsetNumber)
elog(ERROR, "failed to add new item to left page after split");
leftoff = OffsetNumberNext(leftoff);
}
PageRestoreTempPage(newlpage, lpage);
/* Fix opaque fields */
lopaque->btpo_flags = BTP_INCOMPLETE_SPLIT;
if (isleaf)
lopaque->btpo_flags |= BTP_LEAF;
lopaque->btpo_next = xlrec->rightsib;
lopaque->btpo_cycleid = 0;
PageSetLSN(lpage, lsn);
MarkBufferDirty(lbuf);
}
}
}
/* We no longer need the buffers */
if (BufferIsValid(lbuf))
UnlockReleaseBuffer(lbuf);
UnlockReleaseBuffer(rbuf);
/*
* Fix left-link of the page to the right of the new right sibling.
*
* Note: in normal operation, we do this while still holding lock on the
* two split pages. However, that's not necessary for correctness in WAL
* replay, because no other index update can be in progress, and readers
* will cope properly when following an obsolete left-link.
*/
if (xlrec->rnext != P_NONE)
{
/*
* the backup block containing right sibling is 2 or 3, depending
* whether this was a leaf or internal page.
*/
int rnext_index = isleaf ? 2 : 3;
if (record->xl_info & XLR_BKP_BLOCK(rnext_index))
(void) RestoreBackupBlock(lsn, record, rnext_index, false, false);
else
{
Buffer buffer;
buffer = XLogReadBuffer(xlrec->node, xlrec->rnext, false);
if (BufferIsValid(buffer))
{
Page page = (Page) BufferGetPage(buffer);
if (lsn > PageGetLSN(page))
{
BTPageOpaque pageop = (BTPageOpaque) PageGetSpecialPointer(page);
pageop->btpo_prev = xlrec->rightsib;
PageSetLSN(page, lsn);
MarkBufferDirty(buffer);
}
UnlockReleaseBuffer(buffer);
}
}
}
}
static void
btree_xlog_vacuum(XLogRecPtr lsn, XLogRecord *record)
{
xl_btree_vacuum *xlrec = (xl_btree_vacuum *) XLogRecGetData(record);
Buffer buffer;
Page page;
BTPageOpaque opaque;
/*
* If queries might be active then we need to ensure every leaf page is
* unpinned between the lastBlockVacuumed and the current block, if there
* are any. This prevents replay of the VACUUM from reaching the stage of
* removing heap tuples while there could still be indexscans "in flight"
* to those particular tuples (see nbtree/README).
*
* It might be worth checking if there are actually any backends running;
* if not, we could just skip this.
*
* Since VACUUM can visit leaf pages out-of-order, it might issue records
* with lastBlockVacuumed >= block; that's not an error, it just means
* nothing to do now.
*
* Note: since we touch all pages in the range, we will lock non-leaf
* pages, and also any empty (all-zero) pages that may be in the index. It
* doesn't seem worth the complexity to avoid that. But it's important
* that HotStandbyActiveInReplay() will not return true if the database
* isn't yet consistent; so we need not fear reading still-corrupt blocks
* here during crash recovery.
*/
if (HotStandbyActiveInReplay())
{
BlockNumber blkno;
for (blkno = xlrec->lastBlockVacuumed + 1; blkno < xlrec->block; blkno++)
{
/*
* We use RBM_NORMAL_NO_LOG mode because it's not an error
* condition to see all-zero pages. The original btvacuumpage
* scan would have skipped over all-zero pages, noting them in FSM
* but not bothering to initialize them just yet; so we mustn't
* throw an error here. (We could skip acquiring the cleanup lock
* if PageIsNew, but it's probably not worth the cycles to test.)
*
* XXX we don't actually need to read the block, we just need to
* confirm it is unpinned. If we had a special call into the
* buffer manager we could optimise this so that if the block is
* not in shared_buffers we confirm it as unpinned.
*/
buffer = XLogReadBufferExtended(xlrec->node, MAIN_FORKNUM, blkno,
RBM_NORMAL_NO_LOG);
if (BufferIsValid(buffer))
{
LockBufferForCleanup(buffer);
UnlockReleaseBuffer(buffer);
}
}
}
/*
* If we have a full-page image, restore it (using a cleanup lock) and
* we're done.
*/
if (record->xl_info & XLR_BKP_BLOCK(0))
{
(void) RestoreBackupBlock(lsn, record, 0, true, false);
return;
}
/*
* Like in btvacuumpage(), we need to take a cleanup lock on every leaf
* page. See nbtree/README for details.
*/
buffer = XLogReadBufferExtended(xlrec->node, MAIN_FORKNUM, xlrec->block, RBM_NORMAL);
if (!BufferIsValid(buffer))
return;
LockBufferForCleanup(buffer);
page = (Page) BufferGetPage(buffer);
if (lsn <= PageGetLSN(page))
{
UnlockReleaseBuffer(buffer);
return;
}
if (record->xl_len > SizeOfBtreeVacuum)
{
OffsetNumber *unused;
OffsetNumber *unend;
unused = (OffsetNumber *) ((char *) xlrec + SizeOfBtreeVacuum);
unend = (OffsetNumber *) ((char *) xlrec + record->xl_len);
if ((unend - unused) > 0)
PageIndexMultiDelete(page, unused, unend - unused);
}
/*
* Mark the page as not containing any LP_DEAD items --- see comments in
* _bt_delitems_vacuum().
*/
opaque = (BTPageOpaque) PageGetSpecialPointer(page);
opaque->btpo_flags &= ~BTP_HAS_GARBAGE;
PageSetLSN(page, lsn);
MarkBufferDirty(buffer);
UnlockReleaseBuffer(buffer);
}
/*
* Get the latestRemovedXid from the heap pages pointed at by the index
* tuples being deleted. This puts the work for calculating latestRemovedXid
* into the recovery path rather than the primary path.
*
* It's possible that this generates a fair amount of I/O, since an index
* block may have hundreds of tuples being deleted. Repeat accesses to the
* same heap blocks are common, though are not yet optimised.
*
* XXX optimise later with something like XLogPrefetchBuffer()
*/
static TransactionId
btree_xlog_delete_get_latestRemovedXid(xl_btree_delete *xlrec)
{
OffsetNumber *unused;
Buffer ibuffer,
hbuffer;
Page ipage,
hpage;
ItemId iitemid,
hitemid;
IndexTuple itup;
HeapTupleHeader htuphdr;
BlockNumber hblkno;
OffsetNumber hoffnum;
TransactionId latestRemovedXid = InvalidTransactionId;
int i;
/*
* If there's nothing running on the standby we don't need to derive a
* full latestRemovedXid value, so use a fast path out of here. This
* returns InvalidTransactionId, and so will conflict with all HS
* transactions; but since we just worked out that that's zero people,
* it's OK.
*
* XXX There is a race condition here, which is that a new backend might
* start just after we look. If so, it cannot need to conflict, but this
* coding will result in throwing a conflict anyway.
*/
if (CountDBBackends(InvalidOid) == 0)
return latestRemovedXid;
/*
* In what follows, we have to examine the previous state of the index
* page, as well as the heap page(s) it points to. This is only valid if
* WAL replay has reached a consistent database state; which means that
* the preceding check is not just an optimization, but is *necessary*. We
* won't have let in any user sessions before we reach consistency.
*/
if (!reachedConsistency)
elog(PANIC, "btree_xlog_delete_get_latestRemovedXid: cannot operate with inconsistent data");
/*
* Get index page. If the DB is consistent, this should not fail, nor
* should any of the heap page fetches below. If one does, we return
* InvalidTransactionId to cancel all HS transactions. That's probably
* overkill, but it's safe, and certainly better than panicking here.
*/
ibuffer = XLogReadBuffer(xlrec->node, xlrec->block, false);
if (!BufferIsValid(ibuffer))
return InvalidTransactionId;
ipage = (Page) BufferGetPage(ibuffer);
/*
* Loop through the deleted index items to obtain the TransactionId from
* the heap items they point to.
*/
unused = (OffsetNumber *) ((char *) xlrec + SizeOfBtreeDelete);
for (i = 0; i < xlrec->nitems; i++)
{
/*
* Identify the index tuple about to be deleted
*/
iitemid = PageGetItemId(ipage, unused[i]);
itup = (IndexTuple) PageGetItem(ipage, iitemid);
/*
* Locate the heap page that the index tuple points at
*/
hblkno = ItemPointerGetBlockNumber(&(itup->t_tid));
hbuffer = XLogReadBuffer(xlrec->hnode, hblkno, false);
if (!BufferIsValid(hbuffer))
{
UnlockReleaseBuffer(ibuffer);
return InvalidTransactionId;
}
hpage = (Page) BufferGetPage(hbuffer);
/*
* Look up the heap tuple header that the index tuple points at by
* using the heap node supplied with the xlrec. We can't use
* heap_fetch, since it uses ReadBuffer rather than XLogReadBuffer.
* Note that we are not looking at tuple data here, just headers.
*/
hoffnum = ItemPointerGetOffsetNumber(&(itup->t_tid));
hitemid = PageGetItemId(hpage, hoffnum);
/*
* Follow any redirections until we find something useful.
*/
while (ItemIdIsRedirected(hitemid))
{
hoffnum = ItemIdGetRedirect(hitemid);
hitemid = PageGetItemId(hpage, hoffnum);
CHECK_FOR_INTERRUPTS();
}
/*
* If the heap item has storage, then read the header and use that to
* set latestRemovedXid.
*
* Some LP_DEAD items may not be accessible, so we ignore them.
*/
if (ItemIdHasStorage(hitemid))
{
htuphdr = (HeapTupleHeader) PageGetItem(hpage, hitemid);
HeapTupleHeaderAdvanceLatestRemovedXid(htuphdr, &latestRemovedXid);
}
else if (ItemIdIsDead(hitemid))
{
/*
* Conjecture: if hitemid is dead then it had xids before the xids
* marked on LP_NORMAL items. So we just ignore this item and move
* onto the next, for the purposes of calculating
* latestRemovedxids.
*/
}
else
Assert(!ItemIdIsUsed(hitemid));
UnlockReleaseBuffer(hbuffer);
}
UnlockReleaseBuffer(ibuffer);
/*
* If all heap tuples were LP_DEAD then we will be returning
* InvalidTransactionId here, which avoids conflicts. This matches
* existing logic which assumes that LP_DEAD tuples must already be older
* than the latestRemovedXid on the cleanup record that set them as
* LP_DEAD, hence must already have generated a conflict.
*/
return latestRemovedXid;
}
static void
btree_xlog_delete(XLogRecPtr lsn, XLogRecord *record)
{
xl_btree_delete *xlrec = (xl_btree_delete *) XLogRecGetData(record);
Buffer buffer;
Page page;
BTPageOpaque opaque;
/*
* If we have any conflict processing to do, it must happen before we
* update the page.
*
* Btree delete records can conflict with standby queries. You might
* think that vacuum records would conflict as well, but we've handled
* that already. XLOG_HEAP2_CLEANUP_INFO records provide the highest xid
* cleaned by the vacuum of the heap and so we can resolve any conflicts
* just once when that arrives. After that we know that no conflicts
* exist from individual btree vacuum records on that index.
*/
if (InHotStandby)
{
TransactionId latestRemovedXid = btree_xlog_delete_get_latestRemovedXid(xlrec);
ResolveRecoveryConflictWithSnapshot(latestRemovedXid, xlrec->node);
}
/* If we have a full-page image, restore it and we're done */
if (record->xl_info & XLR_BKP_BLOCK(0))
{
(void) RestoreBackupBlock(lsn, record, 0, false, false);
return;
}
/*
* We don't need to take a cleanup lock to apply these changes. See
* nbtree/README for details.
*/
buffer = XLogReadBuffer(xlrec->node, xlrec->block, false);
if (!BufferIsValid(buffer))
return;
page = (Page) BufferGetPage(buffer);
if (lsn <= PageGetLSN(page))
{
UnlockReleaseBuffer(buffer);
return;
}
if (record->xl_len > SizeOfBtreeDelete)
{
OffsetNumber *unused;
unused = (OffsetNumber *) ((char *) xlrec + SizeOfBtreeDelete);
PageIndexMultiDelete(page, unused, xlrec->nitems);
}
/*
* Mark the page as not containing any LP_DEAD items --- see comments in
* _bt_delitems_delete().
*/
opaque = (BTPageOpaque) PageGetSpecialPointer(page);
opaque->btpo_flags &= ~BTP_HAS_GARBAGE;
PageSetLSN(page, lsn);
MarkBufferDirty(buffer);
UnlockReleaseBuffer(buffer);
}
static void
btree_xlog_mark_page_halfdead(uint8 info, XLogRecPtr lsn, XLogRecord *record)
{
xl_btree_mark_page_halfdead *xlrec = (xl_btree_mark_page_halfdead *) XLogRecGetData(record);
BlockNumber parent;
Buffer buffer;
Page page;
BTPageOpaque pageop;
IndexTupleData trunctuple;
parent = ItemPointerGetBlockNumber(&(xlrec->target.tid));
/*
* In normal operation, we would lock all the pages this WAL record
* touches before changing any of them. In WAL replay, it should be okay
* to lock just one page at a time, since no concurrent index updates can
* be happening, and readers should not care whether they arrive at the
* target page or not (since it's surely empty).
*/
/* parent page */
if (record->xl_info & XLR_BKP_BLOCK(0))
(void) RestoreBackupBlock(lsn, record, 0, false, false);
else
{
buffer = XLogReadBuffer(xlrec->target.node, parent, false);
if (BufferIsValid(buffer))
{
page = (Page) BufferGetPage(buffer);
pageop = (BTPageOpaque) PageGetSpecialPointer(page);
if (lsn > PageGetLSN(page))
{
OffsetNumber poffset;
ItemId itemid;
IndexTuple itup;
OffsetNumber nextoffset;
BlockNumber rightsib;
poffset = ItemPointerGetOffsetNumber(&(xlrec->target.tid));
nextoffset = OffsetNumberNext(poffset);
itemid = PageGetItemId(page, nextoffset);
itup = (IndexTuple) PageGetItem(page, itemid);
rightsib = ItemPointerGetBlockNumber(&itup->t_tid);
itemid = PageGetItemId(page, poffset);
itup = (IndexTuple) PageGetItem(page, itemid);
ItemPointerSet(&(itup->t_tid), rightsib, P_HIKEY);
nextoffset = OffsetNumberNext(poffset);
PageIndexTupleDelete(page, nextoffset);
PageSetLSN(page, lsn);
MarkBufferDirty(buffer);
}
UnlockReleaseBuffer(buffer);
}
}
/* Rewrite the leaf page as a halfdead page */
buffer = XLogReadBuffer(xlrec->target.node, xlrec->leafblk, true);
Assert(BufferIsValid(buffer));
page = (Page) BufferGetPage(buffer);
_bt_pageinit(page, BufferGetPageSize(buffer));
pageop = (BTPageOpaque) PageGetSpecialPointer(page);
pageop->btpo_prev = xlrec->leftblk;
pageop->btpo_next = xlrec->rightblk;
pageop->btpo.level = 0;
pageop->btpo_flags = BTP_HALF_DEAD | BTP_LEAF;
pageop->btpo_cycleid = 0;
/*
* Construct a dummy hikey item that points to the next parent to be
* deleted (if any).
*/
MemSet(&trunctuple, 0, sizeof(IndexTupleData));
trunctuple.t_info = sizeof(IndexTupleData);
if (xlrec->topparent != InvalidBlockNumber)
ItemPointerSet(&trunctuple.t_tid, xlrec->topparent, P_HIKEY);
else
ItemPointerSetInvalid(&trunctuple.t_tid);
if (PageAddItem(page, (Item) &trunctuple, sizeof(IndexTupleData), P_HIKEY,
false, false) == InvalidOffsetNumber)
elog(ERROR, "could not add dummy high key to half-dead page");
PageSetLSN(page, lsn);
MarkBufferDirty(buffer);
UnlockReleaseBuffer(buffer);
}
static void
btree_xlog_unlink_page(uint8 info, XLogRecPtr lsn, XLogRecord *record)
{
xl_btree_unlink_page *xlrec = (xl_btree_unlink_page *) XLogRecGetData(record);
BlockNumber target;
BlockNumber leftsib;
BlockNumber rightsib;
Buffer buffer;
Page page;
BTPageOpaque pageop;
target = xlrec->deadblk;
leftsib = xlrec->leftsib;
rightsib = xlrec->rightsib;
/*
* In normal operation, we would lock all the pages this WAL record
* touches before changing any of them. In WAL replay, it should be okay
* to lock just one page at a time, since no concurrent index updates can
* be happening, and readers should not care whether they arrive at the
* target page or not (since it's surely empty).
*/
/* Fix left-link of right sibling */
if (record->xl_info & XLR_BKP_BLOCK(0))
(void) RestoreBackupBlock(lsn, record, 0, false, false);
else
{
buffer = XLogReadBuffer(xlrec->node, rightsib, false);
if (BufferIsValid(buffer))
{
page = (Page) BufferGetPage(buffer);
if (lsn <= PageGetLSN(page))
{
UnlockReleaseBuffer(buffer);
}
else
{
pageop = (BTPageOpaque) PageGetSpecialPointer(page);
pageop->btpo_prev = leftsib;
PageSetLSN(page, lsn);
MarkBufferDirty(buffer);
UnlockReleaseBuffer(buffer);
}
}
}
/* Fix right-link of left sibling, if any */
if (record->xl_info & XLR_BKP_BLOCK(1))
(void) RestoreBackupBlock(lsn, record, 1, false, false);
else
{
if (leftsib != P_NONE)
{
buffer = XLogReadBuffer(xlrec->node, leftsib, false);
if (BufferIsValid(buffer))
{
page = (Page) BufferGetPage(buffer);
if (lsn <= PageGetLSN(page))
{
UnlockReleaseBuffer(buffer);
}
else
{
pageop = (BTPageOpaque) PageGetSpecialPointer(page);
pageop->btpo_next = rightsib;
PageSetLSN(page, lsn);
MarkBufferDirty(buffer);
UnlockReleaseBuffer(buffer);
}
}
}
}
/* Rewrite target page as empty deleted page */
buffer = XLogReadBuffer(xlrec->node, target, true);
Assert(BufferIsValid(buffer));
page = (Page) BufferGetPage(buffer);
_bt_pageinit(page, BufferGetPageSize(buffer));
pageop = (BTPageOpaque) PageGetSpecialPointer(page);
pageop->btpo_prev = leftsib;
pageop->btpo_next = rightsib;
pageop->btpo.xact = xlrec->btpo_xact;
pageop->btpo_flags = BTP_DELETED;
pageop->btpo_cycleid = 0;
PageSetLSN(page, lsn);
MarkBufferDirty(buffer);
UnlockReleaseBuffer(buffer);
/*
* If we deleted a parent of the targeted leaf page, instead of the leaf
* itself, update the leaf to point to the next remaining child in the
* branch.
*/
if (target != xlrec->leafblk)
{
/*
* There is no real data on the page, so we just re-create it from
* scratch using the information from the WAL record.
*/
IndexTupleData trunctuple;
buffer = XLogReadBuffer(xlrec->node, xlrec->leafblk, true);
Assert(BufferIsValid(buffer));
page = (Page) BufferGetPage(buffer);
pageop = (BTPageOpaque) PageGetSpecialPointer(page);
_bt_pageinit(page, BufferGetPageSize(buffer));
pageop->btpo_flags = BTP_HALF_DEAD | BTP_LEAF;
pageop->btpo_prev = xlrec->leafleftsib;
pageop->btpo_next = xlrec->leafrightsib;
pageop->btpo.level = 0;
pageop->btpo_cycleid = 0;
/* Add a dummy hikey item */
MemSet(&trunctuple, 0, sizeof(IndexTupleData));
trunctuple.t_info = sizeof(IndexTupleData);
if (xlrec->topparent != InvalidBlockNumber)
ItemPointerSet(&trunctuple.t_tid, xlrec->topparent, P_HIKEY);
else
ItemPointerSetInvalid(&trunctuple.t_tid);
if (PageAddItem(page, (Item) &trunctuple, sizeof(IndexTupleData), P_HIKEY,
false, false) == InvalidOffsetNumber)
elog(ERROR, "could not add dummy high key to half-dead page");
PageSetLSN(page, lsn);
MarkBufferDirty(buffer);
UnlockReleaseBuffer(buffer);
}
/* Update metapage if needed */
if (info == XLOG_BTREE_UNLINK_PAGE_META)
{
xl_btree_metadata md;
memcpy(&md, (char *) xlrec + SizeOfBtreeUnlinkPage,
sizeof(xl_btree_metadata));
_bt_restore_meta(xlrec->node, lsn,
md.root, md.level,
md.fastroot, md.fastlevel);
}
}
static void
btree_xlog_newroot(XLogRecPtr lsn, XLogRecord *record)
{
xl_btree_newroot *xlrec = (xl_btree_newroot *) XLogRecGetData(record);
Buffer buffer;
Page page;
BTPageOpaque pageop;
buffer = XLogReadBuffer(xlrec->node, xlrec->rootblk, true);
Assert(BufferIsValid(buffer));
page = (Page) BufferGetPage(buffer);
_bt_pageinit(page, BufferGetPageSize(buffer));
pageop = (BTPageOpaque) PageGetSpecialPointer(page);
pageop->btpo_flags = BTP_ROOT;
pageop->btpo_prev = pageop->btpo_next = P_NONE;
pageop->btpo.level = xlrec->level;
if (xlrec->level == 0)
pageop->btpo_flags |= BTP_LEAF;
pageop->btpo_cycleid = 0;
if (record->xl_len > SizeOfBtreeNewroot)
{
IndexTuple itup;
BlockNumber cblkno;
_bt_restore_page(page,
(char *) xlrec + SizeOfBtreeNewroot,
record->xl_len - SizeOfBtreeNewroot);
/* extract block number of the left-hand split page */
itup = (IndexTuple) PageGetItem(page, PageGetItemId(page, P_HIKEY));
cblkno = ItemPointerGetBlockNumber(&(itup->t_tid));
Assert(ItemPointerGetOffsetNumber(&(itup->t_tid)) == P_HIKEY);
/* Clear the incomplete-split flag in left child */
if (record->xl_info & XLR_BKP_BLOCK(0))
(void) RestoreBackupBlock(lsn, record, 0, false, false);
else
_bt_clear_incomplete_split(lsn, record, xlrec->node, cblkno);
}
PageSetLSN(page, lsn);
MarkBufferDirty(buffer);
UnlockReleaseBuffer(buffer);
_bt_restore_meta(xlrec->node, lsn,
xlrec->rootblk, xlrec->level,
xlrec->rootblk, xlrec->level);
}
static void
btree_xlog_reuse_page(XLogRecPtr lsn, XLogRecord *record)
{
xl_btree_reuse_page *xlrec = (xl_btree_reuse_page *) XLogRecGetData(record);
/*
* Btree reuse_page records exist to provide a conflict point when we
* reuse pages in the index via the FSM. That's all they do though.
*
* latestRemovedXid was the page's btpo.xact. The btpo.xact <
* RecentGlobalXmin test in _bt_page_recyclable() conceptually mirrors the
* pgxact->xmin > limitXmin test in GetConflictingVirtualXIDs().
* Consequently, one XID value achieves the same exclusion effect on
* master and standby.
*/
if (InHotStandby)
{
ResolveRecoveryConflictWithSnapshot(xlrec->latestRemovedXid,
xlrec->node);
}
/* Backup blocks are not used in reuse_page records */
Assert(!(record->xl_info & XLR_BKP_BLOCK_MASK));
}
void
btree_redo(XLogRecPtr lsn, XLogRecord *record)
{
uint8 info = record->xl_info & ~XLR_INFO_MASK;
switch (info)
{
case XLOG_BTREE_INSERT_LEAF:
btree_xlog_insert(true, false, lsn, record);
break;
case XLOG_BTREE_INSERT_UPPER:
btree_xlog_insert(false, false, lsn, record);
break;
case XLOG_BTREE_INSERT_META:
btree_xlog_insert(false, true, lsn, record);
break;
case XLOG_BTREE_SPLIT_L:
btree_xlog_split(true, false, lsn, record);
break;
case XLOG_BTREE_SPLIT_R:
btree_xlog_split(false, false, lsn, record);
break;
case XLOG_BTREE_SPLIT_L_ROOT:
btree_xlog_split(true, true, lsn, record);
break;
case XLOG_BTREE_SPLIT_R_ROOT:
btree_xlog_split(false, true, lsn, record);
break;
case XLOG_BTREE_VACUUM:
btree_xlog_vacuum(lsn, record);
break;
case XLOG_BTREE_DELETE:
btree_xlog_delete(lsn, record);
break;
case XLOG_BTREE_MARK_PAGE_HALFDEAD:
btree_xlog_mark_page_halfdead(info, lsn, record);
break;
case XLOG_BTREE_UNLINK_PAGE:
case XLOG_BTREE_UNLINK_PAGE_META:
btree_xlog_unlink_page(info, lsn, record);
break;
case XLOG_BTREE_NEWROOT:
btree_xlog_newroot(lsn, record);
break;
case XLOG_BTREE_REUSE_PAGE:
btree_xlog_reuse_page(lsn, record);
break;
default:
elog(PANIC, "btree_redo: unknown op code %u", info);
}
}