mirror of
https://github.com/postgres/postgres.git
synced 2025-04-29 13:56:47 +03:00
constexpr is a keyword in C23. Rename a conflicting identifier for future-proofing. Reviewed-by: Robert Haas <robertmhaas@gmail.com> Discussion: https://www.postgresql.org/message-id/flat/08abc832-1384-4aca-a535-1a79765b565e%40eisentraut.org
2362 lines
70 KiB
C
2362 lines
70 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* predtest.c
|
|
* Routines to attempt to prove logical implications between predicate
|
|
* expressions.
|
|
*
|
|
* Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
|
*
|
|
*
|
|
* IDENTIFICATION
|
|
* src/backend/optimizer/util/predtest.c
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
#include "postgres.h"
|
|
|
|
#include "catalog/pg_operator.h"
|
|
#include "catalog/pg_proc.h"
|
|
#include "catalog/pg_type.h"
|
|
#include "executor/executor.h"
|
|
#include "miscadmin.h"
|
|
#include "nodes/makefuncs.h"
|
|
#include "nodes/nodeFuncs.h"
|
|
#include "nodes/pathnodes.h"
|
|
#include "optimizer/optimizer.h"
|
|
#include "utils/array.h"
|
|
#include "utils/inval.h"
|
|
#include "utils/lsyscache.h"
|
|
#include "utils/syscache.h"
|
|
|
|
|
|
/*
|
|
* Proof attempts involving large arrays in ScalarArrayOpExpr nodes are
|
|
* likely to require O(N^2) time, and more often than not fail anyway.
|
|
* So we set an arbitrary limit on the number of array elements that
|
|
* we will allow to be treated as an AND or OR clause.
|
|
* XXX is it worth exposing this as a GUC knob?
|
|
*/
|
|
#define MAX_SAOP_ARRAY_SIZE 100
|
|
|
|
/*
|
|
* To avoid redundant coding in predicate_implied_by_recurse and
|
|
* predicate_refuted_by_recurse, we need to abstract out the notion of
|
|
* iterating over the components of an expression that is logically an AND
|
|
* or OR structure. There are multiple sorts of expression nodes that can
|
|
* be treated as ANDs or ORs, and we don't want to code each one separately.
|
|
* Hence, these types and support routines.
|
|
*/
|
|
typedef enum
|
|
{
|
|
CLASS_ATOM, /* expression that's not AND or OR */
|
|
CLASS_AND, /* expression with AND semantics */
|
|
CLASS_OR, /* expression with OR semantics */
|
|
} PredClass;
|
|
|
|
typedef struct PredIterInfoData *PredIterInfo;
|
|
|
|
typedef struct PredIterInfoData
|
|
{
|
|
/* node-type-specific iteration state */
|
|
void *state;
|
|
List *state_list;
|
|
/* initialize to do the iteration */
|
|
void (*startup_fn) (Node *clause, PredIterInfo info);
|
|
/* next-component iteration function */
|
|
Node *(*next_fn) (PredIterInfo info);
|
|
/* release resources when done with iteration */
|
|
void (*cleanup_fn) (PredIterInfo info);
|
|
} PredIterInfoData;
|
|
|
|
#define iterate_begin(item, clause, info) \
|
|
do { \
|
|
Node *item; \
|
|
(info).startup_fn((clause), &(info)); \
|
|
while ((item = (info).next_fn(&(info))) != NULL)
|
|
|
|
#define iterate_end(info) \
|
|
(info).cleanup_fn(&(info)); \
|
|
} while (0)
|
|
|
|
|
|
static bool predicate_implied_by_recurse(Node *clause, Node *predicate,
|
|
bool weak);
|
|
static bool predicate_refuted_by_recurse(Node *clause, Node *predicate,
|
|
bool weak);
|
|
static PredClass predicate_classify(Node *clause, PredIterInfo info);
|
|
static void list_startup_fn(Node *clause, PredIterInfo info);
|
|
static Node *list_next_fn(PredIterInfo info);
|
|
static void list_cleanup_fn(PredIterInfo info);
|
|
static void boolexpr_startup_fn(Node *clause, PredIterInfo info);
|
|
static void arrayconst_startup_fn(Node *clause, PredIterInfo info);
|
|
static Node *arrayconst_next_fn(PredIterInfo info);
|
|
static void arrayconst_cleanup_fn(PredIterInfo info);
|
|
static void arrayexpr_startup_fn(Node *clause, PredIterInfo info);
|
|
static Node *arrayexpr_next_fn(PredIterInfo info);
|
|
static void arrayexpr_cleanup_fn(PredIterInfo info);
|
|
static bool predicate_implied_by_simple_clause(Expr *predicate, Node *clause,
|
|
bool weak);
|
|
static bool predicate_refuted_by_simple_clause(Expr *predicate, Node *clause,
|
|
bool weak);
|
|
static Node *extract_not_arg(Node *clause);
|
|
static Node *extract_strong_not_arg(Node *clause);
|
|
static bool clause_is_strict_for(Node *clause, Node *subexpr, bool allow_false);
|
|
static bool operator_predicate_proof(Expr *predicate, Node *clause,
|
|
bool refute_it, bool weak);
|
|
static bool operator_same_subexprs_proof(Oid pred_op, Oid clause_op,
|
|
bool refute_it);
|
|
static bool operator_same_subexprs_lookup(Oid pred_op, Oid clause_op,
|
|
bool refute_it);
|
|
static Oid get_btree_test_op(Oid pred_op, Oid clause_op, bool refute_it);
|
|
static void InvalidateOprProofCacheCallBack(Datum arg, int cacheid, uint32 hashvalue);
|
|
|
|
|
|
/*
|
|
* predicate_implied_by
|
|
* Recursively checks whether the clauses in clause_list imply that the
|
|
* given predicate is true.
|
|
*
|
|
* We support two definitions of implication:
|
|
*
|
|
* "Strong" implication: A implies B means that truth of A implies truth of B.
|
|
* We use this to prove that a row satisfying one WHERE clause or index
|
|
* predicate must satisfy another one.
|
|
*
|
|
* "Weak" implication: A implies B means that non-falsity of A implies
|
|
* non-falsity of B ("non-false" means "either true or NULL"). We use this to
|
|
* prove that a row satisfying one CHECK constraint must satisfy another one.
|
|
*
|
|
* Strong implication can also be used to prove that a WHERE clause implies a
|
|
* CHECK constraint, although it will fail to prove a few cases where we could
|
|
* safely conclude that the implication holds. There's no support for proving
|
|
* the converse case, since only a few kinds of CHECK constraint would allow
|
|
* deducing anything.
|
|
*
|
|
* The top-level List structure of each list corresponds to an AND list.
|
|
* We assume that eval_const_expressions() has been applied and so there
|
|
* are no un-flattened ANDs or ORs (e.g., no AND immediately within an AND,
|
|
* including AND just below the top-level List structure).
|
|
* If this is not true we might fail to prove an implication that is
|
|
* valid, but no worse consequences will ensue.
|
|
*
|
|
* We assume the predicate has already been checked to contain only
|
|
* immutable functions and operators. (In many current uses this is known
|
|
* true because the predicate is part of an index predicate that has passed
|
|
* CheckPredicate(); otherwise, the caller must check it.) We dare not make
|
|
* deductions based on non-immutable functions, because they might change
|
|
* answers between the time we make the plan and the time we execute the plan.
|
|
* Immutability of functions in the clause_list is checked here, if necessary.
|
|
*/
|
|
bool
|
|
predicate_implied_by(List *predicate_list, List *clause_list,
|
|
bool weak)
|
|
{
|
|
Node *p,
|
|
*c;
|
|
|
|
if (predicate_list == NIL)
|
|
return true; /* no predicate: implication is vacuous */
|
|
if (clause_list == NIL)
|
|
return false; /* no restriction: implication must fail */
|
|
|
|
/*
|
|
* If either input is a single-element list, replace it with its lone
|
|
* member; this avoids one useless level of AND-recursion. We only need
|
|
* to worry about this at top level, since eval_const_expressions should
|
|
* have gotten rid of any trivial ANDs or ORs below that.
|
|
*/
|
|
if (list_length(predicate_list) == 1)
|
|
p = (Node *) linitial(predicate_list);
|
|
else
|
|
p = (Node *) predicate_list;
|
|
if (list_length(clause_list) == 1)
|
|
c = (Node *) linitial(clause_list);
|
|
else
|
|
c = (Node *) clause_list;
|
|
|
|
/* And away we go ... */
|
|
return predicate_implied_by_recurse(c, p, weak);
|
|
}
|
|
|
|
/*
|
|
* predicate_refuted_by
|
|
* Recursively checks whether the clauses in clause_list refute the given
|
|
* predicate (that is, prove it false).
|
|
*
|
|
* This is NOT the same as !(predicate_implied_by), though it is similar
|
|
* in the technique and structure of the code.
|
|
*
|
|
* We support two definitions of refutation:
|
|
*
|
|
* "Strong" refutation: A refutes B means truth of A implies falsity of B.
|
|
* We use this to disprove a CHECK constraint given a WHERE clause, i.e.,
|
|
* prove that any row satisfying the WHERE clause would violate the CHECK
|
|
* constraint. (Observe we must prove B yields false, not just not-true.)
|
|
*
|
|
* "Weak" refutation: A refutes B means truth of A implies non-truth of B
|
|
* (i.e., B must yield false or NULL). We use this to detect mutually
|
|
* contradictory WHERE clauses.
|
|
*
|
|
* Weak refutation can be proven in some cases where strong refutation doesn't
|
|
* hold, so it's useful to use it when possible. We don't currently have
|
|
* support for disproving one CHECK constraint based on another one, nor for
|
|
* disproving WHERE based on CHECK. (As with implication, the last case
|
|
* doesn't seem very practical. CHECK-vs-CHECK might be useful, but isn't
|
|
* currently needed anywhere.)
|
|
*
|
|
* The top-level List structure of each list corresponds to an AND list.
|
|
* We assume that eval_const_expressions() has been applied and so there
|
|
* are no un-flattened ANDs or ORs (e.g., no AND immediately within an AND,
|
|
* including AND just below the top-level List structure).
|
|
* If this is not true we might fail to prove an implication that is
|
|
* valid, but no worse consequences will ensue.
|
|
*
|
|
* We assume the predicate has already been checked to contain only
|
|
* immutable functions and operators. We dare not make deductions based on
|
|
* non-immutable functions, because they might change answers between the
|
|
* time we make the plan and the time we execute the plan.
|
|
* Immutability of functions in the clause_list is checked here, if necessary.
|
|
*/
|
|
bool
|
|
predicate_refuted_by(List *predicate_list, List *clause_list,
|
|
bool weak)
|
|
{
|
|
Node *p,
|
|
*c;
|
|
|
|
if (predicate_list == NIL)
|
|
return false; /* no predicate: no refutation is possible */
|
|
if (clause_list == NIL)
|
|
return false; /* no restriction: refutation must fail */
|
|
|
|
/*
|
|
* If either input is a single-element list, replace it with its lone
|
|
* member; this avoids one useless level of AND-recursion. We only need
|
|
* to worry about this at top level, since eval_const_expressions should
|
|
* have gotten rid of any trivial ANDs or ORs below that.
|
|
*/
|
|
if (list_length(predicate_list) == 1)
|
|
p = (Node *) linitial(predicate_list);
|
|
else
|
|
p = (Node *) predicate_list;
|
|
if (list_length(clause_list) == 1)
|
|
c = (Node *) linitial(clause_list);
|
|
else
|
|
c = (Node *) clause_list;
|
|
|
|
/* And away we go ... */
|
|
return predicate_refuted_by_recurse(c, p, weak);
|
|
}
|
|
|
|
/*----------
|
|
* predicate_implied_by_recurse
|
|
* Does the predicate implication test for non-NULL restriction and
|
|
* predicate clauses.
|
|
*
|
|
* The logic followed here is ("=>" means "implies"):
|
|
* atom A => atom B iff: predicate_implied_by_simple_clause says so
|
|
* atom A => AND-expr B iff: A => each of B's components
|
|
* atom A => OR-expr B iff: A => any of B's components
|
|
* AND-expr A => atom B iff: any of A's components => B
|
|
* AND-expr A => AND-expr B iff: A => each of B's components
|
|
* AND-expr A => OR-expr B iff: A => any of B's components,
|
|
* *or* any of A's components => B
|
|
* OR-expr A => atom B iff: each of A's components => B
|
|
* OR-expr A => AND-expr B iff: A => each of B's components
|
|
* OR-expr A => OR-expr B iff: each of A's components => any of B's
|
|
*
|
|
* An "atom" is anything other than an AND or OR node. Notice that we don't
|
|
* have any special logic to handle NOT nodes; these should have been pushed
|
|
* down or eliminated where feasible during eval_const_expressions().
|
|
*
|
|
* All of these rules apply equally to strong or weak implication.
|
|
*
|
|
* We can't recursively expand either side first, but have to interleave
|
|
* the expansions per the above rules, to be sure we handle all of these
|
|
* examples:
|
|
* (x OR y) => (x OR y OR z)
|
|
* (x AND y AND z) => (x AND y)
|
|
* (x AND y) => ((x AND y) OR z)
|
|
* ((x OR y) AND z) => (x OR y)
|
|
* This is still not an exhaustive test, but it handles most normal cases
|
|
* under the assumption that both inputs have been AND/OR flattened.
|
|
*
|
|
* We have to be prepared to handle RestrictInfo nodes in the restrictinfo
|
|
* tree, though not in the predicate tree.
|
|
*----------
|
|
*/
|
|
static bool
|
|
predicate_implied_by_recurse(Node *clause, Node *predicate,
|
|
bool weak)
|
|
{
|
|
PredIterInfoData clause_info;
|
|
PredIterInfoData pred_info;
|
|
PredClass pclass;
|
|
bool result;
|
|
|
|
/* skip through RestrictInfo */
|
|
Assert(clause != NULL);
|
|
if (IsA(clause, RestrictInfo))
|
|
clause = (Node *) ((RestrictInfo *) clause)->clause;
|
|
|
|
pclass = predicate_classify(predicate, &pred_info);
|
|
|
|
switch (predicate_classify(clause, &clause_info))
|
|
{
|
|
case CLASS_AND:
|
|
switch (pclass)
|
|
{
|
|
case CLASS_AND:
|
|
|
|
/*
|
|
* AND-clause => AND-clause if A implies each of B's items
|
|
*/
|
|
result = true;
|
|
iterate_begin(pitem, predicate, pred_info)
|
|
{
|
|
if (!predicate_implied_by_recurse(clause, pitem,
|
|
weak))
|
|
{
|
|
result = false;
|
|
break;
|
|
}
|
|
}
|
|
iterate_end(pred_info);
|
|
return result;
|
|
|
|
case CLASS_OR:
|
|
|
|
/*
|
|
* AND-clause => OR-clause if A implies any of B's items
|
|
*
|
|
* Needed to handle (x AND y) => ((x AND y) OR z)
|
|
*/
|
|
result = false;
|
|
iterate_begin(pitem, predicate, pred_info)
|
|
{
|
|
if (predicate_implied_by_recurse(clause, pitem,
|
|
weak))
|
|
{
|
|
result = true;
|
|
break;
|
|
}
|
|
}
|
|
iterate_end(pred_info);
|
|
if (result)
|
|
return result;
|
|
|
|
/*
|
|
* Also check if any of A's items implies B
|
|
*
|
|
* Needed to handle ((x OR y) AND z) => (x OR y)
|
|
*/
|
|
iterate_begin(citem, clause, clause_info)
|
|
{
|
|
if (predicate_implied_by_recurse(citem, predicate,
|
|
weak))
|
|
{
|
|
result = true;
|
|
break;
|
|
}
|
|
}
|
|
iterate_end(clause_info);
|
|
return result;
|
|
|
|
case CLASS_ATOM:
|
|
|
|
/*
|
|
* AND-clause => atom if any of A's items implies B
|
|
*/
|
|
result = false;
|
|
iterate_begin(citem, clause, clause_info)
|
|
{
|
|
if (predicate_implied_by_recurse(citem, predicate,
|
|
weak))
|
|
{
|
|
result = true;
|
|
break;
|
|
}
|
|
}
|
|
iterate_end(clause_info);
|
|
return result;
|
|
}
|
|
break;
|
|
|
|
case CLASS_OR:
|
|
switch (pclass)
|
|
{
|
|
case CLASS_OR:
|
|
|
|
/*
|
|
* OR-clause => OR-clause if each of A's items implies any
|
|
* of B's items. Messy but can't do it any more simply.
|
|
*/
|
|
result = true;
|
|
iterate_begin(citem, clause, clause_info)
|
|
{
|
|
bool presult = false;
|
|
|
|
iterate_begin(pitem, predicate, pred_info)
|
|
{
|
|
if (predicate_implied_by_recurse(citem, pitem,
|
|
weak))
|
|
{
|
|
presult = true;
|
|
break;
|
|
}
|
|
}
|
|
iterate_end(pred_info);
|
|
if (!presult)
|
|
{
|
|
result = false; /* doesn't imply any of B's */
|
|
break;
|
|
}
|
|
}
|
|
iterate_end(clause_info);
|
|
return result;
|
|
|
|
case CLASS_AND:
|
|
case CLASS_ATOM:
|
|
|
|
/*
|
|
* OR-clause => AND-clause if each of A's items implies B
|
|
*
|
|
* OR-clause => atom if each of A's items implies B
|
|
*/
|
|
result = true;
|
|
iterate_begin(citem, clause, clause_info)
|
|
{
|
|
if (!predicate_implied_by_recurse(citem, predicate,
|
|
weak))
|
|
{
|
|
result = false;
|
|
break;
|
|
}
|
|
}
|
|
iterate_end(clause_info);
|
|
return result;
|
|
}
|
|
break;
|
|
|
|
case CLASS_ATOM:
|
|
switch (pclass)
|
|
{
|
|
case CLASS_AND:
|
|
|
|
/*
|
|
* atom => AND-clause if A implies each of B's items
|
|
*/
|
|
result = true;
|
|
iterate_begin(pitem, predicate, pred_info)
|
|
{
|
|
if (!predicate_implied_by_recurse(clause, pitem,
|
|
weak))
|
|
{
|
|
result = false;
|
|
break;
|
|
}
|
|
}
|
|
iterate_end(pred_info);
|
|
return result;
|
|
|
|
case CLASS_OR:
|
|
|
|
/*
|
|
* atom => OR-clause if A implies any of B's items
|
|
*/
|
|
result = false;
|
|
iterate_begin(pitem, predicate, pred_info)
|
|
{
|
|
if (predicate_implied_by_recurse(clause, pitem,
|
|
weak))
|
|
{
|
|
result = true;
|
|
break;
|
|
}
|
|
}
|
|
iterate_end(pred_info);
|
|
return result;
|
|
|
|
case CLASS_ATOM:
|
|
|
|
/*
|
|
* atom => atom is the base case
|
|
*/
|
|
return
|
|
predicate_implied_by_simple_clause((Expr *) predicate,
|
|
clause,
|
|
weak);
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* can't get here */
|
|
elog(ERROR, "predicate_classify returned a bogus value");
|
|
return false;
|
|
}
|
|
|
|
/*----------
|
|
* predicate_refuted_by_recurse
|
|
* Does the predicate refutation test for non-NULL restriction and
|
|
* predicate clauses.
|
|
*
|
|
* The logic followed here is ("R=>" means "refutes"):
|
|
* atom A R=> atom B iff: predicate_refuted_by_simple_clause says so
|
|
* atom A R=> AND-expr B iff: A R=> any of B's components
|
|
* atom A R=> OR-expr B iff: A R=> each of B's components
|
|
* AND-expr A R=> atom B iff: any of A's components R=> B
|
|
* AND-expr A R=> AND-expr B iff: A R=> any of B's components,
|
|
* *or* any of A's components R=> B
|
|
* AND-expr A R=> OR-expr B iff: A R=> each of B's components
|
|
* OR-expr A R=> atom B iff: each of A's components R=> B
|
|
* OR-expr A R=> AND-expr B iff: each of A's components R=> any of B's
|
|
* OR-expr A R=> OR-expr B iff: A R=> each of B's components
|
|
*
|
|
* All of the above rules apply equally to strong or weak refutation.
|
|
*
|
|
* In addition, if the predicate is a NOT-clause then we can use
|
|
* A R=> NOT B if: A => B
|
|
* This works for several different SQL constructs that assert the non-truth
|
|
* of their argument, ie NOT, IS FALSE, IS NOT TRUE, IS UNKNOWN, although some
|
|
* of them require that we prove strong implication. Likewise, we can use
|
|
* NOT A R=> B if: B => A
|
|
* but here we must be careful about strong vs. weak refutation and make
|
|
* the appropriate type of implication proof (weak or strong respectively).
|
|
*
|
|
* Other comments are as for predicate_implied_by_recurse().
|
|
*----------
|
|
*/
|
|
static bool
|
|
predicate_refuted_by_recurse(Node *clause, Node *predicate,
|
|
bool weak)
|
|
{
|
|
PredIterInfoData clause_info;
|
|
PredIterInfoData pred_info;
|
|
PredClass pclass;
|
|
Node *not_arg;
|
|
bool result;
|
|
|
|
/* skip through RestrictInfo */
|
|
Assert(clause != NULL);
|
|
if (IsA(clause, RestrictInfo))
|
|
clause = (Node *) ((RestrictInfo *) clause)->clause;
|
|
|
|
pclass = predicate_classify(predicate, &pred_info);
|
|
|
|
switch (predicate_classify(clause, &clause_info))
|
|
{
|
|
case CLASS_AND:
|
|
switch (pclass)
|
|
{
|
|
case CLASS_AND:
|
|
|
|
/*
|
|
* AND-clause R=> AND-clause if A refutes any of B's items
|
|
*
|
|
* Needed to handle (x AND y) R=> ((!x OR !y) AND z)
|
|
*/
|
|
result = false;
|
|
iterate_begin(pitem, predicate, pred_info)
|
|
{
|
|
if (predicate_refuted_by_recurse(clause, pitem,
|
|
weak))
|
|
{
|
|
result = true;
|
|
break;
|
|
}
|
|
}
|
|
iterate_end(pred_info);
|
|
if (result)
|
|
return result;
|
|
|
|
/*
|
|
* Also check if any of A's items refutes B
|
|
*
|
|
* Needed to handle ((x OR y) AND z) R=> (!x AND !y)
|
|
*/
|
|
iterate_begin(citem, clause, clause_info)
|
|
{
|
|
if (predicate_refuted_by_recurse(citem, predicate,
|
|
weak))
|
|
{
|
|
result = true;
|
|
break;
|
|
}
|
|
}
|
|
iterate_end(clause_info);
|
|
return result;
|
|
|
|
case CLASS_OR:
|
|
|
|
/*
|
|
* AND-clause R=> OR-clause if A refutes each of B's items
|
|
*/
|
|
result = true;
|
|
iterate_begin(pitem, predicate, pred_info)
|
|
{
|
|
if (!predicate_refuted_by_recurse(clause, pitem,
|
|
weak))
|
|
{
|
|
result = false;
|
|
break;
|
|
}
|
|
}
|
|
iterate_end(pred_info);
|
|
return result;
|
|
|
|
case CLASS_ATOM:
|
|
|
|
/*
|
|
* If B is a NOT-type clause, A R=> B if A => B's arg
|
|
*
|
|
* Since, for either type of refutation, we are starting
|
|
* with the premise that A is true, we can use a strong
|
|
* implication test in all cases. That proves B's arg is
|
|
* true, which is more than we need for weak refutation if
|
|
* B is a simple NOT, but it allows not worrying about
|
|
* exactly which kind of negation clause we have.
|
|
*/
|
|
not_arg = extract_not_arg(predicate);
|
|
if (not_arg &&
|
|
predicate_implied_by_recurse(clause, not_arg,
|
|
false))
|
|
return true;
|
|
|
|
/*
|
|
* AND-clause R=> atom if any of A's items refutes B
|
|
*/
|
|
result = false;
|
|
iterate_begin(citem, clause, clause_info)
|
|
{
|
|
if (predicate_refuted_by_recurse(citem, predicate,
|
|
weak))
|
|
{
|
|
result = true;
|
|
break;
|
|
}
|
|
}
|
|
iterate_end(clause_info);
|
|
return result;
|
|
}
|
|
break;
|
|
|
|
case CLASS_OR:
|
|
switch (pclass)
|
|
{
|
|
case CLASS_OR:
|
|
|
|
/*
|
|
* OR-clause R=> OR-clause if A refutes each of B's items
|
|
*/
|
|
result = true;
|
|
iterate_begin(pitem, predicate, pred_info)
|
|
{
|
|
if (!predicate_refuted_by_recurse(clause, pitem,
|
|
weak))
|
|
{
|
|
result = false;
|
|
break;
|
|
}
|
|
}
|
|
iterate_end(pred_info);
|
|
return result;
|
|
|
|
case CLASS_AND:
|
|
|
|
/*
|
|
* OR-clause R=> AND-clause if each of A's items refutes
|
|
* any of B's items.
|
|
*/
|
|
result = true;
|
|
iterate_begin(citem, clause, clause_info)
|
|
{
|
|
bool presult = false;
|
|
|
|
iterate_begin(pitem, predicate, pred_info)
|
|
{
|
|
if (predicate_refuted_by_recurse(citem, pitem,
|
|
weak))
|
|
{
|
|
presult = true;
|
|
break;
|
|
}
|
|
}
|
|
iterate_end(pred_info);
|
|
if (!presult)
|
|
{
|
|
result = false; /* citem refutes nothing */
|
|
break;
|
|
}
|
|
}
|
|
iterate_end(clause_info);
|
|
return result;
|
|
|
|
case CLASS_ATOM:
|
|
|
|
/*
|
|
* If B is a NOT-type clause, A R=> B if A => B's arg
|
|
*
|
|
* Same logic as for the AND-clause case above.
|
|
*/
|
|
not_arg = extract_not_arg(predicate);
|
|
if (not_arg &&
|
|
predicate_implied_by_recurse(clause, not_arg,
|
|
false))
|
|
return true;
|
|
|
|
/*
|
|
* OR-clause R=> atom if each of A's items refutes B
|
|
*/
|
|
result = true;
|
|
iterate_begin(citem, clause, clause_info)
|
|
{
|
|
if (!predicate_refuted_by_recurse(citem, predicate,
|
|
weak))
|
|
{
|
|
result = false;
|
|
break;
|
|
}
|
|
}
|
|
iterate_end(clause_info);
|
|
return result;
|
|
}
|
|
break;
|
|
|
|
case CLASS_ATOM:
|
|
|
|
/*
|
|
* If A is a strong NOT-clause, A R=> B if B => A's arg
|
|
*
|
|
* Since A is strong, we may assume A's arg is false (not just
|
|
* not-true). If B weakly implies A's arg, then B can be neither
|
|
* true nor null, so that strong refutation is proven. If B
|
|
* strongly implies A's arg, then B cannot be true, so that weak
|
|
* refutation is proven.
|
|
*/
|
|
not_arg = extract_strong_not_arg(clause);
|
|
if (not_arg &&
|
|
predicate_implied_by_recurse(predicate, not_arg,
|
|
!weak))
|
|
return true;
|
|
|
|
switch (pclass)
|
|
{
|
|
case CLASS_AND:
|
|
|
|
/*
|
|
* atom R=> AND-clause if A refutes any of B's items
|
|
*/
|
|
result = false;
|
|
iterate_begin(pitem, predicate, pred_info)
|
|
{
|
|
if (predicate_refuted_by_recurse(clause, pitem,
|
|
weak))
|
|
{
|
|
result = true;
|
|
break;
|
|
}
|
|
}
|
|
iterate_end(pred_info);
|
|
return result;
|
|
|
|
case CLASS_OR:
|
|
|
|
/*
|
|
* atom R=> OR-clause if A refutes each of B's items
|
|
*/
|
|
result = true;
|
|
iterate_begin(pitem, predicate, pred_info)
|
|
{
|
|
if (!predicate_refuted_by_recurse(clause, pitem,
|
|
weak))
|
|
{
|
|
result = false;
|
|
break;
|
|
}
|
|
}
|
|
iterate_end(pred_info);
|
|
return result;
|
|
|
|
case CLASS_ATOM:
|
|
|
|
/*
|
|
* If B is a NOT-type clause, A R=> B if A => B's arg
|
|
*
|
|
* Same logic as for the AND-clause case above.
|
|
*/
|
|
not_arg = extract_not_arg(predicate);
|
|
if (not_arg &&
|
|
predicate_implied_by_recurse(clause, not_arg,
|
|
false))
|
|
return true;
|
|
|
|
/*
|
|
* atom R=> atom is the base case
|
|
*/
|
|
return
|
|
predicate_refuted_by_simple_clause((Expr *) predicate,
|
|
clause,
|
|
weak);
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* can't get here */
|
|
elog(ERROR, "predicate_classify returned a bogus value");
|
|
return false;
|
|
}
|
|
|
|
|
|
/*
|
|
* predicate_classify
|
|
* Classify an expression node as AND-type, OR-type, or neither (an atom).
|
|
*
|
|
* If the expression is classified as AND- or OR-type, then *info is filled
|
|
* in with the functions needed to iterate over its components.
|
|
*
|
|
* This function also implements enforcement of MAX_SAOP_ARRAY_SIZE: if a
|
|
* ScalarArrayOpExpr's array has too many elements, we just classify it as an
|
|
* atom. (This will result in its being passed as-is to the simple_clause
|
|
* functions, many of which will fail to prove anything about it.) Note that we
|
|
* cannot just stop after considering MAX_SAOP_ARRAY_SIZE elements; in general
|
|
* that would result in wrong proofs, rather than failing to prove anything.
|
|
*/
|
|
static PredClass
|
|
predicate_classify(Node *clause, PredIterInfo info)
|
|
{
|
|
/* Caller should not pass us NULL, nor a RestrictInfo clause */
|
|
Assert(clause != NULL);
|
|
Assert(!IsA(clause, RestrictInfo));
|
|
|
|
/*
|
|
* If we see a List, assume it's an implicit-AND list; this is the correct
|
|
* semantics for lists of RestrictInfo nodes.
|
|
*/
|
|
if (IsA(clause, List))
|
|
{
|
|
info->startup_fn = list_startup_fn;
|
|
info->next_fn = list_next_fn;
|
|
info->cleanup_fn = list_cleanup_fn;
|
|
return CLASS_AND;
|
|
}
|
|
|
|
/* Handle normal AND and OR boolean clauses */
|
|
if (is_andclause(clause))
|
|
{
|
|
info->startup_fn = boolexpr_startup_fn;
|
|
info->next_fn = list_next_fn;
|
|
info->cleanup_fn = list_cleanup_fn;
|
|
return CLASS_AND;
|
|
}
|
|
if (is_orclause(clause))
|
|
{
|
|
info->startup_fn = boolexpr_startup_fn;
|
|
info->next_fn = list_next_fn;
|
|
info->cleanup_fn = list_cleanup_fn;
|
|
return CLASS_OR;
|
|
}
|
|
|
|
/* Handle ScalarArrayOpExpr */
|
|
if (IsA(clause, ScalarArrayOpExpr))
|
|
{
|
|
ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) clause;
|
|
Node *arraynode = (Node *) lsecond(saop->args);
|
|
|
|
/*
|
|
* We can break this down into an AND or OR structure, but only if we
|
|
* know how to iterate through expressions for the array's elements.
|
|
* We can do that if the array operand is a non-null constant or a
|
|
* simple ArrayExpr.
|
|
*/
|
|
if (arraynode && IsA(arraynode, Const) &&
|
|
!((Const *) arraynode)->constisnull)
|
|
{
|
|
ArrayType *arrayval;
|
|
int nelems;
|
|
|
|
arrayval = DatumGetArrayTypeP(((Const *) arraynode)->constvalue);
|
|
nelems = ArrayGetNItems(ARR_NDIM(arrayval), ARR_DIMS(arrayval));
|
|
if (nelems <= MAX_SAOP_ARRAY_SIZE)
|
|
{
|
|
info->startup_fn = arrayconst_startup_fn;
|
|
info->next_fn = arrayconst_next_fn;
|
|
info->cleanup_fn = arrayconst_cleanup_fn;
|
|
return saop->useOr ? CLASS_OR : CLASS_AND;
|
|
}
|
|
}
|
|
else if (arraynode && IsA(arraynode, ArrayExpr) &&
|
|
!((ArrayExpr *) arraynode)->multidims &&
|
|
list_length(((ArrayExpr *) arraynode)->elements) <= MAX_SAOP_ARRAY_SIZE)
|
|
{
|
|
info->startup_fn = arrayexpr_startup_fn;
|
|
info->next_fn = arrayexpr_next_fn;
|
|
info->cleanup_fn = arrayexpr_cleanup_fn;
|
|
return saop->useOr ? CLASS_OR : CLASS_AND;
|
|
}
|
|
}
|
|
|
|
/* None of the above, so it's an atom */
|
|
return CLASS_ATOM;
|
|
}
|
|
|
|
/*
|
|
* PredIterInfo routines for iterating over regular Lists. The iteration
|
|
* state variable is the next ListCell to visit.
|
|
*/
|
|
static void
|
|
list_startup_fn(Node *clause, PredIterInfo info)
|
|
{
|
|
info->state_list = (List *) clause;
|
|
info->state = (void *) list_head(info->state_list);
|
|
}
|
|
|
|
static Node *
|
|
list_next_fn(PredIterInfo info)
|
|
{
|
|
ListCell *l = (ListCell *) info->state;
|
|
Node *n;
|
|
|
|
if (l == NULL)
|
|
return NULL;
|
|
n = lfirst(l);
|
|
info->state = (void *) lnext(info->state_list, l);
|
|
return n;
|
|
}
|
|
|
|
static void
|
|
list_cleanup_fn(PredIterInfo info)
|
|
{
|
|
/* Nothing to clean up */
|
|
}
|
|
|
|
/*
|
|
* BoolExpr needs its own startup function, but can use list_next_fn and
|
|
* list_cleanup_fn.
|
|
*/
|
|
static void
|
|
boolexpr_startup_fn(Node *clause, PredIterInfo info)
|
|
{
|
|
info->state_list = ((BoolExpr *) clause)->args;
|
|
info->state = (void *) list_head(info->state_list);
|
|
}
|
|
|
|
/*
|
|
* PredIterInfo routines for iterating over a ScalarArrayOpExpr with a
|
|
* constant array operand.
|
|
*/
|
|
typedef struct
|
|
{
|
|
OpExpr opexpr;
|
|
Const const_expr;
|
|
int next_elem;
|
|
int num_elems;
|
|
Datum *elem_values;
|
|
bool *elem_nulls;
|
|
} ArrayConstIterState;
|
|
|
|
static void
|
|
arrayconst_startup_fn(Node *clause, PredIterInfo info)
|
|
{
|
|
ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) clause;
|
|
ArrayConstIterState *state;
|
|
Const *arrayconst;
|
|
ArrayType *arrayval;
|
|
int16 elmlen;
|
|
bool elmbyval;
|
|
char elmalign;
|
|
|
|
/* Create working state struct */
|
|
state = (ArrayConstIterState *) palloc(sizeof(ArrayConstIterState));
|
|
info->state = (void *) state;
|
|
|
|
/* Deconstruct the array literal */
|
|
arrayconst = (Const *) lsecond(saop->args);
|
|
arrayval = DatumGetArrayTypeP(arrayconst->constvalue);
|
|
get_typlenbyvalalign(ARR_ELEMTYPE(arrayval),
|
|
&elmlen, &elmbyval, &elmalign);
|
|
deconstruct_array(arrayval,
|
|
ARR_ELEMTYPE(arrayval),
|
|
elmlen, elmbyval, elmalign,
|
|
&state->elem_values, &state->elem_nulls,
|
|
&state->num_elems);
|
|
|
|
/* Set up a dummy OpExpr to return as the per-item node */
|
|
state->opexpr.xpr.type = T_OpExpr;
|
|
state->opexpr.opno = saop->opno;
|
|
state->opexpr.opfuncid = saop->opfuncid;
|
|
state->opexpr.opresulttype = BOOLOID;
|
|
state->opexpr.opretset = false;
|
|
state->opexpr.opcollid = InvalidOid;
|
|
state->opexpr.inputcollid = saop->inputcollid;
|
|
state->opexpr.args = list_copy(saop->args);
|
|
|
|
/* Set up a dummy Const node to hold the per-element values */
|
|
state->const_expr.xpr.type = T_Const;
|
|
state->const_expr.consttype = ARR_ELEMTYPE(arrayval);
|
|
state->const_expr.consttypmod = -1;
|
|
state->const_expr.constcollid = arrayconst->constcollid;
|
|
state->const_expr.constlen = elmlen;
|
|
state->const_expr.constbyval = elmbyval;
|
|
lsecond(state->opexpr.args) = &state->const_expr;
|
|
|
|
/* Initialize iteration state */
|
|
state->next_elem = 0;
|
|
}
|
|
|
|
static Node *
|
|
arrayconst_next_fn(PredIterInfo info)
|
|
{
|
|
ArrayConstIterState *state = (ArrayConstIterState *) info->state;
|
|
|
|
if (state->next_elem >= state->num_elems)
|
|
return NULL;
|
|
state->const_expr.constvalue = state->elem_values[state->next_elem];
|
|
state->const_expr.constisnull = state->elem_nulls[state->next_elem];
|
|
state->next_elem++;
|
|
return (Node *) &(state->opexpr);
|
|
}
|
|
|
|
static void
|
|
arrayconst_cleanup_fn(PredIterInfo info)
|
|
{
|
|
ArrayConstIterState *state = (ArrayConstIterState *) info->state;
|
|
|
|
pfree(state->elem_values);
|
|
pfree(state->elem_nulls);
|
|
list_free(state->opexpr.args);
|
|
pfree(state);
|
|
}
|
|
|
|
/*
|
|
* PredIterInfo routines for iterating over a ScalarArrayOpExpr with a
|
|
* one-dimensional ArrayExpr array operand.
|
|
*/
|
|
typedef struct
|
|
{
|
|
OpExpr opexpr;
|
|
ListCell *next;
|
|
} ArrayExprIterState;
|
|
|
|
static void
|
|
arrayexpr_startup_fn(Node *clause, PredIterInfo info)
|
|
{
|
|
ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) clause;
|
|
ArrayExprIterState *state;
|
|
ArrayExpr *arrayexpr;
|
|
|
|
/* Create working state struct */
|
|
state = (ArrayExprIterState *) palloc(sizeof(ArrayExprIterState));
|
|
info->state = (void *) state;
|
|
|
|
/* Set up a dummy OpExpr to return as the per-item node */
|
|
state->opexpr.xpr.type = T_OpExpr;
|
|
state->opexpr.opno = saop->opno;
|
|
state->opexpr.opfuncid = saop->opfuncid;
|
|
state->opexpr.opresulttype = BOOLOID;
|
|
state->opexpr.opretset = false;
|
|
state->opexpr.opcollid = InvalidOid;
|
|
state->opexpr.inputcollid = saop->inputcollid;
|
|
state->opexpr.args = list_copy(saop->args);
|
|
|
|
/* Initialize iteration variable to first member of ArrayExpr */
|
|
arrayexpr = (ArrayExpr *) lsecond(saop->args);
|
|
info->state_list = arrayexpr->elements;
|
|
state->next = list_head(arrayexpr->elements);
|
|
}
|
|
|
|
static Node *
|
|
arrayexpr_next_fn(PredIterInfo info)
|
|
{
|
|
ArrayExprIterState *state = (ArrayExprIterState *) info->state;
|
|
|
|
if (state->next == NULL)
|
|
return NULL;
|
|
lsecond(state->opexpr.args) = lfirst(state->next);
|
|
state->next = lnext(info->state_list, state->next);
|
|
return (Node *) &(state->opexpr);
|
|
}
|
|
|
|
static void
|
|
arrayexpr_cleanup_fn(PredIterInfo info)
|
|
{
|
|
ArrayExprIterState *state = (ArrayExprIterState *) info->state;
|
|
|
|
list_free(state->opexpr.args);
|
|
pfree(state);
|
|
}
|
|
|
|
|
|
/*
|
|
* predicate_implied_by_simple_clause
|
|
* Does the predicate implication test for a "simple clause" predicate
|
|
* and a "simple clause" restriction.
|
|
*
|
|
* We return true if able to prove the implication, false if not.
|
|
*/
|
|
static bool
|
|
predicate_implied_by_simple_clause(Expr *predicate, Node *clause,
|
|
bool weak)
|
|
{
|
|
/* Allow interrupting long proof attempts */
|
|
CHECK_FOR_INTERRUPTS();
|
|
|
|
/*
|
|
* A simple and general rule is that a clause implies itself, hence we
|
|
* check if they are equal(); this works for any kind of expression, and
|
|
* for either implication definition. (Actually, there is an implied
|
|
* assumption that the functions in the expression are immutable --- but
|
|
* this was checked for the predicate by the caller.)
|
|
*/
|
|
if (equal((Node *) predicate, clause))
|
|
return true;
|
|
|
|
/* Next we have some clause-type-specific strategies */
|
|
switch (nodeTag(clause))
|
|
{
|
|
case T_OpExpr:
|
|
{
|
|
OpExpr *op = (OpExpr *) clause;
|
|
|
|
/*----------
|
|
* For boolean x, "x = TRUE" is equivalent to "x", likewise
|
|
* "x = FALSE" is equivalent to "NOT x". These can be worth
|
|
* checking because, while we preferentially simplify boolean
|
|
* comparisons down to "x" and "NOT x", the other form has to
|
|
* be dealt with anyway in the context of index conditions.
|
|
*
|
|
* We could likewise check whether the predicate is boolean
|
|
* equality to a constant; but there are no known use-cases
|
|
* for that at the moment, assuming that the predicate has
|
|
* been through constant-folding.
|
|
*----------
|
|
*/
|
|
if (op->opno == BooleanEqualOperator)
|
|
{
|
|
Node *rightop;
|
|
|
|
Assert(list_length(op->args) == 2);
|
|
rightop = lsecond(op->args);
|
|
/* We might never see null Consts here, but better check */
|
|
if (rightop && IsA(rightop, Const) &&
|
|
!((Const *) rightop)->constisnull)
|
|
{
|
|
Node *leftop = linitial(op->args);
|
|
|
|
if (DatumGetBool(((Const *) rightop)->constvalue))
|
|
{
|
|
/* X = true implies X */
|
|
if (equal(predicate, leftop))
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
/* X = false implies NOT X */
|
|
if (is_notclause(predicate) &&
|
|
equal(get_notclausearg(predicate), leftop))
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* ... and some predicate-type-specific ones */
|
|
switch (nodeTag(predicate))
|
|
{
|
|
case T_NullTest:
|
|
{
|
|
NullTest *predntest = (NullTest *) predicate;
|
|
|
|
switch (predntest->nulltesttype)
|
|
{
|
|
case IS_NOT_NULL:
|
|
|
|
/*
|
|
* If the predicate is of the form "foo IS NOT NULL",
|
|
* and we are considering strong implication, we can
|
|
* conclude that the predicate is implied if the
|
|
* clause is strict for "foo", i.e., it must yield
|
|
* false or NULL when "foo" is NULL. In that case
|
|
* truth of the clause ensures that "foo" isn't NULL.
|
|
* (Again, this is a safe conclusion because "foo"
|
|
* must be immutable.) This doesn't work for weak
|
|
* implication, though. Also, "row IS NOT NULL" does
|
|
* not act in the simple way we have in mind.
|
|
*/
|
|
if (!weak &&
|
|
!predntest->argisrow &&
|
|
clause_is_strict_for(clause,
|
|
(Node *) predntest->arg,
|
|
true))
|
|
return true;
|
|
break;
|
|
case IS_NULL:
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Finally, if both clauses are binary operator expressions, we may be
|
|
* able to prove something using the system's knowledge about operators;
|
|
* those proof rules are encapsulated in operator_predicate_proof().
|
|
*/
|
|
return operator_predicate_proof(predicate, clause, false, weak);
|
|
}
|
|
|
|
/*
|
|
* predicate_refuted_by_simple_clause
|
|
* Does the predicate refutation test for a "simple clause" predicate
|
|
* and a "simple clause" restriction.
|
|
*
|
|
* We return true if able to prove the refutation, false if not.
|
|
*
|
|
* The main motivation for covering IS [NOT] NULL cases is to support using
|
|
* IS NULL/IS NOT NULL as partition-defining constraints.
|
|
*/
|
|
static bool
|
|
predicate_refuted_by_simple_clause(Expr *predicate, Node *clause,
|
|
bool weak)
|
|
{
|
|
/* Allow interrupting long proof attempts */
|
|
CHECK_FOR_INTERRUPTS();
|
|
|
|
/*
|
|
* A simple clause can't refute itself, so unlike the implication case,
|
|
* checking for equal() clauses isn't helpful.
|
|
*
|
|
* But relation_excluded_by_constraints() checks for self-contradictions
|
|
* in a list of clauses, so that we may get here with predicate and clause
|
|
* being actually pointer-equal, and that is worth eliminating quickly.
|
|
*/
|
|
if ((Node *) predicate == clause)
|
|
return false;
|
|
|
|
/* Next we have some clause-type-specific strategies */
|
|
switch (nodeTag(clause))
|
|
{
|
|
case T_NullTest:
|
|
{
|
|
NullTest *clausentest = (NullTest *) clause;
|
|
|
|
/* row IS NULL does not act in the simple way we have in mind */
|
|
if (clausentest->argisrow)
|
|
return false;
|
|
|
|
switch (clausentest->nulltesttype)
|
|
{
|
|
case IS_NULL:
|
|
{
|
|
switch (nodeTag(predicate))
|
|
{
|
|
case T_NullTest:
|
|
{
|
|
NullTest *predntest = (NullTest *) predicate;
|
|
|
|
/*
|
|
* row IS NULL does not act in the
|
|
* simple way we have in mind
|
|
*/
|
|
if (predntest->argisrow)
|
|
return false;
|
|
|
|
/*
|
|
* foo IS NULL refutes foo IS NOT
|
|
* NULL, at least in the non-row case,
|
|
* for both strong and weak refutation
|
|
*/
|
|
if (predntest->nulltesttype == IS_NOT_NULL &&
|
|
equal(predntest->arg, clausentest->arg))
|
|
return true;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* foo IS NULL weakly refutes any predicate that
|
|
* is strict for foo, since then the predicate
|
|
* must yield false or NULL (and since foo appears
|
|
* in the predicate, it's known immutable).
|
|
*/
|
|
if (weak &&
|
|
clause_is_strict_for((Node *) predicate,
|
|
(Node *) clausentest->arg,
|
|
true))
|
|
return true;
|
|
|
|
return false; /* we can't succeed below... */
|
|
}
|
|
break;
|
|
case IS_NOT_NULL:
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* ... and some predicate-type-specific ones */
|
|
switch (nodeTag(predicate))
|
|
{
|
|
case T_NullTest:
|
|
{
|
|
NullTest *predntest = (NullTest *) predicate;
|
|
|
|
/* row IS NULL does not act in the simple way we have in mind */
|
|
if (predntest->argisrow)
|
|
return false;
|
|
|
|
switch (predntest->nulltesttype)
|
|
{
|
|
case IS_NULL:
|
|
{
|
|
switch (nodeTag(clause))
|
|
{
|
|
case T_NullTest:
|
|
{
|
|
NullTest *clausentest = (NullTest *) clause;
|
|
|
|
/*
|
|
* row IS NULL does not act in the
|
|
* simple way we have in mind
|
|
*/
|
|
if (clausentest->argisrow)
|
|
return false;
|
|
|
|
/*
|
|
* foo IS NOT NULL refutes foo IS NULL
|
|
* for both strong and weak refutation
|
|
*/
|
|
if (clausentest->nulltesttype == IS_NOT_NULL &&
|
|
equal(clausentest->arg, predntest->arg))
|
|
return true;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* When the predicate is of the form "foo IS
|
|
* NULL", we can conclude that the predicate is
|
|
* refuted if the clause is strict for "foo" (see
|
|
* notes for implication case). That works for
|
|
* either strong or weak refutation.
|
|
*/
|
|
if (clause_is_strict_for(clause,
|
|
(Node *) predntest->arg,
|
|
true))
|
|
return true;
|
|
}
|
|
break;
|
|
case IS_NOT_NULL:
|
|
break;
|
|
}
|
|
|
|
return false; /* we can't succeed below... */
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Finally, if both clauses are binary operator expressions, we may be
|
|
* able to prove something using the system's knowledge about operators.
|
|
*/
|
|
return operator_predicate_proof(predicate, clause, true, weak);
|
|
}
|
|
|
|
|
|
/*
|
|
* If clause asserts the non-truth of a subclause, return that subclause;
|
|
* otherwise return NULL.
|
|
*/
|
|
static Node *
|
|
extract_not_arg(Node *clause)
|
|
{
|
|
if (clause == NULL)
|
|
return NULL;
|
|
if (IsA(clause, BoolExpr))
|
|
{
|
|
BoolExpr *bexpr = (BoolExpr *) clause;
|
|
|
|
if (bexpr->boolop == NOT_EXPR)
|
|
return (Node *) linitial(bexpr->args);
|
|
}
|
|
else if (IsA(clause, BooleanTest))
|
|
{
|
|
BooleanTest *btest = (BooleanTest *) clause;
|
|
|
|
if (btest->booltesttype == IS_NOT_TRUE ||
|
|
btest->booltesttype == IS_FALSE ||
|
|
btest->booltesttype == IS_UNKNOWN)
|
|
return (Node *) btest->arg;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* If clause asserts the falsity of a subclause, return that subclause;
|
|
* otherwise return NULL.
|
|
*/
|
|
static Node *
|
|
extract_strong_not_arg(Node *clause)
|
|
{
|
|
if (clause == NULL)
|
|
return NULL;
|
|
if (IsA(clause, BoolExpr))
|
|
{
|
|
BoolExpr *bexpr = (BoolExpr *) clause;
|
|
|
|
if (bexpr->boolop == NOT_EXPR)
|
|
return (Node *) linitial(bexpr->args);
|
|
}
|
|
else if (IsA(clause, BooleanTest))
|
|
{
|
|
BooleanTest *btest = (BooleanTest *) clause;
|
|
|
|
if (btest->booltesttype == IS_FALSE)
|
|
return (Node *) btest->arg;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/*
|
|
* Can we prove that "clause" returns NULL (or FALSE) if "subexpr" is
|
|
* assumed to yield NULL?
|
|
*
|
|
* In most places in the planner, "strictness" refers to a guarantee that
|
|
* an expression yields NULL output for a NULL input, and that's mostly what
|
|
* we're looking for here. However, at top level where the clause is known
|
|
* to yield boolean, it may be sufficient to prove that it cannot return TRUE
|
|
* when "subexpr" is NULL. The caller should pass allow_false = true when
|
|
* this weaker property is acceptable. (When this function recurses
|
|
* internally, we pass down allow_false = false since we need to prove actual
|
|
* nullness of the subexpression.)
|
|
*
|
|
* We assume that the caller checked that least one of the input expressions
|
|
* is immutable. All of the proof rules here involve matching "subexpr" to
|
|
* some portion of "clause", so that this allows assuming that "subexpr" is
|
|
* immutable without a separate check.
|
|
*
|
|
* The base case is that clause and subexpr are equal().
|
|
*
|
|
* We can also report success if the subexpr appears as a subexpression
|
|
* of "clause" in a place where it'd force nullness of the overall result.
|
|
*/
|
|
static bool
|
|
clause_is_strict_for(Node *clause, Node *subexpr, bool allow_false)
|
|
{
|
|
ListCell *lc;
|
|
|
|
/* safety checks */
|
|
if (clause == NULL || subexpr == NULL)
|
|
return false;
|
|
|
|
/*
|
|
* Look through any RelabelType nodes, so that we can match, say,
|
|
* varcharcol with lower(varcharcol::text). (In general we could recurse
|
|
* through any nullness-preserving, immutable operation.) We should not
|
|
* see stacked RelabelTypes here.
|
|
*/
|
|
if (IsA(clause, RelabelType))
|
|
clause = (Node *) ((RelabelType *) clause)->arg;
|
|
if (IsA(subexpr, RelabelType))
|
|
subexpr = (Node *) ((RelabelType *) subexpr)->arg;
|
|
|
|
/* Base case */
|
|
if (equal(clause, subexpr))
|
|
return true;
|
|
|
|
/*
|
|
* If we have a strict operator or function, a NULL result is guaranteed
|
|
* if any input is forced NULL by subexpr. This is OK even if the op or
|
|
* func isn't immutable, since it won't even be called on NULL input.
|
|
*/
|
|
if (is_opclause(clause) &&
|
|
op_strict(((OpExpr *) clause)->opno))
|
|
{
|
|
foreach(lc, ((OpExpr *) clause)->args)
|
|
{
|
|
if (clause_is_strict_for((Node *) lfirst(lc), subexpr, false))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
if (is_funcclause(clause) &&
|
|
func_strict(((FuncExpr *) clause)->funcid))
|
|
{
|
|
foreach(lc, ((FuncExpr *) clause)->args)
|
|
{
|
|
if (clause_is_strict_for((Node *) lfirst(lc), subexpr, false))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* CoerceViaIO is strict (whether or not the I/O functions it calls are).
|
|
* Likewise, ArrayCoerceExpr is strict for its array argument (regardless
|
|
* of what the per-element expression is), ConvertRowtypeExpr is strict at
|
|
* the row level, and CoerceToDomain is strict too. These are worth
|
|
* checking mainly because it saves us having to explain to users why some
|
|
* type coercions are known strict and others aren't.
|
|
*/
|
|
if (IsA(clause, CoerceViaIO))
|
|
return clause_is_strict_for((Node *) ((CoerceViaIO *) clause)->arg,
|
|
subexpr, false);
|
|
if (IsA(clause, ArrayCoerceExpr))
|
|
return clause_is_strict_for((Node *) ((ArrayCoerceExpr *) clause)->arg,
|
|
subexpr, false);
|
|
if (IsA(clause, ConvertRowtypeExpr))
|
|
return clause_is_strict_for((Node *) ((ConvertRowtypeExpr *) clause)->arg,
|
|
subexpr, false);
|
|
if (IsA(clause, CoerceToDomain))
|
|
return clause_is_strict_for((Node *) ((CoerceToDomain *) clause)->arg,
|
|
subexpr, false);
|
|
|
|
/*
|
|
* ScalarArrayOpExpr is a special case. Note that we'd only reach here
|
|
* with a ScalarArrayOpExpr clause if we failed to deconstruct it into an
|
|
* AND or OR tree, as for example if it has too many array elements.
|
|
*/
|
|
if (IsA(clause, ScalarArrayOpExpr))
|
|
{
|
|
ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) clause;
|
|
Node *scalarnode = (Node *) linitial(saop->args);
|
|
Node *arraynode = (Node *) lsecond(saop->args);
|
|
|
|
/*
|
|
* If we can prove the scalar input to be null, and the operator is
|
|
* strict, then the SAOP result has to be null --- unless the array is
|
|
* empty. For an empty array, we'd get either false (for ANY) or true
|
|
* (for ALL). So if allow_false = true then the proof succeeds anyway
|
|
* for the ANY case; otherwise we can only make the proof if we can
|
|
* prove the array non-empty.
|
|
*/
|
|
if (clause_is_strict_for(scalarnode, subexpr, false) &&
|
|
op_strict(saop->opno))
|
|
{
|
|
int nelems = 0;
|
|
|
|
if (allow_false && saop->useOr)
|
|
return true; /* can succeed even if array is empty */
|
|
|
|
if (arraynode && IsA(arraynode, Const))
|
|
{
|
|
Const *arrayconst = (Const *) arraynode;
|
|
ArrayType *arrval;
|
|
|
|
/*
|
|
* If array is constant NULL then we can succeed, as in the
|
|
* case below.
|
|
*/
|
|
if (arrayconst->constisnull)
|
|
return true;
|
|
|
|
/* Otherwise, we can compute the number of elements. */
|
|
arrval = DatumGetArrayTypeP(arrayconst->constvalue);
|
|
nelems = ArrayGetNItems(ARR_NDIM(arrval), ARR_DIMS(arrval));
|
|
}
|
|
else if (arraynode && IsA(arraynode, ArrayExpr) &&
|
|
!((ArrayExpr *) arraynode)->multidims)
|
|
{
|
|
/*
|
|
* We can also reliably count the number of array elements if
|
|
* the input is a non-multidim ARRAY[] expression.
|
|
*/
|
|
nelems = list_length(((ArrayExpr *) arraynode)->elements);
|
|
}
|
|
|
|
/* Proof succeeds if array is definitely non-empty */
|
|
if (nelems > 0)
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* If we can prove the array input to be null, the proof succeeds in
|
|
* all cases, since ScalarArrayOpExpr will always return NULL for a
|
|
* NULL array. Otherwise, we're done here.
|
|
*/
|
|
return clause_is_strict_for(arraynode, subexpr, false);
|
|
}
|
|
|
|
/*
|
|
* When recursing into an expression, we might find a NULL constant.
|
|
* That's certainly NULL, whether it matches subexpr or not.
|
|
*/
|
|
if (IsA(clause, Const))
|
|
return ((Const *) clause)->constisnull;
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
/*
|
|
* Define "operator implication tables" for btree operators ("strategies"),
|
|
* and similar tables for refutation.
|
|
*
|
|
* The strategy numbers defined by btree indexes (see access/stratnum.h) are:
|
|
* 1 < 2 <= 3 = 4 >= 5 >
|
|
* and in addition we use 6 to represent <>. <> is not a btree-indexable
|
|
* operator, but we assume here that if an equality operator of a btree
|
|
* opfamily has a negator operator, the negator behaves as <> for the opfamily.
|
|
* (This convention is also known to get_op_btree_interpretation().)
|
|
*
|
|
* BT_implies_table[] and BT_refutes_table[] are used for cases where we have
|
|
* two identical subexpressions and we want to know whether one operator
|
|
* expression implies or refutes the other. That is, if the "clause" is
|
|
* EXPR1 clause_op EXPR2 and the "predicate" is EXPR1 pred_op EXPR2 for the
|
|
* same two (immutable) subexpressions:
|
|
* BT_implies_table[clause_op-1][pred_op-1]
|
|
* is true if the clause implies the predicate
|
|
* BT_refutes_table[clause_op-1][pred_op-1]
|
|
* is true if the clause refutes the predicate
|
|
* where clause_op and pred_op are strategy numbers (from 1 to 6) in the
|
|
* same btree opfamily. For example, "x < y" implies "x <= y" and refutes
|
|
* "x > y".
|
|
*
|
|
* BT_implic_table[] and BT_refute_table[] are used where we have two
|
|
* constants that we need to compare. The interpretation of:
|
|
*
|
|
* test_op = BT_implic_table[clause_op-1][pred_op-1]
|
|
*
|
|
* where test_op, clause_op and pred_op are strategy numbers (from 1 to 6)
|
|
* of btree operators, is as follows:
|
|
*
|
|
* If you know, for some EXPR, that "EXPR clause_op CONST1" is true, and you
|
|
* want to determine whether "EXPR pred_op CONST2" must also be true, then
|
|
* you can use "CONST2 test_op CONST1" as a test. If this test returns true,
|
|
* then the predicate expression must be true; if the test returns false,
|
|
* then the predicate expression may be false.
|
|
*
|
|
* For example, if clause is "Quantity > 10" and pred is "Quantity > 5"
|
|
* then we test "5 <= 10" which evals to true, so clause implies pred.
|
|
*
|
|
* Similarly, the interpretation of a BT_refute_table entry is:
|
|
*
|
|
* If you know, for some EXPR, that "EXPR clause_op CONST1" is true, and you
|
|
* want to determine whether "EXPR pred_op CONST2" must be false, then
|
|
* you can use "CONST2 test_op CONST1" as a test. If this test returns true,
|
|
* then the predicate expression must be false; if the test returns false,
|
|
* then the predicate expression may be true.
|
|
*
|
|
* For example, if clause is "Quantity > 10" and pred is "Quantity < 5"
|
|
* then we test "5 <= 10" which evals to true, so clause refutes pred.
|
|
*
|
|
* An entry where test_op == 0 means the implication cannot be determined.
|
|
*/
|
|
|
|
#define BTLT BTLessStrategyNumber
|
|
#define BTLE BTLessEqualStrategyNumber
|
|
#define BTEQ BTEqualStrategyNumber
|
|
#define BTGE BTGreaterEqualStrategyNumber
|
|
#define BTGT BTGreaterStrategyNumber
|
|
#define BTNE ROWCOMPARE_NE
|
|
|
|
/* We use "none" for 0/false to make the tables align nicely */
|
|
#define none 0
|
|
|
|
static const bool BT_implies_table[6][6] = {
|
|
/*
|
|
* The predicate operator:
|
|
* LT LE EQ GE GT NE
|
|
*/
|
|
{true, true, none, none, none, true}, /* LT */
|
|
{none, true, none, none, none, none}, /* LE */
|
|
{none, true, true, true, none, none}, /* EQ */
|
|
{none, none, none, true, none, none}, /* GE */
|
|
{none, none, none, true, true, true}, /* GT */
|
|
{none, none, none, none, none, true} /* NE */
|
|
};
|
|
|
|
static const bool BT_refutes_table[6][6] = {
|
|
/*
|
|
* The predicate operator:
|
|
* LT LE EQ GE GT NE
|
|
*/
|
|
{none, none, true, true, true, none}, /* LT */
|
|
{none, none, none, none, true, none}, /* LE */
|
|
{true, none, none, none, true, true}, /* EQ */
|
|
{true, none, none, none, none, none}, /* GE */
|
|
{true, true, true, none, none, none}, /* GT */
|
|
{none, none, true, none, none, none} /* NE */
|
|
};
|
|
|
|
static const StrategyNumber BT_implic_table[6][6] = {
|
|
/*
|
|
* The predicate operator:
|
|
* LT LE EQ GE GT NE
|
|
*/
|
|
{BTGE, BTGE, none, none, none, BTGE}, /* LT */
|
|
{BTGT, BTGE, none, none, none, BTGT}, /* LE */
|
|
{BTGT, BTGE, BTEQ, BTLE, BTLT, BTNE}, /* EQ */
|
|
{none, none, none, BTLE, BTLT, BTLT}, /* GE */
|
|
{none, none, none, BTLE, BTLE, BTLE}, /* GT */
|
|
{none, none, none, none, none, BTEQ} /* NE */
|
|
};
|
|
|
|
static const StrategyNumber BT_refute_table[6][6] = {
|
|
/*
|
|
* The predicate operator:
|
|
* LT LE EQ GE GT NE
|
|
*/
|
|
{none, none, BTGE, BTGE, BTGE, none}, /* LT */
|
|
{none, none, BTGT, BTGT, BTGE, none}, /* LE */
|
|
{BTLE, BTLT, BTNE, BTGT, BTGE, BTEQ}, /* EQ */
|
|
{BTLE, BTLT, BTLT, none, none, none}, /* GE */
|
|
{BTLE, BTLE, BTLE, none, none, none}, /* GT */
|
|
{none, none, BTEQ, none, none, none} /* NE */
|
|
};
|
|
|
|
|
|
/*
|
|
* operator_predicate_proof
|
|
* Does the predicate implication or refutation test for a "simple clause"
|
|
* predicate and a "simple clause" restriction, when both are operator
|
|
* clauses using related operators and identical input expressions.
|
|
*
|
|
* When refute_it == false, we want to prove the predicate true;
|
|
* when refute_it == true, we want to prove the predicate false.
|
|
* (There is enough common code to justify handling these two cases
|
|
* in one routine.) We return true if able to make the proof, false
|
|
* if not able to prove it.
|
|
*
|
|
* We mostly need not distinguish strong vs. weak implication/refutation here.
|
|
* This depends on the assumption that a pair of related operators (i.e.,
|
|
* commutators, negators, or btree opfamily siblings) will not return one NULL
|
|
* and one non-NULL result for the same inputs. Then, for the proof types
|
|
* where we start with an assumption of truth of the clause, the predicate
|
|
* operator could not return NULL either, so it doesn't matter whether we are
|
|
* trying to make a strong or weak proof. For weak implication, it could be
|
|
* that the clause operator returned NULL, but then the predicate operator
|
|
* would as well, so that the weak implication still holds. This argument
|
|
* doesn't apply in the case where we are considering two different constant
|
|
* values, since then the operators aren't being given identical inputs. But
|
|
* we only support that for btree operators, for which we can assume that all
|
|
* non-null inputs result in non-null outputs, so that it doesn't matter which
|
|
* two non-null constants we consider. If either constant is NULL, we have
|
|
* to think harder, but sometimes the proof still works, as explained below.
|
|
*
|
|
* We can make proofs involving several expression forms (here "foo" and "bar"
|
|
* represent subexpressions that are identical according to equal()):
|
|
* "foo op1 bar" refutes "foo op2 bar" if op1 is op2's negator
|
|
* "foo op1 bar" implies "bar op2 foo" if op1 is op2's commutator
|
|
* "foo op1 bar" refutes "bar op2 foo" if op1 is negator of op2's commutator
|
|
* "foo op1 bar" can imply/refute "foo op2 bar" based on btree semantics
|
|
* "foo op1 bar" can imply/refute "bar op2 foo" based on btree semantics
|
|
* "foo op1 const1" can imply/refute "foo op2 const2" based on btree semantics
|
|
*
|
|
* For the last three cases, op1 and op2 have to be members of the same btree
|
|
* operator family. When both subexpressions are identical, the idea is that,
|
|
* for instance, x < y implies x <= y, independently of exactly what x and y
|
|
* are. If we have two different constants compared to the same expression
|
|
* foo, we have to execute a comparison between the two constant values
|
|
* in order to determine the result; for instance, foo < c1 implies foo < c2
|
|
* if c1 <= c2. We assume it's safe to compare the constants at plan time
|
|
* if the comparison operator is immutable.
|
|
*
|
|
* Note: all the operators and subexpressions have to be immutable for the
|
|
* proof to be safe. We assume the predicate expression is entirely immutable,
|
|
* so no explicit check on the subexpressions is needed here, but in some
|
|
* cases we need an extra check of operator immutability. In particular,
|
|
* btree opfamilies can contain cross-type operators that are merely stable,
|
|
* and we dare not make deductions with those.
|
|
*/
|
|
static bool
|
|
operator_predicate_proof(Expr *predicate, Node *clause,
|
|
bool refute_it, bool weak)
|
|
{
|
|
OpExpr *pred_opexpr,
|
|
*clause_opexpr;
|
|
Oid pred_collation,
|
|
clause_collation;
|
|
Oid pred_op,
|
|
clause_op,
|
|
test_op;
|
|
Node *pred_leftop,
|
|
*pred_rightop,
|
|
*clause_leftop,
|
|
*clause_rightop;
|
|
Const *pred_const,
|
|
*clause_const;
|
|
Expr *test_expr;
|
|
ExprState *test_exprstate;
|
|
Datum test_result;
|
|
bool isNull;
|
|
EState *estate;
|
|
MemoryContext oldcontext;
|
|
|
|
/*
|
|
* Both expressions must be binary opclauses, else we can't do anything.
|
|
*
|
|
* Note: in future we might extend this logic to other operator-based
|
|
* constructs such as DistinctExpr. But the planner isn't very smart
|
|
* about DistinctExpr in general, and this probably isn't the first place
|
|
* to fix if you want to improve that.
|
|
*/
|
|
if (!is_opclause(predicate))
|
|
return false;
|
|
pred_opexpr = (OpExpr *) predicate;
|
|
if (list_length(pred_opexpr->args) != 2)
|
|
return false;
|
|
if (!is_opclause(clause))
|
|
return false;
|
|
clause_opexpr = (OpExpr *) clause;
|
|
if (list_length(clause_opexpr->args) != 2)
|
|
return false;
|
|
|
|
/*
|
|
* If they're marked with different collations then we can't do anything.
|
|
* This is a cheap test so let's get it out of the way early.
|
|
*/
|
|
pred_collation = pred_opexpr->inputcollid;
|
|
clause_collation = clause_opexpr->inputcollid;
|
|
if (pred_collation != clause_collation)
|
|
return false;
|
|
|
|
/* Grab the operator OIDs now too. We may commute these below. */
|
|
pred_op = pred_opexpr->opno;
|
|
clause_op = clause_opexpr->opno;
|
|
|
|
/*
|
|
* We have to match up at least one pair of input expressions.
|
|
*/
|
|
pred_leftop = (Node *) linitial(pred_opexpr->args);
|
|
pred_rightop = (Node *) lsecond(pred_opexpr->args);
|
|
clause_leftop = (Node *) linitial(clause_opexpr->args);
|
|
clause_rightop = (Node *) lsecond(clause_opexpr->args);
|
|
|
|
if (equal(pred_leftop, clause_leftop))
|
|
{
|
|
if (equal(pred_rightop, clause_rightop))
|
|
{
|
|
/* We have x op1 y and x op2 y */
|
|
return operator_same_subexprs_proof(pred_op, clause_op, refute_it);
|
|
}
|
|
else
|
|
{
|
|
/* Fail unless rightops are both Consts */
|
|
if (pred_rightop == NULL || !IsA(pred_rightop, Const))
|
|
return false;
|
|
pred_const = (Const *) pred_rightop;
|
|
if (clause_rightop == NULL || !IsA(clause_rightop, Const))
|
|
return false;
|
|
clause_const = (Const *) clause_rightop;
|
|
}
|
|
}
|
|
else if (equal(pred_rightop, clause_rightop))
|
|
{
|
|
/* Fail unless leftops are both Consts */
|
|
if (pred_leftop == NULL || !IsA(pred_leftop, Const))
|
|
return false;
|
|
pred_const = (Const *) pred_leftop;
|
|
if (clause_leftop == NULL || !IsA(clause_leftop, Const))
|
|
return false;
|
|
clause_const = (Const *) clause_leftop;
|
|
/* Commute both operators so we can assume Consts are on the right */
|
|
pred_op = get_commutator(pred_op);
|
|
if (!OidIsValid(pred_op))
|
|
return false;
|
|
clause_op = get_commutator(clause_op);
|
|
if (!OidIsValid(clause_op))
|
|
return false;
|
|
}
|
|
else if (equal(pred_leftop, clause_rightop))
|
|
{
|
|
if (equal(pred_rightop, clause_leftop))
|
|
{
|
|
/* We have x op1 y and y op2 x */
|
|
/* Commute pred_op that we can treat this like a straight match */
|
|
pred_op = get_commutator(pred_op);
|
|
if (!OidIsValid(pred_op))
|
|
return false;
|
|
return operator_same_subexprs_proof(pred_op, clause_op, refute_it);
|
|
}
|
|
else
|
|
{
|
|
/* Fail unless pred_rightop/clause_leftop are both Consts */
|
|
if (pred_rightop == NULL || !IsA(pred_rightop, Const))
|
|
return false;
|
|
pred_const = (Const *) pred_rightop;
|
|
if (clause_leftop == NULL || !IsA(clause_leftop, Const))
|
|
return false;
|
|
clause_const = (Const *) clause_leftop;
|
|
/* Commute clause_op so we can assume Consts are on the right */
|
|
clause_op = get_commutator(clause_op);
|
|
if (!OidIsValid(clause_op))
|
|
return false;
|
|
}
|
|
}
|
|
else if (equal(pred_rightop, clause_leftop))
|
|
{
|
|
/* Fail unless pred_leftop/clause_rightop are both Consts */
|
|
if (pred_leftop == NULL || !IsA(pred_leftop, Const))
|
|
return false;
|
|
pred_const = (Const *) pred_leftop;
|
|
if (clause_rightop == NULL || !IsA(clause_rightop, Const))
|
|
return false;
|
|
clause_const = (Const *) clause_rightop;
|
|
/* Commute pred_op so we can assume Consts are on the right */
|
|
pred_op = get_commutator(pred_op);
|
|
if (!OidIsValid(pred_op))
|
|
return false;
|
|
}
|
|
else
|
|
{
|
|
/* Failed to match up any of the subexpressions, so we lose */
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* We have two identical subexpressions, and two other subexpressions that
|
|
* are not identical but are both Consts; and we have commuted the
|
|
* operators if necessary so that the Consts are on the right. We'll need
|
|
* to compare the Consts' values. If either is NULL, we can't do that, so
|
|
* usually the proof fails ... but in some cases we can claim success.
|
|
*/
|
|
if (clause_const->constisnull)
|
|
{
|
|
/* If clause_op isn't strict, we can't prove anything */
|
|
if (!op_strict(clause_op))
|
|
return false;
|
|
|
|
/*
|
|
* At this point we know that the clause returns NULL. For proof
|
|
* types that assume truth of the clause, this means the proof is
|
|
* vacuously true (a/k/a "false implies anything"). That's all proof
|
|
* types except weak implication.
|
|
*/
|
|
if (!(weak && !refute_it))
|
|
return true;
|
|
|
|
/*
|
|
* For weak implication, it's still possible for the proof to succeed,
|
|
* if the predicate can also be proven NULL. In that case we've got
|
|
* NULL => NULL which is valid for this proof type.
|
|
*/
|
|
if (pred_const->constisnull && op_strict(pred_op))
|
|
return true;
|
|
/* Else the proof fails */
|
|
return false;
|
|
}
|
|
if (pred_const->constisnull)
|
|
{
|
|
/*
|
|
* If the pred_op is strict, we know the predicate yields NULL, which
|
|
* means the proof succeeds for either weak implication or weak
|
|
* refutation.
|
|
*/
|
|
if (weak && op_strict(pred_op))
|
|
return true;
|
|
/* Else the proof fails */
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Lookup the constant-comparison operator using the system catalogs and
|
|
* the operator implication tables.
|
|
*/
|
|
test_op = get_btree_test_op(pred_op, clause_op, refute_it);
|
|
|
|
if (!OidIsValid(test_op))
|
|
{
|
|
/* couldn't find a suitable comparison operator */
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Evaluate the test. For this we need an EState.
|
|
*/
|
|
estate = CreateExecutorState();
|
|
|
|
/* We can use the estate's working context to avoid memory leaks. */
|
|
oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
|
|
|
|
/* Build expression tree */
|
|
test_expr = make_opclause(test_op,
|
|
BOOLOID,
|
|
false,
|
|
(Expr *) pred_const,
|
|
(Expr *) clause_const,
|
|
InvalidOid,
|
|
pred_collation);
|
|
|
|
/* Fill in opfuncids */
|
|
fix_opfuncids((Node *) test_expr);
|
|
|
|
/* Prepare it for execution */
|
|
test_exprstate = ExecInitExpr(test_expr, NULL);
|
|
|
|
/* And execute it. */
|
|
test_result = ExecEvalExprSwitchContext(test_exprstate,
|
|
GetPerTupleExprContext(estate),
|
|
&isNull);
|
|
|
|
/* Get back to outer memory context */
|
|
MemoryContextSwitchTo(oldcontext);
|
|
|
|
/* Release all the junk we just created */
|
|
FreeExecutorState(estate);
|
|
|
|
if (isNull)
|
|
{
|
|
/* Treat a null result as non-proof ... but it's a tad fishy ... */
|
|
elog(DEBUG2, "null predicate test result");
|
|
return false;
|
|
}
|
|
return DatumGetBool(test_result);
|
|
}
|
|
|
|
|
|
/*
|
|
* operator_same_subexprs_proof
|
|
* Assuming that EXPR1 clause_op EXPR2 is true, try to prove or refute
|
|
* EXPR1 pred_op EXPR2.
|
|
*
|
|
* Return true if able to make the proof, false if not able to prove it.
|
|
*/
|
|
static bool
|
|
operator_same_subexprs_proof(Oid pred_op, Oid clause_op, bool refute_it)
|
|
{
|
|
/*
|
|
* A simple and general rule is that the predicate is proven if clause_op
|
|
* and pred_op are the same, or refuted if they are each other's negators.
|
|
* We need not check immutability since the pred_op is already known
|
|
* immutable. (Actually, by this point we may have the commutator of a
|
|
* known-immutable pred_op, but that should certainly be immutable too.
|
|
* Likewise we don't worry whether the pred_op's negator is immutable.)
|
|
*
|
|
* Note: the "same" case won't get here if we actually had EXPR1 clause_op
|
|
* EXPR2 and EXPR1 pred_op EXPR2, because the overall-expression-equality
|
|
* test in predicate_implied_by_simple_clause would have caught it. But
|
|
* we can see the same operator after having commuted the pred_op.
|
|
*/
|
|
if (refute_it)
|
|
{
|
|
if (get_negator(pred_op) == clause_op)
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
if (pred_op == clause_op)
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Otherwise, see if we can determine the implication by finding the
|
|
* operators' relationship via some btree opfamily.
|
|
*/
|
|
return operator_same_subexprs_lookup(pred_op, clause_op, refute_it);
|
|
}
|
|
|
|
|
|
/*
|
|
* We use a lookaside table to cache the result of btree proof operator
|
|
* lookups, since the actual lookup is pretty expensive and doesn't change
|
|
* for any given pair of operators (at least as long as pg_amop doesn't
|
|
* change). A single hash entry stores both implication and refutation
|
|
* results for a given pair of operators; but note we may have determined
|
|
* only one of those sets of results as yet.
|
|
*/
|
|
typedef struct OprProofCacheKey
|
|
{
|
|
Oid pred_op; /* predicate operator */
|
|
Oid clause_op; /* clause operator */
|
|
} OprProofCacheKey;
|
|
|
|
typedef struct OprProofCacheEntry
|
|
{
|
|
/* the hash lookup key MUST BE FIRST */
|
|
OprProofCacheKey key;
|
|
|
|
bool have_implic; /* do we know the implication result? */
|
|
bool have_refute; /* do we know the refutation result? */
|
|
bool same_subexprs_implies; /* X clause_op Y implies X pred_op Y? */
|
|
bool same_subexprs_refutes; /* X clause_op Y refutes X pred_op Y? */
|
|
Oid implic_test_op; /* OID of the test operator, or 0 if none */
|
|
Oid refute_test_op; /* OID of the test operator, or 0 if none */
|
|
} OprProofCacheEntry;
|
|
|
|
static HTAB *OprProofCacheHash = NULL;
|
|
|
|
|
|
/*
|
|
* lookup_proof_cache
|
|
* Get, and fill in if necessary, the appropriate cache entry.
|
|
*/
|
|
static OprProofCacheEntry *
|
|
lookup_proof_cache(Oid pred_op, Oid clause_op, bool refute_it)
|
|
{
|
|
OprProofCacheKey key;
|
|
OprProofCacheEntry *cache_entry;
|
|
bool cfound;
|
|
bool same_subexprs = false;
|
|
Oid test_op = InvalidOid;
|
|
bool found = false;
|
|
List *pred_op_infos,
|
|
*clause_op_infos;
|
|
ListCell *lcp,
|
|
*lcc;
|
|
|
|
/*
|
|
* Find or make a cache entry for this pair of operators.
|
|
*/
|
|
if (OprProofCacheHash == NULL)
|
|
{
|
|
/* First time through: initialize the hash table */
|
|
HASHCTL ctl;
|
|
|
|
ctl.keysize = sizeof(OprProofCacheKey);
|
|
ctl.entrysize = sizeof(OprProofCacheEntry);
|
|
OprProofCacheHash = hash_create("Btree proof lookup cache", 256,
|
|
&ctl, HASH_ELEM | HASH_BLOBS);
|
|
|
|
/* Arrange to flush cache on pg_amop changes */
|
|
CacheRegisterSyscacheCallback(AMOPOPID,
|
|
InvalidateOprProofCacheCallBack,
|
|
(Datum) 0);
|
|
}
|
|
|
|
key.pred_op = pred_op;
|
|
key.clause_op = clause_op;
|
|
cache_entry = (OprProofCacheEntry *) hash_search(OprProofCacheHash,
|
|
&key,
|
|
HASH_ENTER, &cfound);
|
|
if (!cfound)
|
|
{
|
|
/* new cache entry, set it invalid */
|
|
cache_entry->have_implic = false;
|
|
cache_entry->have_refute = false;
|
|
}
|
|
else
|
|
{
|
|
/* pre-existing cache entry, see if we know the answer yet */
|
|
if (refute_it ? cache_entry->have_refute : cache_entry->have_implic)
|
|
return cache_entry;
|
|
}
|
|
|
|
/*
|
|
* Try to find a btree opfamily containing the given operators.
|
|
*
|
|
* We must find a btree opfamily that contains both operators, else the
|
|
* implication can't be determined. Also, the opfamily must contain a
|
|
* suitable test operator taking the operators' righthand datatypes.
|
|
*
|
|
* If there are multiple matching opfamilies, assume we can use any one to
|
|
* determine the logical relationship of the two operators and the correct
|
|
* corresponding test operator. This should work for any logically
|
|
* consistent opfamilies.
|
|
*
|
|
* Note that we can determine the operators' relationship for
|
|
* same-subexprs cases even from an opfamily that lacks a usable test
|
|
* operator. This can happen in cases with incomplete sets of cross-type
|
|
* comparison operators.
|
|
*/
|
|
clause_op_infos = get_op_btree_interpretation(clause_op);
|
|
if (clause_op_infos)
|
|
pred_op_infos = get_op_btree_interpretation(pred_op);
|
|
else /* no point in looking */
|
|
pred_op_infos = NIL;
|
|
|
|
foreach(lcp, pred_op_infos)
|
|
{
|
|
OpBtreeInterpretation *pred_op_info = lfirst(lcp);
|
|
Oid opfamily_id = pred_op_info->opfamily_id;
|
|
|
|
foreach(lcc, clause_op_infos)
|
|
{
|
|
OpBtreeInterpretation *clause_op_info = lfirst(lcc);
|
|
StrategyNumber pred_strategy,
|
|
clause_strategy,
|
|
test_strategy;
|
|
|
|
/* Must find them in same opfamily */
|
|
if (opfamily_id != clause_op_info->opfamily_id)
|
|
continue;
|
|
/* Lefttypes should match */
|
|
Assert(clause_op_info->oplefttype == pred_op_info->oplefttype);
|
|
|
|
pred_strategy = pred_op_info->strategy;
|
|
clause_strategy = clause_op_info->strategy;
|
|
|
|
/*
|
|
* Check to see if we can make a proof for same-subexpressions
|
|
* cases based on the operators' relationship in this opfamily.
|
|
*/
|
|
if (refute_it)
|
|
same_subexprs |= BT_refutes_table[clause_strategy - 1][pred_strategy - 1];
|
|
else
|
|
same_subexprs |= BT_implies_table[clause_strategy - 1][pred_strategy - 1];
|
|
|
|
/*
|
|
* Look up the "test" strategy number in the implication table
|
|
*/
|
|
if (refute_it)
|
|
test_strategy = BT_refute_table[clause_strategy - 1][pred_strategy - 1];
|
|
else
|
|
test_strategy = BT_implic_table[clause_strategy - 1][pred_strategy - 1];
|
|
|
|
if (test_strategy == 0)
|
|
{
|
|
/* Can't determine implication using this interpretation */
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* See if opfamily has an operator for the test strategy and the
|
|
* datatypes.
|
|
*/
|
|
if (test_strategy == BTNE)
|
|
{
|
|
test_op = get_opfamily_member(opfamily_id,
|
|
pred_op_info->oprighttype,
|
|
clause_op_info->oprighttype,
|
|
BTEqualStrategyNumber);
|
|
if (OidIsValid(test_op))
|
|
test_op = get_negator(test_op);
|
|
}
|
|
else
|
|
{
|
|
test_op = get_opfamily_member(opfamily_id,
|
|
pred_op_info->oprighttype,
|
|
clause_op_info->oprighttype,
|
|
test_strategy);
|
|
}
|
|
|
|
if (!OidIsValid(test_op))
|
|
continue;
|
|
|
|
/*
|
|
* Last check: test_op must be immutable.
|
|
*
|
|
* Note that we require only the test_op to be immutable, not the
|
|
* original clause_op. (pred_op is assumed to have been checked
|
|
* immutable by the caller.) Essentially we are assuming that the
|
|
* opfamily is consistent even if it contains operators that are
|
|
* merely stable.
|
|
*/
|
|
if (op_volatile(test_op) == PROVOLATILE_IMMUTABLE)
|
|
{
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (found)
|
|
break;
|
|
}
|
|
|
|
list_free_deep(pred_op_infos);
|
|
list_free_deep(clause_op_infos);
|
|
|
|
if (!found)
|
|
{
|
|
/* couldn't find a suitable comparison operator */
|
|
test_op = InvalidOid;
|
|
}
|
|
|
|
/*
|
|
* If we think we were able to prove something about same-subexpressions
|
|
* cases, check to make sure the clause_op is immutable before believing
|
|
* it completely. (Usually, the clause_op would be immutable if the
|
|
* pred_op is, but it's not entirely clear that this must be true in all
|
|
* cases, so let's check.)
|
|
*/
|
|
if (same_subexprs &&
|
|
op_volatile(clause_op) != PROVOLATILE_IMMUTABLE)
|
|
same_subexprs = false;
|
|
|
|
/* Cache the results, whether positive or negative */
|
|
if (refute_it)
|
|
{
|
|
cache_entry->refute_test_op = test_op;
|
|
cache_entry->same_subexprs_refutes = same_subexprs;
|
|
cache_entry->have_refute = true;
|
|
}
|
|
else
|
|
{
|
|
cache_entry->implic_test_op = test_op;
|
|
cache_entry->same_subexprs_implies = same_subexprs;
|
|
cache_entry->have_implic = true;
|
|
}
|
|
|
|
return cache_entry;
|
|
}
|
|
|
|
/*
|
|
* operator_same_subexprs_lookup
|
|
* Convenience subroutine to look up the cached answer for
|
|
* same-subexpressions cases.
|
|
*/
|
|
static bool
|
|
operator_same_subexprs_lookup(Oid pred_op, Oid clause_op, bool refute_it)
|
|
{
|
|
OprProofCacheEntry *cache_entry;
|
|
|
|
cache_entry = lookup_proof_cache(pred_op, clause_op, refute_it);
|
|
if (refute_it)
|
|
return cache_entry->same_subexprs_refutes;
|
|
else
|
|
return cache_entry->same_subexprs_implies;
|
|
}
|
|
|
|
/*
|
|
* get_btree_test_op
|
|
* Identify the comparison operator needed for a btree-operator
|
|
* proof or refutation involving comparison of constants.
|
|
*
|
|
* Given the truth of a clause "var clause_op const1", we are attempting to
|
|
* prove or refute a predicate "var pred_op const2". The identities of the
|
|
* two operators are sufficient to determine the operator (if any) to compare
|
|
* const2 to const1 with.
|
|
*
|
|
* Returns the OID of the operator to use, or InvalidOid if no proof is
|
|
* possible.
|
|
*/
|
|
static Oid
|
|
get_btree_test_op(Oid pred_op, Oid clause_op, bool refute_it)
|
|
{
|
|
OprProofCacheEntry *cache_entry;
|
|
|
|
cache_entry = lookup_proof_cache(pred_op, clause_op, refute_it);
|
|
if (refute_it)
|
|
return cache_entry->refute_test_op;
|
|
else
|
|
return cache_entry->implic_test_op;
|
|
}
|
|
|
|
|
|
/*
|
|
* Callback for pg_amop inval events
|
|
*/
|
|
static void
|
|
InvalidateOprProofCacheCallBack(Datum arg, int cacheid, uint32 hashvalue)
|
|
{
|
|
HASH_SEQ_STATUS status;
|
|
OprProofCacheEntry *hentry;
|
|
|
|
Assert(OprProofCacheHash != NULL);
|
|
|
|
/* Currently we just reset all entries; hard to be smarter ... */
|
|
hash_seq_init(&status, OprProofCacheHash);
|
|
|
|
while ((hentry = (OprProofCacheEntry *) hash_seq_search(&status)) != NULL)
|
|
{
|
|
hentry->have_implic = false;
|
|
hentry->have_refute = false;
|
|
}
|
|
}
|