1
0
mirror of https://github.com/postgres/postgres.git synced 2025-11-12 05:01:15 +03:00
Files
postgres/src/backend/access/nbtree/nbtree.c
Tom Lane 5374d097de Change planner to use the current true disk file size as its estimate of
a relation's number of blocks, rather than the possibly-obsolete value
in pg_class.relpages.  Scale the value in pg_class.reltuples correspondingly
to arrive at a hopefully more accurate number of rows.  When pg_class
contains 0/0, estimate a tuple width from the column datatypes and divide
that into current file size to estimate number of rows.  This improved
methodology allows us to jettison the ancient hacks that put bogus default
values into pg_class when a table is first created.  Also, per a suggestion
from Simon, make VACUUM (but not VACUUM FULL or ANALYZE) adjust the value
it puts into pg_class.reltuples to try to represent the mean tuple density
instead of the minimal density that actually prevails just after VACUUM.
These changes alter the plans selected for certain regression tests, so
update the expected files accordingly.  (I removed join_1.out because
it's not clear if it still applies; we can add back any variant versions
as they are shown to be needed.)
2004-12-01 19:00:56 +00:00

919 lines
24 KiB
C

/*-------------------------------------------------------------------------
*
* nbtree.c
* Implementation of Lehman and Yao's btree management algorithm for
* Postgres.
*
* NOTES
* This file contains only the public interface routines.
*
*
* Portions Copyright (c) 1996-2004, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* $PostgreSQL: pgsql/src/backend/access/nbtree/nbtree.c,v 1.123 2004/12/01 19:00:37 tgl Exp $
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/genam.h"
#include "access/heapam.h"
#include "access/nbtree.h"
#include "catalog/index.h"
#include "commands/vacuum.h"
#include "miscadmin.h"
#include "storage/freespace.h"
#include "storage/smgr.h"
/* Working state for btbuild and its callback */
typedef struct
{
bool usefast;
bool isUnique;
bool haveDead;
Relation heapRel;
BTSpool *spool;
/*
* spool2 is needed only when the index is an unique index. Dead
* tuples are put into spool2 instead of spool in order to avoid
* uniqueness check.
*/
BTSpool *spool2;
double indtuples;
} BTBuildState;
bool FastBuild = true; /* use SORT instead of insertion build */
static void _bt_restscan(IndexScanDesc scan);
static void btbuildCallback(Relation index,
HeapTuple htup,
Datum *attdata,
char *nulls,
bool tupleIsAlive,
void *state);
/*
* btbuild() -- build a new btree index.
*/
Datum
btbuild(PG_FUNCTION_ARGS)
{
Relation heap = (Relation) PG_GETARG_POINTER(0);
Relation index = (Relation) PG_GETARG_POINTER(1);
IndexInfo *indexInfo = (IndexInfo *) PG_GETARG_POINTER(2);
double reltuples;
BTBuildState buildstate;
/*
* bootstrap processing does something strange, so don't use
* sort/build for initial catalog indices. at some point i need to
* look harder at this. (there is some kind of incremental processing
* going on there.) -- pma 08/29/95
*/
buildstate.usefast = (FastBuild && IsNormalProcessingMode());
buildstate.isUnique = indexInfo->ii_Unique;
buildstate.haveDead = false;
buildstate.heapRel = heap;
buildstate.spool = NULL;
buildstate.spool2 = NULL;
buildstate.indtuples = 0;
#ifdef BTREE_BUILD_STATS
if (log_btree_build_stats)
ResetUsage();
#endif /* BTREE_BUILD_STATS */
/*
* We expect to be called exactly once for any index relation. If
* that's not the case, big trouble's what we have.
*/
if (RelationGetNumberOfBlocks(index) != 0)
elog(ERROR, "index \"%s\" already contains data",
RelationGetRelationName(index));
if (buildstate.usefast)
{
buildstate.spool = _bt_spoolinit(index, indexInfo->ii_Unique, false);
/*
* If building a unique index, put dead tuples in a second spool
* to keep them out of the uniqueness check.
*/
if (indexInfo->ii_Unique)
buildstate.spool2 = _bt_spoolinit(index, false, true);
}
else
{
/* if using slow build, initialize the btree index metadata page */
_bt_metapinit(index);
}
/* do the heap scan */
reltuples = IndexBuildHeapScan(heap, index, indexInfo,
btbuildCallback, (void *) &buildstate);
/* okay, all heap tuples are indexed */
if (buildstate.spool2 && !buildstate.haveDead)
{
/* spool2 turns out to be unnecessary */
_bt_spooldestroy(buildstate.spool2);
buildstate.spool2 = NULL;
}
/*
* if we are doing bottom-up btree build, finish the build by (1)
* completing the sort of the spool file, (2) inserting the sorted
* tuples into btree pages and (3) building the upper levels.
*/
if (buildstate.usefast)
{
_bt_leafbuild(buildstate.spool, buildstate.spool2);
_bt_spooldestroy(buildstate.spool);
if (buildstate.spool2)
_bt_spooldestroy(buildstate.spool2);
}
#ifdef BTREE_BUILD_STATS
if (log_btree_build_stats)
{
ShowUsage("BTREE BUILD STATS");
ResetUsage();
}
#endif /* BTREE_BUILD_STATS */
/*
* Since we just counted the tuples in the heap, we update its stats
* in pg_class to guarantee that the planner takes advantage of the
* index we just created. But, only update statistics during normal
* index definitions, not for indices on system catalogs created
* during bootstrap processing. We must close the relations before
* updating statistics to guarantee that the relcache entries are
* flushed when we increment the command counter in UpdateStats(). But
* we do not release any locks on the relations; those will be held
* until end of transaction.
*/
if (IsNormalProcessingMode())
{
Oid hrelid = RelationGetRelid(heap);
Oid irelid = RelationGetRelid(index);
heap_close(heap, NoLock);
index_close(index);
UpdateStats(hrelid, reltuples);
UpdateStats(irelid, buildstate.indtuples);
}
PG_RETURN_VOID();
}
/*
* Per-tuple callback from IndexBuildHeapScan
*/
static void
btbuildCallback(Relation index,
HeapTuple htup,
Datum *attdata,
char *nulls,
bool tupleIsAlive,
void *state)
{
BTBuildState *buildstate = (BTBuildState *) state;
IndexTuple itup;
BTItem btitem;
InsertIndexResult res;
/* form an index tuple and point it at the heap tuple */
itup = index_formtuple(RelationGetDescr(index), attdata, nulls);
itup->t_tid = htup->t_self;
btitem = _bt_formitem(itup);
/*
* if we are doing bottom-up btree build, we insert the index into a
* spool file for subsequent processing. otherwise, we insert into
* the btree.
*/
if (buildstate->usefast)
{
if (tupleIsAlive || buildstate->spool2 == NULL)
_bt_spool(btitem, buildstate->spool);
else
{
/* dead tuples are put into spool2 */
buildstate->haveDead = true;
_bt_spool(btitem, buildstate->spool2);
}
}
else
{
res = _bt_doinsert(index, btitem,
buildstate->isUnique, buildstate->heapRel);
if (res)
pfree(res);
}
buildstate->indtuples += 1;
pfree(btitem);
pfree(itup);
}
/*
* btinsert() -- insert an index tuple into a btree.
*
* Descend the tree recursively, find the appropriate location for our
* new tuple, put it there, set its unique OID as appropriate, and
* return an InsertIndexResult to the caller.
*/
Datum
btinsert(PG_FUNCTION_ARGS)
{
Relation rel = (Relation) PG_GETARG_POINTER(0);
Datum *datum = (Datum *) PG_GETARG_POINTER(1);
char *nulls = (char *) PG_GETARG_POINTER(2);
ItemPointer ht_ctid = (ItemPointer) PG_GETARG_POINTER(3);
Relation heapRel = (Relation) PG_GETARG_POINTER(4);
bool checkUnique = PG_GETARG_BOOL(5);
InsertIndexResult res;
BTItem btitem;
IndexTuple itup;
/* generate an index tuple */
itup = index_formtuple(RelationGetDescr(rel), datum, nulls);
itup->t_tid = *ht_ctid;
btitem = _bt_formitem(itup);
res = _bt_doinsert(rel, btitem, checkUnique, heapRel);
pfree(btitem);
pfree(itup);
PG_RETURN_POINTER(res);
}
/*
* btgettuple() -- Get the next tuple in the scan.
*/
Datum
btgettuple(PG_FUNCTION_ARGS)
{
IndexScanDesc scan = (IndexScanDesc) PG_GETARG_POINTER(0);
ScanDirection dir = (ScanDirection) PG_GETARG_INT32(1);
BTScanOpaque so = (BTScanOpaque) scan->opaque;
Page page;
OffsetNumber offnum;
bool res;
/*
* If we've already initialized this scan, we can just advance it in
* the appropriate direction. If we haven't done so yet, we call a
* routine to get the first item in the scan.
*/
if (ItemPointerIsValid(&(scan->currentItemData)))
{
/*
* Restore scan position using heap TID returned by previous call
* to btgettuple(). _bt_restscan() re-grabs the read lock on the
* buffer, too.
*/
_bt_restscan(scan);
/*
* Check to see if we should kill the previously-fetched tuple.
*/
if (scan->kill_prior_tuple)
{
/*
* Yes, so mark it by setting the LP_DELETE bit in the item
* flags.
*/
offnum = ItemPointerGetOffsetNumber(&(scan->currentItemData));
page = BufferGetPage(so->btso_curbuf);
PageGetItemId(page, offnum)->lp_flags |= LP_DELETE;
/*
* Since this can be redone later if needed, it's treated the
* same as a commit-hint-bit status update for heap tuples: we
* mark the buffer dirty but don't make a WAL log entry.
*/
SetBufferCommitInfoNeedsSave(so->btso_curbuf);
}
/*
* Now continue the scan.
*/
res = _bt_next(scan, dir);
}
else
res = _bt_first(scan, dir);
/*
* Skip killed tuples if asked to.
*/
if (scan->ignore_killed_tuples)
{
while (res)
{
offnum = ItemPointerGetOffsetNumber(&(scan->currentItemData));
page = BufferGetPage(so->btso_curbuf);
if (!ItemIdDeleted(PageGetItemId(page, offnum)))
break;
res = _bt_next(scan, dir);
}
}
/*
* Save heap TID to use it in _bt_restscan. Then release the read
* lock on the buffer so that we aren't blocking other backends.
*
* NOTE: we do keep the pin on the buffer! This is essential to ensure
* that someone else doesn't delete the index entry we are stopped on.
*/
if (res)
{
((BTScanOpaque) scan->opaque)->curHeapIptr = scan->xs_ctup.t_self;
LockBuffer(((BTScanOpaque) scan->opaque)->btso_curbuf,
BUFFER_LOCK_UNLOCK);
}
PG_RETURN_BOOL(res);
}
/*
* btbeginscan() -- start a scan on a btree index
*/
Datum
btbeginscan(PG_FUNCTION_ARGS)
{
Relation rel = (Relation) PG_GETARG_POINTER(0);
int keysz = PG_GETARG_INT32(1);
ScanKey scankey = (ScanKey) PG_GETARG_POINTER(2);
IndexScanDesc scan;
/* get the scan */
scan = RelationGetIndexScan(rel, keysz, scankey);
PG_RETURN_POINTER(scan);
}
/*
* btrescan() -- rescan an index relation
*/
Datum
btrescan(PG_FUNCTION_ARGS)
{
IndexScanDesc scan = (IndexScanDesc) PG_GETARG_POINTER(0);
ScanKey scankey = (ScanKey) PG_GETARG_POINTER(1);
ItemPointer iptr;
BTScanOpaque so;
so = (BTScanOpaque) scan->opaque;
if (so == NULL) /* if called from btbeginscan */
{
so = (BTScanOpaque) palloc(sizeof(BTScanOpaqueData));
so->btso_curbuf = so->btso_mrkbuf = InvalidBuffer;
ItemPointerSetInvalid(&(so->curHeapIptr));
ItemPointerSetInvalid(&(so->mrkHeapIptr));
if (scan->numberOfKeys > 0)
so->keyData = (ScanKey) palloc(scan->numberOfKeys * sizeof(ScanKeyData));
else
so->keyData = NULL;
scan->opaque = so;
}
/* we aren't holding any read locks, but gotta drop the pins */
if (ItemPointerIsValid(iptr = &(scan->currentItemData)))
{
ReleaseBuffer(so->btso_curbuf);
so->btso_curbuf = InvalidBuffer;
ItemPointerSetInvalid(&(so->curHeapIptr));
ItemPointerSetInvalid(iptr);
}
if (ItemPointerIsValid(iptr = &(scan->currentMarkData)))
{
ReleaseBuffer(so->btso_mrkbuf);
so->btso_mrkbuf = InvalidBuffer;
ItemPointerSetInvalid(&(so->mrkHeapIptr));
ItemPointerSetInvalid(iptr);
}
/*
* Reset the scan keys. Note that keys ordering stuff moved to
* _bt_first. - vadim 05/05/97
*/
if (scankey && scan->numberOfKeys > 0)
memmove(scan->keyData,
scankey,
scan->numberOfKeys * sizeof(ScanKeyData));
so->numberOfKeys = 0; /* until _bt_preprocess_keys sets it */
PG_RETURN_VOID();
}
/*
* btendscan() -- close down a scan
*/
Datum
btendscan(PG_FUNCTION_ARGS)
{
IndexScanDesc scan = (IndexScanDesc) PG_GETARG_POINTER(0);
ItemPointer iptr;
BTScanOpaque so;
so = (BTScanOpaque) scan->opaque;
/* we aren't holding any read locks, but gotta drop the pins */
if (ItemPointerIsValid(iptr = &(scan->currentItemData)))
{
if (BufferIsValid(so->btso_curbuf))
ReleaseBuffer(so->btso_curbuf);
so->btso_curbuf = InvalidBuffer;
ItemPointerSetInvalid(iptr);
}
if (ItemPointerIsValid(iptr = &(scan->currentMarkData)))
{
if (BufferIsValid(so->btso_mrkbuf))
ReleaseBuffer(so->btso_mrkbuf);
so->btso_mrkbuf = InvalidBuffer;
ItemPointerSetInvalid(iptr);
}
if (so->keyData != NULL)
pfree(so->keyData);
pfree(so);
PG_RETURN_VOID();
}
/*
* btmarkpos() -- save current scan position
*/
Datum
btmarkpos(PG_FUNCTION_ARGS)
{
IndexScanDesc scan = (IndexScanDesc) PG_GETARG_POINTER(0);
ItemPointer iptr;
BTScanOpaque so;
so = (BTScanOpaque) scan->opaque;
/* we aren't holding any read locks, but gotta drop the pin */
if (ItemPointerIsValid(iptr = &(scan->currentMarkData)))
{
ReleaseBuffer(so->btso_mrkbuf);
so->btso_mrkbuf = InvalidBuffer;
ItemPointerSetInvalid(iptr);
}
/* bump pin on current buffer for assignment to mark buffer */
if (ItemPointerIsValid(&(scan->currentItemData)))
{
IncrBufferRefCount(so->btso_curbuf);
so->btso_mrkbuf = so->btso_curbuf;
scan->currentMarkData = scan->currentItemData;
so->mrkHeapIptr = so->curHeapIptr;
}
PG_RETURN_VOID();
}
/*
* btrestrpos() -- restore scan to last saved position
*/
Datum
btrestrpos(PG_FUNCTION_ARGS)
{
IndexScanDesc scan = (IndexScanDesc) PG_GETARG_POINTER(0);
ItemPointer iptr;
BTScanOpaque so;
so = (BTScanOpaque) scan->opaque;
/* we aren't holding any read locks, but gotta drop the pin */
if (ItemPointerIsValid(iptr = &(scan->currentItemData)))
{
ReleaseBuffer(so->btso_curbuf);
so->btso_curbuf = InvalidBuffer;
ItemPointerSetInvalid(iptr);
}
/* bump pin on marked buffer */
if (ItemPointerIsValid(&(scan->currentMarkData)))
{
IncrBufferRefCount(so->btso_mrkbuf);
so->btso_curbuf = so->btso_mrkbuf;
scan->currentItemData = scan->currentMarkData;
so->curHeapIptr = so->mrkHeapIptr;
}
PG_RETURN_VOID();
}
/*
* Bulk deletion of all index entries pointing to a set of heap tuples.
* The set of target tuples is specified via a callback routine that tells
* whether any given heap tuple (identified by ItemPointer) is being deleted.
*
* Result: a palloc'd struct containing statistical info for VACUUM displays.
*/
Datum
btbulkdelete(PG_FUNCTION_ARGS)
{
Relation rel = (Relation) PG_GETARG_POINTER(0);
IndexBulkDeleteCallback callback = (IndexBulkDeleteCallback) PG_GETARG_POINTER(1);
void *callback_state = (void *) PG_GETARG_POINTER(2);
IndexBulkDeleteResult *result;
double tuples_removed;
double num_index_tuples;
OffsetNumber deletable[BLCKSZ / sizeof(OffsetNumber)];
int ndeletable;
Buffer buf;
BlockNumber num_pages;
tuples_removed = 0;
num_index_tuples = 0;
/*
* The outer loop iterates over index leaf pages, the inner over items
* on a leaf page. We issue just one _bt_delitems() call per page, so
* as to minimize WAL traffic.
*
* Note that we exclusive-lock every leaf page containing data items, in
* sequence left to right. It sounds attractive to only
* exclusive-lock those containing items we need to delete, but
* unfortunately that is not safe: we could then pass a stopped
* indexscan, which could in rare cases lead to deleting the item it
* needs to find when it resumes. (See _bt_restscan --- this could
* only happen if an indexscan stops on a deletable item and then a
* page split moves that item into a page further to its right, which
* the indexscan will have no pin on.) We can skip obtaining
* exclusive lock on empty pages though, since no indexscan could be
* stopped on those.
*/
buf = _bt_get_endpoint(rel, 0, false);
if (BufferIsValid(buf)) /* check for empty index */
{
for (;;)
{
Page page;
BTPageOpaque opaque;
OffsetNumber offnum,
minoff,
maxoff;
BlockNumber nextpage;
vacuum_delay_point();
ndeletable = 0;
page = BufferGetPage(buf);
opaque = (BTPageOpaque) PageGetSpecialPointer(page);
minoff = P_FIRSTDATAKEY(opaque);
maxoff = PageGetMaxOffsetNumber(page);
/* We probably cannot see deleted pages, but skip 'em if so */
if (minoff <= maxoff && !P_ISDELETED(opaque))
{
/*
* Trade in the initial read lock for a super-exclusive
* write lock on this page.
*/
LockBuffer(buf, BUFFER_LOCK_UNLOCK);
LockBufferForCleanup(buf);
/*
* Recompute minoff/maxoff, both of which could have
* changed while we weren't holding the lock.
*/
minoff = P_FIRSTDATAKEY(opaque);
maxoff = PageGetMaxOffsetNumber(page);
/*
* Scan over all items to see which ones need deleted
* according to the callback function.
*/
for (offnum = minoff;
offnum <= maxoff;
offnum = OffsetNumberNext(offnum))
{
BTItem btitem;
ItemPointer htup;
btitem = (BTItem) PageGetItem(page,
PageGetItemId(page, offnum));
htup = &(btitem->bti_itup.t_tid);
if (callback(htup, callback_state))
{
deletable[ndeletable++] = offnum;
tuples_removed += 1;
}
else
num_index_tuples += 1;
}
}
/*
* If we need to delete anything, do it and write the buffer;
* else just release the buffer.
*/
nextpage = opaque->btpo_next;
if (ndeletable > 0)
{
_bt_delitems(rel, buf, deletable, ndeletable);
_bt_wrtbuf(rel, buf);
}
else
_bt_relbuf(rel, buf);
/* And advance to next page, if any */
if (nextpage == P_NONE)
break;
buf = _bt_getbuf(rel, nextpage, BT_READ);
}
}
/* return statistics */
num_pages = RelationGetNumberOfBlocks(rel);
result = (IndexBulkDeleteResult *) palloc0(sizeof(IndexBulkDeleteResult));
result->num_pages = num_pages;
result->num_index_tuples = num_index_tuples;
result->tuples_removed = tuples_removed;
PG_RETURN_POINTER(result);
}
/*
* Post-VACUUM cleanup.
*
* Here, we scan looking for pages we can delete or return to the freelist.
*
* Result: a palloc'd struct containing statistical info for VACUUM displays.
*/
Datum
btvacuumcleanup(PG_FUNCTION_ARGS)
{
Relation rel = (Relation) PG_GETARG_POINTER(0);
IndexVacuumCleanupInfo *info = (IndexVacuumCleanupInfo *) PG_GETARG_POINTER(1);
IndexBulkDeleteResult *stats = (IndexBulkDeleteResult *) PG_GETARG_POINTER(2);
BlockNumber num_pages;
BlockNumber blkno;
BlockNumber *freePages;
int nFreePages,
maxFreePages;
BlockNumber pages_deleted = 0;
MemoryContext mycontext;
MemoryContext oldcontext;
Assert(stats != NULL);
num_pages = RelationGetNumberOfBlocks(rel);
/* No point in remembering more than MaxFSMPages pages */
maxFreePages = MaxFSMPages;
if ((BlockNumber) maxFreePages > num_pages)
maxFreePages = (int) num_pages;
freePages = (BlockNumber *) palloc(maxFreePages * sizeof(BlockNumber));
nFreePages = 0;
/* Create a temporary memory context to run _bt_pagedel in */
mycontext = AllocSetContextCreate(CurrentMemoryContext,
"_bt_pagedel",
ALLOCSET_DEFAULT_MINSIZE,
ALLOCSET_DEFAULT_INITSIZE,
ALLOCSET_DEFAULT_MAXSIZE);
/*
* Scan through all pages of index, except metapage. (Any pages added
* after we start the scan will not be examined; this should be fine,
* since they can't possibly be empty.)
*/
for (blkno = BTREE_METAPAGE + 1; blkno < num_pages; blkno++)
{
Buffer buf;
Page page;
BTPageOpaque opaque;
buf = _bt_getbuf(rel, blkno, BT_READ);
page = BufferGetPage(buf);
opaque = (BTPageOpaque) PageGetSpecialPointer(page);
if (_bt_page_recyclable(page))
{
/* Okay to recycle this page */
if (nFreePages < maxFreePages)
freePages[nFreePages++] = blkno;
pages_deleted++;
}
else if (P_ISDELETED(opaque))
{
/* Already deleted, but can't recycle yet */
pages_deleted++;
}
else if ((opaque->btpo_flags & BTP_HALF_DEAD) ||
P_FIRSTDATAKEY(opaque) > PageGetMaxOffsetNumber(page))
{
/* Empty, try to delete */
int ndel;
/* Run pagedel in a temp context to avoid memory leakage */
MemoryContextReset(mycontext);
oldcontext = MemoryContextSwitchTo(mycontext);
ndel = _bt_pagedel(rel, buf, info->vacuum_full);
/* count only this page, else may double-count parent */
if (ndel)
pages_deleted++;
/*
* During VACUUM FULL it's okay to recycle deleted pages
* immediately, since there can be no other transactions
* scanning the index. Note that we will only recycle the
* current page and not any parent pages that _bt_pagedel
* might have recursed to; this seems reasonable in the name
* of simplicity. (Trying to do otherwise would mean we'd
* have to sort the list of recyclable pages we're building.)
*/
if (ndel && info->vacuum_full)
{
if (nFreePages < maxFreePages)
freePages[nFreePages++] = blkno;
}
MemoryContextSwitchTo(oldcontext);
continue; /* pagedel released buffer */
}
_bt_relbuf(rel, buf);
}
/*
* During VACUUM FULL, we truncate off any recyclable pages at the end
* of the index. In a normal vacuum it'd be unsafe to do this except
* by acquiring exclusive lock on the index and then rechecking all
* the pages; doesn't seem worth it.
*/
if (info->vacuum_full && nFreePages > 0)
{
BlockNumber new_pages = num_pages;
while (nFreePages > 0 && freePages[nFreePages - 1] == new_pages - 1)
{
new_pages--;
pages_deleted--;
nFreePages--;
}
if (new_pages != num_pages)
{
/*
* Okay to truncate.
*
* First, flush any shared buffers for the blocks we intend to
* delete. FlushRelationBuffers is a bit more than we need
* for this, since it will also write out dirty buffers for
* blocks we aren't deleting, but it's the closest thing in
* bufmgr's API.
*/
FlushRelationBuffers(rel, new_pages);
/*
* Do the physical truncation.
*/
RelationTruncate(rel, new_pages);
/* update statistics */
stats->pages_removed = num_pages - new_pages;
num_pages = new_pages;
}
}
/*
* Update the shared Free Space Map with the info we now have about
* free pages in the index, discarding any old info the map may have.
* We do not need to sort the page numbers; they're in order already.
*/
RecordIndexFreeSpace(&rel->rd_node, nFreePages, freePages);
pfree(freePages);
MemoryContextDelete(mycontext);
/* update statistics */
stats->num_pages = num_pages;
stats->pages_deleted = pages_deleted;
stats->pages_free = nFreePages;
PG_RETURN_POINTER(stats);
}
/*
* Restore scan position when btgettuple is called to continue a scan.
*
* This is nontrivial because concurrent insertions might have moved the
* index tuple we stopped on. We assume the tuple can only have moved to
* the right from our stop point, because we kept a pin on the buffer,
* and so no deletion can have occurred on that page.
*
* On entry, we have a pin but no read lock on the buffer that contained
* the index tuple we stopped the scan on. On exit, we have pin and read
* lock on the buffer that now contains that index tuple, and the scandesc's
* current position is updated to point at it.
*/
static void
_bt_restscan(IndexScanDesc scan)
{
Relation rel = scan->indexRelation;
BTScanOpaque so = (BTScanOpaque) scan->opaque;
Buffer buf = so->btso_curbuf;
Page page;
ItemPointer current = &(scan->currentItemData);
OffsetNumber offnum = ItemPointerGetOffsetNumber(current),
maxoff;
BTPageOpaque opaque;
Buffer nextbuf;
ItemPointer target = &(so->curHeapIptr);
BTItem item;
BlockNumber blkno;
/*
* Reacquire read lock on the buffer. (We should still have a
* reference-count pin on it, so need not get that.)
*/
LockBuffer(buf, BT_READ);
page = BufferGetPage(buf);
maxoff = PageGetMaxOffsetNumber(page);
opaque = (BTPageOpaque) PageGetSpecialPointer(page);
/*
* We use this as flag when first index tuple on page is deleted but
* we do not move left (this would slowdown vacuum) - so we set
* current->ip_posid before first index tuple on the current page
* (_bt_step will move it right)... XXX still needed?
*/
if (!ItemPointerIsValid(target))
{
ItemPointerSetOffsetNumber(current,
OffsetNumberPrev(P_FIRSTDATAKEY(opaque)));
return;
}
/*
* The item we were on may have moved right due to insertions. Find it
* again. We use the heap TID to identify the item uniquely.
*/
for (;;)
{
/* Check for item on this page */
for (;
offnum <= maxoff;
offnum = OffsetNumberNext(offnum))
{
item = (BTItem) PageGetItem(page, PageGetItemId(page, offnum));
if (BTTidSame(item->bti_itup.t_tid, *target))
{
/* Found it */
current->ip_posid = offnum;
return;
}
}
/*
* The item we're looking for moved right at least one page, so
* move right. We are careful here to pin and read-lock the next
* non-dead page before releasing the current one. This ensures
* that a concurrent btbulkdelete scan cannot pass our position
* --- if it did, it might be able to reach and delete our target
* item before we can find it again.
*/
if (P_RIGHTMOST(opaque))
elog(ERROR, "failed to re-find previous key in \"%s\"",
RelationGetRelationName(rel));
/* Advance to next non-dead page --- there must be one */
nextbuf = InvalidBuffer;
for (;;)
{
blkno = opaque->btpo_next;
nextbuf = _bt_relandgetbuf(rel, nextbuf, blkno, BT_READ);
page = BufferGetPage(nextbuf);
opaque = (BTPageOpaque) PageGetSpecialPointer(page);
if (!P_IGNORE(opaque))
break;
if (P_RIGHTMOST(opaque))
elog(ERROR, "fell off the end of \"%s\"",
RelationGetRelationName(rel));
}
_bt_relbuf(rel, buf);
so->btso_curbuf = buf = nextbuf;
maxoff = PageGetMaxOffsetNumber(page);
offnum = P_FIRSTDATAKEY(opaque);
ItemPointerSet(current, blkno, offnum);
}
}