mirror of
				https://github.com/postgres/postgres.git
				synced 2025-11-03 09:13:20 +03:00 
			
		
		
		
	This makes almost all core code follow the policy introduced in the previous commit. Specific decisions: - Text search support functions with char* and length arguments, such as prsstart and lexize, may receive unaligned strings. I doubt maintainers of non-core text search code will notice. - Use plain VARDATA() on values detoasted or synthesized earlier in the same function. Use VARDATA_ANY() on varlenas sourced outside the function, even if they happen to always have four-byte headers. As an exception, retain the universal practice of using VARDATA() on return values of SendFunctionCall(). - Retain PG_GETARG_BYTEA_P() in pageinspect. (Page images are too large for a one-byte header, so this misses no optimization.) Sites that do not call get_page_from_raw() typically need the four-byte alignment. - For now, do not change btree_gist. Its use of four-byte headers in memory is partly entangled with storage of 4-byte headers inside GBT_VARKEY, on disk. - For now, do not change gtrgm_consistent() or gtrgm_distance(). They incorporate the varlena header into a cache, and there are multiple credible implementation strategies to consider.
		
			
				
	
	
		
			1174 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1174 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * contrib/pg_trgm/trgm_op.c
 | 
						|
 */
 | 
						|
#include "postgres.h"
 | 
						|
 | 
						|
#include <ctype.h>
 | 
						|
 | 
						|
#include "trgm.h"
 | 
						|
 | 
						|
#include "catalog/pg_type.h"
 | 
						|
#include "tsearch/ts_locale.h"
 | 
						|
#include "utils/lsyscache.h"
 | 
						|
#include "utils/memutils.h"
 | 
						|
#include "utils/pg_crc.h"
 | 
						|
 | 
						|
PG_MODULE_MAGIC;
 | 
						|
 | 
						|
/* GUC variables */
 | 
						|
double		similarity_threshold = 0.3f;
 | 
						|
double		word_similarity_threshold = 0.6f;
 | 
						|
 | 
						|
void		_PG_init(void);
 | 
						|
 | 
						|
PG_FUNCTION_INFO_V1(set_limit);
 | 
						|
PG_FUNCTION_INFO_V1(show_limit);
 | 
						|
PG_FUNCTION_INFO_V1(show_trgm);
 | 
						|
PG_FUNCTION_INFO_V1(similarity);
 | 
						|
PG_FUNCTION_INFO_V1(word_similarity);
 | 
						|
PG_FUNCTION_INFO_V1(similarity_dist);
 | 
						|
PG_FUNCTION_INFO_V1(similarity_op);
 | 
						|
PG_FUNCTION_INFO_V1(word_similarity_op);
 | 
						|
PG_FUNCTION_INFO_V1(word_similarity_commutator_op);
 | 
						|
PG_FUNCTION_INFO_V1(word_similarity_dist_op);
 | 
						|
PG_FUNCTION_INFO_V1(word_similarity_dist_commutator_op);
 | 
						|
 | 
						|
/* Trigram with position */
 | 
						|
typedef struct
 | 
						|
{
 | 
						|
	trgm		trg;
 | 
						|
	int			index;
 | 
						|
} pos_trgm;
 | 
						|
 | 
						|
/*
 | 
						|
 * Module load callback
 | 
						|
 */
 | 
						|
void
 | 
						|
_PG_init(void)
 | 
						|
{
 | 
						|
	/* Define custom GUC variables. */
 | 
						|
	DefineCustomRealVariable("pg_trgm.similarity_threshold",
 | 
						|
							 "Sets the threshold used by the %% operator.",
 | 
						|
							 "Valid range is 0.0 .. 1.0.",
 | 
						|
							 &similarity_threshold,
 | 
						|
							 0.3,
 | 
						|
							 0.0,
 | 
						|
							 1.0,
 | 
						|
							 PGC_USERSET,
 | 
						|
							 0,
 | 
						|
							 NULL,
 | 
						|
							 NULL,
 | 
						|
							 NULL);
 | 
						|
	DefineCustomRealVariable("pg_trgm.word_similarity_threshold",
 | 
						|
							 "Sets the threshold used by the <%% operator.",
 | 
						|
							 "Valid range is 0.0 .. 1.0.",
 | 
						|
							 &word_similarity_threshold,
 | 
						|
							 0.6,
 | 
						|
							 0.0,
 | 
						|
							 1.0,
 | 
						|
							 PGC_USERSET,
 | 
						|
							 0,
 | 
						|
							 NULL,
 | 
						|
							 NULL,
 | 
						|
							 NULL);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Deprecated function.
 | 
						|
 * Use "pg_trgm.similarity_threshold" GUC variable instead of this function.
 | 
						|
 */
 | 
						|
Datum
 | 
						|
set_limit(PG_FUNCTION_ARGS)
 | 
						|
{
 | 
						|
	float4		nlimit = PG_GETARG_FLOAT4(0);
 | 
						|
	char	   *nlimit_str;
 | 
						|
	Oid			func_out_oid;
 | 
						|
	bool		is_varlena;
 | 
						|
 | 
						|
	getTypeOutputInfo(FLOAT4OID, &func_out_oid, &is_varlena);
 | 
						|
 | 
						|
	nlimit_str = OidOutputFunctionCall(func_out_oid, Float4GetDatum(nlimit));
 | 
						|
 | 
						|
	SetConfigOption("pg_trgm.similarity_threshold", nlimit_str,
 | 
						|
					PGC_USERSET, PGC_S_SESSION);
 | 
						|
 | 
						|
	PG_RETURN_FLOAT4(similarity_threshold);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Deprecated function.
 | 
						|
 * Use "pg_trgm.similarity_threshold" GUC variable instead of this function.
 | 
						|
 */
 | 
						|
Datum
 | 
						|
show_limit(PG_FUNCTION_ARGS)
 | 
						|
{
 | 
						|
	PG_RETURN_FLOAT4(similarity_threshold);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
comp_trgm(const void *a, const void *b)
 | 
						|
{
 | 
						|
	return CMPTRGM(a, b);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
unique_array(trgm *a, int len)
 | 
						|
{
 | 
						|
	trgm	   *curend,
 | 
						|
			   *tmp;
 | 
						|
 | 
						|
	curend = tmp = a;
 | 
						|
	while (tmp - a < len)
 | 
						|
		if (CMPTRGM(tmp, curend))
 | 
						|
		{
 | 
						|
			curend++;
 | 
						|
			CPTRGM(curend, tmp);
 | 
						|
			tmp++;
 | 
						|
		}
 | 
						|
		else
 | 
						|
			tmp++;
 | 
						|
 | 
						|
	return curend + 1 - a;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Finds first word in string, returns pointer to the word,
 | 
						|
 * endword points to the character after word
 | 
						|
 */
 | 
						|
static char *
 | 
						|
find_word(char *str, int lenstr, char **endword, int *charlen)
 | 
						|
{
 | 
						|
	char	   *beginword = str;
 | 
						|
 | 
						|
	while (beginword - str < lenstr && !ISWORDCHR(beginword))
 | 
						|
		beginword += pg_mblen(beginword);
 | 
						|
 | 
						|
	if (beginword - str >= lenstr)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	*endword = beginword;
 | 
						|
	*charlen = 0;
 | 
						|
	while (*endword - str < lenstr && ISWORDCHR(*endword))
 | 
						|
	{
 | 
						|
		*endword += pg_mblen(*endword);
 | 
						|
		(*charlen)++;
 | 
						|
	}
 | 
						|
 | 
						|
	return beginword;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Reduce a trigram (three possibly multi-byte characters) to a trgm,
 | 
						|
 * which is always exactly three bytes.  If we have three single-byte
 | 
						|
 * characters, we just use them as-is; otherwise we form a hash value.
 | 
						|
 */
 | 
						|
void
 | 
						|
compact_trigram(trgm *tptr, char *str, int bytelen)
 | 
						|
{
 | 
						|
	if (bytelen == 3)
 | 
						|
	{
 | 
						|
		CPTRGM(tptr, str);
 | 
						|
	}
 | 
						|
	else
 | 
						|
	{
 | 
						|
		pg_crc32	crc;
 | 
						|
 | 
						|
		INIT_LEGACY_CRC32(crc);
 | 
						|
		COMP_LEGACY_CRC32(crc, str, bytelen);
 | 
						|
		FIN_LEGACY_CRC32(crc);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * use only 3 upper bytes from crc, hope, it's good enough hashing
 | 
						|
		 */
 | 
						|
		CPTRGM(tptr, &crc);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Adds trigrams from words (already padded).
 | 
						|
 */
 | 
						|
static trgm *
 | 
						|
make_trigrams(trgm *tptr, char *str, int bytelen, int charlen)
 | 
						|
{
 | 
						|
	char	   *ptr = str;
 | 
						|
 | 
						|
	if (charlen < 3)
 | 
						|
		return tptr;
 | 
						|
 | 
						|
	if (bytelen > charlen)
 | 
						|
	{
 | 
						|
		/* Find multibyte character boundaries and apply compact_trigram */
 | 
						|
		int			lenfirst = pg_mblen(str),
 | 
						|
					lenmiddle = pg_mblen(str + lenfirst),
 | 
						|
					lenlast = pg_mblen(str + lenfirst + lenmiddle);
 | 
						|
 | 
						|
		while ((ptr - str) + lenfirst + lenmiddle + lenlast <= bytelen)
 | 
						|
		{
 | 
						|
			compact_trigram(tptr, ptr, lenfirst + lenmiddle + lenlast);
 | 
						|
 | 
						|
			ptr += lenfirst;
 | 
						|
			tptr++;
 | 
						|
 | 
						|
			lenfirst = lenmiddle;
 | 
						|
			lenmiddle = lenlast;
 | 
						|
			lenlast = pg_mblen(ptr + lenfirst + lenmiddle);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else
 | 
						|
	{
 | 
						|
		/* Fast path when there are no multibyte characters */
 | 
						|
		Assert(bytelen == charlen);
 | 
						|
 | 
						|
		while (ptr - str < bytelen - 2 /* number of trigrams = strlen - 2 */ )
 | 
						|
		{
 | 
						|
			CPTRGM(tptr, ptr);
 | 
						|
			ptr++;
 | 
						|
			tptr++;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return tptr;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Make array of trigrams without sorting and removing duplicate items.
 | 
						|
 *
 | 
						|
 * trg: where to return the array of trigrams.
 | 
						|
 * str: source string, of length slen bytes.
 | 
						|
 *
 | 
						|
 * Returns length of the generated array.
 | 
						|
 */
 | 
						|
static int
 | 
						|
generate_trgm_only(trgm *trg, char *str, int slen)
 | 
						|
{
 | 
						|
	trgm	   *tptr;
 | 
						|
	char	   *buf;
 | 
						|
	int			charlen,
 | 
						|
				bytelen;
 | 
						|
	char	   *bword,
 | 
						|
			   *eword;
 | 
						|
 | 
						|
	if (slen + LPADDING + RPADDING < 3 || slen == 0)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	tptr = trg;
 | 
						|
 | 
						|
	/* Allocate a buffer for case-folded, blank-padded words */
 | 
						|
	buf = (char *) palloc(slen * pg_database_encoding_max_length() + 4);
 | 
						|
 | 
						|
	if (LPADDING > 0)
 | 
						|
	{
 | 
						|
		*buf = ' ';
 | 
						|
		if (LPADDING > 1)
 | 
						|
			*(buf + 1) = ' ';
 | 
						|
	}
 | 
						|
 | 
						|
	eword = str;
 | 
						|
	while ((bword = find_word(eword, slen - (eword - str), &eword, &charlen)) != NULL)
 | 
						|
	{
 | 
						|
#ifdef IGNORECASE
 | 
						|
		bword = lowerstr_with_len(bword, eword - bword);
 | 
						|
		bytelen = strlen(bword);
 | 
						|
#else
 | 
						|
		bytelen = eword - bword;
 | 
						|
#endif
 | 
						|
 | 
						|
		memcpy(buf + LPADDING, bword, bytelen);
 | 
						|
 | 
						|
#ifdef IGNORECASE
 | 
						|
		pfree(bword);
 | 
						|
#endif
 | 
						|
 | 
						|
		buf[LPADDING + bytelen] = ' ';
 | 
						|
		buf[LPADDING + bytelen + 1] = ' ';
 | 
						|
 | 
						|
		/*
 | 
						|
		 * count trigrams
 | 
						|
		 */
 | 
						|
		tptr = make_trigrams(tptr, buf, bytelen + LPADDING + RPADDING,
 | 
						|
							 charlen + LPADDING + RPADDING);
 | 
						|
	}
 | 
						|
 | 
						|
	pfree(buf);
 | 
						|
 | 
						|
	return tptr - trg;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Guard against possible overflow in the palloc requests below.  (We
 | 
						|
 * don't worry about the additive constants, since palloc can detect
 | 
						|
 * requests that are a little above MaxAllocSize --- we just need to
 | 
						|
 * prevent integer overflow in the multiplications.)
 | 
						|
 */
 | 
						|
static void
 | 
						|
protect_out_of_mem(int slen)
 | 
						|
{
 | 
						|
	if ((Size) (slen / 2) >= (MaxAllocSize / (sizeof(trgm) * 3)) ||
 | 
						|
		(Size) slen >= (MaxAllocSize / pg_database_encoding_max_length()))
 | 
						|
		ereport(ERROR,
 | 
						|
				(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
 | 
						|
				 errmsg("out of memory")));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Make array of trigrams with sorting and removing duplicate items.
 | 
						|
 *
 | 
						|
 * str: source string, of length slen bytes.
 | 
						|
 *
 | 
						|
 * Returns the sorted array of unique trigrams.
 | 
						|
 */
 | 
						|
TRGM *
 | 
						|
generate_trgm(char *str, int slen)
 | 
						|
{
 | 
						|
	TRGM	   *trg;
 | 
						|
	int			len;
 | 
						|
 | 
						|
	protect_out_of_mem(slen);
 | 
						|
 | 
						|
	trg = (TRGM *) palloc(TRGMHDRSIZE + sizeof(trgm) * (slen / 2 + 1) *3);
 | 
						|
	trg->flag = ARRKEY;
 | 
						|
 | 
						|
	len = generate_trgm_only(GETARR(trg), str, slen);
 | 
						|
	SET_VARSIZE(trg, CALCGTSIZE(ARRKEY, len));
 | 
						|
 | 
						|
	if (len == 0)
 | 
						|
		return trg;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Make trigrams unique.
 | 
						|
	 */
 | 
						|
	if (len > 1)
 | 
						|
	{
 | 
						|
		qsort((void *) GETARR(trg), len, sizeof(trgm), comp_trgm);
 | 
						|
		len = unique_array(GETARR(trg), len);
 | 
						|
	}
 | 
						|
 | 
						|
	SET_VARSIZE(trg, CALCGTSIZE(ARRKEY, len));
 | 
						|
 | 
						|
	return trg;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Make array of positional trigrams from two trigram arrays trg1 and trg2.
 | 
						|
 *
 | 
						|
 * trg1: trigram array of search pattern, of length len1. trg1 is required
 | 
						|
 *		 word which positions don't matter and replaced with -1.
 | 
						|
 * trg2: trigram array of text, of length len2. trg2 is haystack where we
 | 
						|
 *		 search and have to store its positions.
 | 
						|
 *
 | 
						|
 * Returns concatenated trigram array.
 | 
						|
 */
 | 
						|
static pos_trgm *
 | 
						|
make_positional_trgm(trgm *trg1, int len1, trgm *trg2, int len2)
 | 
						|
{
 | 
						|
	pos_trgm   *result;
 | 
						|
	int			i,
 | 
						|
				len = len1 + len2;
 | 
						|
 | 
						|
	result = (pos_trgm *) palloc(sizeof(pos_trgm) * len);
 | 
						|
 | 
						|
	for (i = 0; i < len1; i++)
 | 
						|
	{
 | 
						|
		memcpy(&result[i].trg, &trg1[i], sizeof(trgm));
 | 
						|
		result[i].index = -1;
 | 
						|
	}
 | 
						|
 | 
						|
	for (i = 0; i < len2; i++)
 | 
						|
	{
 | 
						|
		memcpy(&result[i + len1].trg, &trg2[i], sizeof(trgm));
 | 
						|
		result[i + len1].index = i;
 | 
						|
	}
 | 
						|
 | 
						|
	return result;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Compare position trigrams: compare trigrams first and position second.
 | 
						|
 */
 | 
						|
static int
 | 
						|
comp_ptrgm(const void *v1, const void *v2)
 | 
						|
{
 | 
						|
	const pos_trgm *p1 = (const pos_trgm *) v1;
 | 
						|
	const pos_trgm *p2 = (const pos_trgm *) v2;
 | 
						|
	int			cmp;
 | 
						|
 | 
						|
	cmp = CMPTRGM(p1->trg, p2->trg);
 | 
						|
	if (cmp != 0)
 | 
						|
		return cmp;
 | 
						|
 | 
						|
	if (p1->index < p2->index)
 | 
						|
		return -1;
 | 
						|
	else if (p1->index == p2->index)
 | 
						|
		return 0;
 | 
						|
	else
 | 
						|
		return 1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Iterative search function which calculates maximum similarity with word in
 | 
						|
 * the string. But maximum similarity is calculated only if check_only == false.
 | 
						|
 *
 | 
						|
 * trg2indexes: array which stores indexes of the array "found".
 | 
						|
 * found: array which stores true of false values.
 | 
						|
 * ulen1: count of unique trigrams of array "trg1".
 | 
						|
 * len2: length of array "trg2" and array "trg2indexes".
 | 
						|
 * len: length of the array "found".
 | 
						|
 * check_only: if true then only check existence of similar search pattern in
 | 
						|
 *			   text.
 | 
						|
 *
 | 
						|
 * Returns word similarity.
 | 
						|
 */
 | 
						|
static float4
 | 
						|
iterate_word_similarity(int *trg2indexes,
 | 
						|
						bool *found,
 | 
						|
						int ulen1,
 | 
						|
						int len2,
 | 
						|
						int len,
 | 
						|
						bool check_only)
 | 
						|
{
 | 
						|
	int		   *lastpos,
 | 
						|
				i,
 | 
						|
				ulen2 = 0,
 | 
						|
				count = 0,
 | 
						|
				upper = -1,
 | 
						|
				lower = -1;
 | 
						|
	float4		smlr_cur,
 | 
						|
				smlr_max = 0.0f;
 | 
						|
 | 
						|
	/* Memorise last position of each trigram */
 | 
						|
	lastpos = (int *) palloc(sizeof(int) * len);
 | 
						|
	memset(lastpos, -1, sizeof(int) * len);
 | 
						|
 | 
						|
	for (i = 0; i < len2; i++)
 | 
						|
	{
 | 
						|
		/* Get index of next trigram */
 | 
						|
		int			trgindex = trg2indexes[i];
 | 
						|
 | 
						|
		/* Update last position of this trigram */
 | 
						|
		if (lower >= 0 || found[trgindex])
 | 
						|
		{
 | 
						|
			if (lastpos[trgindex] < 0)
 | 
						|
			{
 | 
						|
				ulen2++;
 | 
						|
				if (found[trgindex])
 | 
						|
					count++;
 | 
						|
			}
 | 
						|
			lastpos[trgindex] = i;
 | 
						|
		}
 | 
						|
 | 
						|
		/* Adjust lower bound if this trigram is present in required substring */
 | 
						|
		if (found[trgindex])
 | 
						|
		{
 | 
						|
			int			prev_lower,
 | 
						|
						tmp_ulen2,
 | 
						|
						tmp_lower,
 | 
						|
						tmp_count;
 | 
						|
 | 
						|
			upper = i;
 | 
						|
			if (lower == -1)
 | 
						|
			{
 | 
						|
				lower = i;
 | 
						|
				ulen2 = 1;
 | 
						|
			}
 | 
						|
 | 
						|
			smlr_cur = CALCSML(count, ulen1, ulen2);
 | 
						|
 | 
						|
			/* Also try to adjust upper bound for greater similarity */
 | 
						|
			tmp_count = count;
 | 
						|
			tmp_ulen2 = ulen2;
 | 
						|
			prev_lower = lower;
 | 
						|
			for (tmp_lower = lower; tmp_lower <= upper; tmp_lower++)
 | 
						|
			{
 | 
						|
				float		smlr_tmp = CALCSML(tmp_count, ulen1, tmp_ulen2);
 | 
						|
				int			tmp_trgindex;
 | 
						|
 | 
						|
				if (smlr_tmp > smlr_cur)
 | 
						|
				{
 | 
						|
					smlr_cur = smlr_tmp;
 | 
						|
					ulen2 = tmp_ulen2;
 | 
						|
					lower = tmp_lower;
 | 
						|
					count = tmp_count;
 | 
						|
				}
 | 
						|
 | 
						|
				/*
 | 
						|
				 * if we only check that word similarity is greater than
 | 
						|
				 * pg_trgm.word_similarity_threshold we do not need to
 | 
						|
				 * calculate a maximum similarity.
 | 
						|
				 */
 | 
						|
				if (check_only && smlr_cur >= word_similarity_threshold)
 | 
						|
					break;
 | 
						|
 | 
						|
				tmp_trgindex = trg2indexes[tmp_lower];
 | 
						|
				if (lastpos[tmp_trgindex] == tmp_lower)
 | 
						|
				{
 | 
						|
					tmp_ulen2--;
 | 
						|
					if (found[tmp_trgindex])
 | 
						|
						tmp_count--;
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			smlr_max = Max(smlr_max, smlr_cur);
 | 
						|
 | 
						|
			/*
 | 
						|
			 * if we only check that word similarity is greater than
 | 
						|
			 * pg_trgm.word_similarity_threshold we do not need to calculate a
 | 
						|
			 * maximum similarity
 | 
						|
			 */
 | 
						|
			if (check_only && smlr_max >= word_similarity_threshold)
 | 
						|
				break;
 | 
						|
 | 
						|
			for (tmp_lower = prev_lower; tmp_lower < lower; tmp_lower++)
 | 
						|
			{
 | 
						|
				int			tmp_trgindex;
 | 
						|
 | 
						|
				tmp_trgindex = trg2indexes[tmp_lower];
 | 
						|
				if (lastpos[tmp_trgindex] == tmp_lower)
 | 
						|
					lastpos[tmp_trgindex] = -1;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	pfree(lastpos);
 | 
						|
 | 
						|
	return smlr_max;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Calculate word similarity.
 | 
						|
 * This function prepare two arrays: "trg2indexes" and "found". Then this arrays
 | 
						|
 * are used to calculate word similarity using iterate_word_similarity().
 | 
						|
 *
 | 
						|
 * "trg2indexes" is array which stores indexes of the array "found".
 | 
						|
 * In other words:
 | 
						|
 * trg2indexes[j] = i;
 | 
						|
 * found[i] = true (or false);
 | 
						|
 * If found[i] == true then there is trigram trg2[j] in array "trg1".
 | 
						|
 * If found[i] == false then there is not trigram trg2[j] in array "trg1".
 | 
						|
 *
 | 
						|
 * str1: search pattern string, of length slen1 bytes.
 | 
						|
 * str2: text in which we are looking for a word, of length slen2 bytes.
 | 
						|
 * check_only: if true then only check existence of similar search pattern in
 | 
						|
 *			   text.
 | 
						|
 *
 | 
						|
 * Returns word similarity.
 | 
						|
 */
 | 
						|
static float4
 | 
						|
calc_word_similarity(char *str1, int slen1, char *str2, int slen2,
 | 
						|
					 bool check_only)
 | 
						|
{
 | 
						|
	bool	   *found;
 | 
						|
	pos_trgm   *ptrg;
 | 
						|
	trgm	   *trg1;
 | 
						|
	trgm	   *trg2;
 | 
						|
	int			len1,
 | 
						|
				len2,
 | 
						|
				len,
 | 
						|
				i,
 | 
						|
				j,
 | 
						|
				ulen1;
 | 
						|
	int		   *trg2indexes;
 | 
						|
	float4		result;
 | 
						|
 | 
						|
	protect_out_of_mem(slen1 + slen2);
 | 
						|
 | 
						|
	/* Make positional trigrams */
 | 
						|
	trg1 = (trgm *) palloc(sizeof(trgm) * (slen1 / 2 + 1) *3);
 | 
						|
	trg2 = (trgm *) palloc(sizeof(trgm) * (slen2 / 2 + 1) *3);
 | 
						|
 | 
						|
	len1 = generate_trgm_only(trg1, str1, slen1);
 | 
						|
	len2 = generate_trgm_only(trg2, str2, slen2);
 | 
						|
 | 
						|
	ptrg = make_positional_trgm(trg1, len1, trg2, len2);
 | 
						|
	len = len1 + len2;
 | 
						|
	qsort(ptrg, len, sizeof(pos_trgm), comp_ptrgm);
 | 
						|
 | 
						|
	pfree(trg1);
 | 
						|
	pfree(trg2);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Merge positional trigrams array: enumerate each trigram and find its
 | 
						|
	 * presence in required word.
 | 
						|
	 */
 | 
						|
	trg2indexes = (int *) palloc(sizeof(int) * len2);
 | 
						|
	found = (bool *) palloc0(sizeof(bool) * len);
 | 
						|
 | 
						|
	ulen1 = 0;
 | 
						|
	j = 0;
 | 
						|
	for (i = 0; i < len; i++)
 | 
						|
	{
 | 
						|
		if (i > 0)
 | 
						|
		{
 | 
						|
			int			cmp = CMPTRGM(ptrg[i - 1].trg, ptrg[i].trg);
 | 
						|
 | 
						|
			if (cmp != 0)
 | 
						|
			{
 | 
						|
				if (found[j])
 | 
						|
					ulen1++;
 | 
						|
				j++;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		if (ptrg[i].index >= 0)
 | 
						|
		{
 | 
						|
			trg2indexes[ptrg[i].index] = j;
 | 
						|
		}
 | 
						|
		else
 | 
						|
		{
 | 
						|
			found[j] = true;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if (found[j])
 | 
						|
		ulen1++;
 | 
						|
 | 
						|
	/* Run iterative procedure to find maximum similarity with word */
 | 
						|
	result = iterate_word_similarity(trg2indexes, found, ulen1, len2, len,
 | 
						|
									 check_only);
 | 
						|
 | 
						|
	pfree(trg2indexes);
 | 
						|
	pfree(found);
 | 
						|
	pfree(ptrg);
 | 
						|
 | 
						|
	return result;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Extract the next non-wildcard part of a search string, i.e. a word bounded
 | 
						|
 * by '_' or '%' meta-characters, non-word characters or string end.
 | 
						|
 *
 | 
						|
 * str: source string, of length lenstr bytes (need not be null-terminated)
 | 
						|
 * buf: where to return the substring (must be long enough)
 | 
						|
 * *bytelen: receives byte length of the found substring
 | 
						|
 * *charlen: receives character length of the found substring
 | 
						|
 *
 | 
						|
 * Returns pointer to end+1 of the found substring in the source string.
 | 
						|
 * Returns NULL if no word found (in which case buf, bytelen, charlen not set)
 | 
						|
 *
 | 
						|
 * If the found word is bounded by non-word characters or string boundaries
 | 
						|
 * then this function will include corresponding padding spaces into buf.
 | 
						|
 */
 | 
						|
static const char *
 | 
						|
get_wildcard_part(const char *str, int lenstr,
 | 
						|
				  char *buf, int *bytelen, int *charlen)
 | 
						|
{
 | 
						|
	const char *beginword = str;
 | 
						|
	const char *endword;
 | 
						|
	char	   *s = buf;
 | 
						|
	bool		in_leading_wildcard_meta = false;
 | 
						|
	bool		in_trailing_wildcard_meta = false;
 | 
						|
	bool		in_escape = false;
 | 
						|
	int			clen;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Find the first word character, remembering whether preceding character
 | 
						|
	 * was wildcard meta-character.  Note that the in_escape state persists
 | 
						|
	 * from this loop to the next one, since we may exit at a word character
 | 
						|
	 * that is in_escape.
 | 
						|
	 */
 | 
						|
	while (beginword - str < lenstr)
 | 
						|
	{
 | 
						|
		if (in_escape)
 | 
						|
		{
 | 
						|
			if (ISWORDCHR(beginword))
 | 
						|
				break;
 | 
						|
			in_escape = false;
 | 
						|
			in_leading_wildcard_meta = false;
 | 
						|
		}
 | 
						|
		else
 | 
						|
		{
 | 
						|
			if (ISESCAPECHAR(beginword))
 | 
						|
				in_escape = true;
 | 
						|
			else if (ISWILDCARDCHAR(beginword))
 | 
						|
				in_leading_wildcard_meta = true;
 | 
						|
			else if (ISWORDCHR(beginword))
 | 
						|
				break;
 | 
						|
			else
 | 
						|
				in_leading_wildcard_meta = false;
 | 
						|
		}
 | 
						|
		beginword += pg_mblen(beginword);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Handle string end.
 | 
						|
	 */
 | 
						|
	if (beginword - str >= lenstr)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Add left padding spaces if preceding character wasn't wildcard
 | 
						|
	 * meta-character.
 | 
						|
	 */
 | 
						|
	*charlen = 0;
 | 
						|
	if (!in_leading_wildcard_meta)
 | 
						|
	{
 | 
						|
		if (LPADDING > 0)
 | 
						|
		{
 | 
						|
			*s++ = ' ';
 | 
						|
			(*charlen)++;
 | 
						|
			if (LPADDING > 1)
 | 
						|
			{
 | 
						|
				*s++ = ' ';
 | 
						|
				(*charlen)++;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Copy data into buf until wildcard meta-character, non-word character or
 | 
						|
	 * string boundary.  Strip escapes during copy.
 | 
						|
	 */
 | 
						|
	endword = beginword;
 | 
						|
	while (endword - str < lenstr)
 | 
						|
	{
 | 
						|
		clen = pg_mblen(endword);
 | 
						|
		if (in_escape)
 | 
						|
		{
 | 
						|
			if (ISWORDCHR(endword))
 | 
						|
			{
 | 
						|
				memcpy(s, endword, clen);
 | 
						|
				(*charlen)++;
 | 
						|
				s += clen;
 | 
						|
			}
 | 
						|
			else
 | 
						|
			{
 | 
						|
				/*
 | 
						|
				 * Back up endword to the escape character when stopping at an
 | 
						|
				 * escaped char, so that subsequent get_wildcard_part will
 | 
						|
				 * restart from the escape character.  We assume here that
 | 
						|
				 * escape chars are single-byte.
 | 
						|
				 */
 | 
						|
				endword--;
 | 
						|
				break;
 | 
						|
			}
 | 
						|
			in_escape = false;
 | 
						|
		}
 | 
						|
		else
 | 
						|
		{
 | 
						|
			if (ISESCAPECHAR(endword))
 | 
						|
				in_escape = true;
 | 
						|
			else if (ISWILDCARDCHAR(endword))
 | 
						|
			{
 | 
						|
				in_trailing_wildcard_meta = true;
 | 
						|
				break;
 | 
						|
			}
 | 
						|
			else if (ISWORDCHR(endword))
 | 
						|
			{
 | 
						|
				memcpy(s, endword, clen);
 | 
						|
				(*charlen)++;
 | 
						|
				s += clen;
 | 
						|
			}
 | 
						|
			else
 | 
						|
				break;
 | 
						|
		}
 | 
						|
		endword += clen;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Add right padding spaces if next character isn't wildcard
 | 
						|
	 * meta-character.
 | 
						|
	 */
 | 
						|
	if (!in_trailing_wildcard_meta)
 | 
						|
	{
 | 
						|
		if (RPADDING > 0)
 | 
						|
		{
 | 
						|
			*s++ = ' ';
 | 
						|
			(*charlen)++;
 | 
						|
			if (RPADDING > 1)
 | 
						|
			{
 | 
						|
				*s++ = ' ';
 | 
						|
				(*charlen)++;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	*bytelen = s - buf;
 | 
						|
	return endword;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Generates trigrams for wildcard search string.
 | 
						|
 *
 | 
						|
 * Returns array of trigrams that must occur in any string that matches the
 | 
						|
 * wildcard string.  For example, given pattern "a%bcd%" the trigrams
 | 
						|
 * " a", "bcd" would be extracted.
 | 
						|
 */
 | 
						|
TRGM *
 | 
						|
generate_wildcard_trgm(const char *str, int slen)
 | 
						|
{
 | 
						|
	TRGM	   *trg;
 | 
						|
	char	   *buf,
 | 
						|
			   *buf2;
 | 
						|
	trgm	   *tptr;
 | 
						|
	int			len,
 | 
						|
				charlen,
 | 
						|
				bytelen;
 | 
						|
	const char *eword;
 | 
						|
 | 
						|
	protect_out_of_mem(slen);
 | 
						|
 | 
						|
	trg = (TRGM *) palloc(TRGMHDRSIZE + sizeof(trgm) * (slen / 2 + 1) *3);
 | 
						|
	trg->flag = ARRKEY;
 | 
						|
	SET_VARSIZE(trg, TRGMHDRSIZE);
 | 
						|
 | 
						|
	if (slen + LPADDING + RPADDING < 3 || slen == 0)
 | 
						|
		return trg;
 | 
						|
 | 
						|
	tptr = GETARR(trg);
 | 
						|
 | 
						|
	/* Allocate a buffer for blank-padded, but not yet case-folded, words */
 | 
						|
	buf = palloc(sizeof(char) * (slen + 4));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Extract trigrams from each substring extracted by get_wildcard_part.
 | 
						|
	 */
 | 
						|
	eword = str;
 | 
						|
	while ((eword = get_wildcard_part(eword, slen - (eword - str),
 | 
						|
									  buf, &bytelen, &charlen)) != NULL)
 | 
						|
	{
 | 
						|
#ifdef IGNORECASE
 | 
						|
		buf2 = lowerstr_with_len(buf, bytelen);
 | 
						|
		bytelen = strlen(buf2);
 | 
						|
#else
 | 
						|
		buf2 = buf;
 | 
						|
#endif
 | 
						|
 | 
						|
		/*
 | 
						|
		 * count trigrams
 | 
						|
		 */
 | 
						|
		tptr = make_trigrams(tptr, buf2, bytelen, charlen);
 | 
						|
 | 
						|
#ifdef IGNORECASE
 | 
						|
		pfree(buf2);
 | 
						|
#endif
 | 
						|
	}
 | 
						|
 | 
						|
	pfree(buf);
 | 
						|
 | 
						|
	if ((len = tptr - GETARR(trg)) == 0)
 | 
						|
		return trg;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Make trigrams unique.
 | 
						|
	 */
 | 
						|
	if (len > 1)
 | 
						|
	{
 | 
						|
		qsort((void *) GETARR(trg), len, sizeof(trgm), comp_trgm);
 | 
						|
		len = unique_array(GETARR(trg), len);
 | 
						|
	}
 | 
						|
 | 
						|
	SET_VARSIZE(trg, CALCGTSIZE(ARRKEY, len));
 | 
						|
 | 
						|
	return trg;
 | 
						|
}
 | 
						|
 | 
						|
uint32
 | 
						|
trgm2int(trgm *ptr)
 | 
						|
{
 | 
						|
	uint32		val = 0;
 | 
						|
 | 
						|
	val |= *(((unsigned char *) ptr));
 | 
						|
	val <<= 8;
 | 
						|
	val |= *(((unsigned char *) ptr) + 1);
 | 
						|
	val <<= 8;
 | 
						|
	val |= *(((unsigned char *) ptr) + 2);
 | 
						|
 | 
						|
	return val;
 | 
						|
}
 | 
						|
 | 
						|
Datum
 | 
						|
show_trgm(PG_FUNCTION_ARGS)
 | 
						|
{
 | 
						|
	text	   *in = PG_GETARG_TEXT_PP(0);
 | 
						|
	TRGM	   *trg;
 | 
						|
	Datum	   *d;
 | 
						|
	ArrayType  *a;
 | 
						|
	trgm	   *ptr;
 | 
						|
	int			i;
 | 
						|
 | 
						|
	trg = generate_trgm(VARDATA_ANY(in), VARSIZE_ANY_EXHDR(in));
 | 
						|
	d = (Datum *) palloc(sizeof(Datum) * (1 + ARRNELEM(trg)));
 | 
						|
 | 
						|
	for (i = 0, ptr = GETARR(trg); i < ARRNELEM(trg); i++, ptr++)
 | 
						|
	{
 | 
						|
		text	   *item = (text *) palloc(VARHDRSZ + Max(12, pg_database_encoding_max_length() * 3));
 | 
						|
 | 
						|
		if (pg_database_encoding_max_length() > 1 && !ISPRINTABLETRGM(ptr))
 | 
						|
		{
 | 
						|
			snprintf(VARDATA(item), 12, "0x%06x", trgm2int(ptr));
 | 
						|
			SET_VARSIZE(item, VARHDRSZ + strlen(VARDATA(item)));
 | 
						|
		}
 | 
						|
		else
 | 
						|
		{
 | 
						|
			SET_VARSIZE(item, VARHDRSZ + 3);
 | 
						|
			CPTRGM(VARDATA(item), ptr);
 | 
						|
		}
 | 
						|
		d[i] = PointerGetDatum(item);
 | 
						|
	}
 | 
						|
 | 
						|
	a = construct_array(
 | 
						|
						d,
 | 
						|
						ARRNELEM(trg),
 | 
						|
						TEXTOID,
 | 
						|
						-1,
 | 
						|
						false,
 | 
						|
						'i'
 | 
						|
		);
 | 
						|
 | 
						|
	for (i = 0; i < ARRNELEM(trg); i++)
 | 
						|
		pfree(DatumGetPointer(d[i]));
 | 
						|
 | 
						|
	pfree(d);
 | 
						|
	pfree(trg);
 | 
						|
	PG_FREE_IF_COPY(in, 0);
 | 
						|
 | 
						|
	PG_RETURN_POINTER(a);
 | 
						|
}
 | 
						|
 | 
						|
float4
 | 
						|
cnt_sml(TRGM *trg1, TRGM *trg2, bool inexact)
 | 
						|
{
 | 
						|
	trgm	   *ptr1,
 | 
						|
			   *ptr2;
 | 
						|
	int			count = 0;
 | 
						|
	int			len1,
 | 
						|
				len2;
 | 
						|
 | 
						|
	ptr1 = GETARR(trg1);
 | 
						|
	ptr2 = GETARR(trg2);
 | 
						|
 | 
						|
	len1 = ARRNELEM(trg1);
 | 
						|
	len2 = ARRNELEM(trg2);
 | 
						|
 | 
						|
	/* explicit test is needed to avoid 0/0 division when both lengths are 0 */
 | 
						|
	if (len1 <= 0 || len2 <= 0)
 | 
						|
		return (float4) 0.0;
 | 
						|
 | 
						|
	while (ptr1 - GETARR(trg1) < len1 && ptr2 - GETARR(trg2) < len2)
 | 
						|
	{
 | 
						|
		int			res = CMPTRGM(ptr1, ptr2);
 | 
						|
 | 
						|
		if (res < 0)
 | 
						|
			ptr1++;
 | 
						|
		else if (res > 0)
 | 
						|
			ptr2++;
 | 
						|
		else
 | 
						|
		{
 | 
						|
			ptr1++;
 | 
						|
			ptr2++;
 | 
						|
			count++;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If inexact then len2 is equal to count, because we don't know actual
 | 
						|
	 * length of second string in inexact search and we can assume that count
 | 
						|
	 * is a lower bound of len2.
 | 
						|
	 */
 | 
						|
	return CALCSML(count, len1, inexact ? count : len2);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Returns whether trg2 contains all trigrams in trg1.
 | 
						|
 * This relies on the trigram arrays being sorted.
 | 
						|
 */
 | 
						|
bool
 | 
						|
trgm_contained_by(TRGM *trg1, TRGM *trg2)
 | 
						|
{
 | 
						|
	trgm	   *ptr1,
 | 
						|
			   *ptr2;
 | 
						|
	int			len1,
 | 
						|
				len2;
 | 
						|
 | 
						|
	ptr1 = GETARR(trg1);
 | 
						|
	ptr2 = GETARR(trg2);
 | 
						|
 | 
						|
	len1 = ARRNELEM(trg1);
 | 
						|
	len2 = ARRNELEM(trg2);
 | 
						|
 | 
						|
	while (ptr1 - GETARR(trg1) < len1 && ptr2 - GETARR(trg2) < len2)
 | 
						|
	{
 | 
						|
		int			res = CMPTRGM(ptr1, ptr2);
 | 
						|
 | 
						|
		if (res < 0)
 | 
						|
			return false;
 | 
						|
		else if (res > 0)
 | 
						|
			ptr2++;
 | 
						|
		else
 | 
						|
		{
 | 
						|
			ptr1++;
 | 
						|
			ptr2++;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if (ptr1 - GETARR(trg1) < len1)
 | 
						|
		return false;
 | 
						|
	else
 | 
						|
		return true;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Return a palloc'd boolean array showing, for each trigram in "query",
 | 
						|
 * whether it is present in the trigram array "key".
 | 
						|
 * This relies on the "key" array being sorted, but "query" need not be.
 | 
						|
 */
 | 
						|
bool *
 | 
						|
trgm_presence_map(TRGM *query, TRGM *key)
 | 
						|
{
 | 
						|
	bool	   *result;
 | 
						|
	trgm	   *ptrq = GETARR(query),
 | 
						|
			   *ptrk = GETARR(key);
 | 
						|
	int			lenq = ARRNELEM(query),
 | 
						|
				lenk = ARRNELEM(key),
 | 
						|
				i;
 | 
						|
 | 
						|
	result = (bool *) palloc0(lenq * sizeof(bool));
 | 
						|
 | 
						|
	/* for each query trigram, do a binary search in the key array */
 | 
						|
	for (i = 0; i < lenq; i++)
 | 
						|
	{
 | 
						|
		int			lo = 0;
 | 
						|
		int			hi = lenk;
 | 
						|
 | 
						|
		while (lo < hi)
 | 
						|
		{
 | 
						|
			int			mid = (lo + hi) / 2;
 | 
						|
			int			res = CMPTRGM(ptrq, ptrk + mid);
 | 
						|
 | 
						|
			if (res < 0)
 | 
						|
				hi = mid;
 | 
						|
			else if (res > 0)
 | 
						|
				lo = mid + 1;
 | 
						|
			else
 | 
						|
			{
 | 
						|
				result[i] = true;
 | 
						|
				break;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		ptrq++;
 | 
						|
	}
 | 
						|
 | 
						|
	return result;
 | 
						|
}
 | 
						|
 | 
						|
Datum
 | 
						|
similarity(PG_FUNCTION_ARGS)
 | 
						|
{
 | 
						|
	text	   *in1 = PG_GETARG_TEXT_PP(0);
 | 
						|
	text	   *in2 = PG_GETARG_TEXT_PP(1);
 | 
						|
	TRGM	   *trg1,
 | 
						|
			   *trg2;
 | 
						|
	float4		res;
 | 
						|
 | 
						|
	trg1 = generate_trgm(VARDATA_ANY(in1), VARSIZE_ANY_EXHDR(in1));
 | 
						|
	trg2 = generate_trgm(VARDATA_ANY(in2), VARSIZE_ANY_EXHDR(in2));
 | 
						|
 | 
						|
	res = cnt_sml(trg1, trg2, false);
 | 
						|
 | 
						|
	pfree(trg1);
 | 
						|
	pfree(trg2);
 | 
						|
	PG_FREE_IF_COPY(in1, 0);
 | 
						|
	PG_FREE_IF_COPY(in2, 1);
 | 
						|
 | 
						|
	PG_RETURN_FLOAT4(res);
 | 
						|
}
 | 
						|
 | 
						|
Datum
 | 
						|
word_similarity(PG_FUNCTION_ARGS)
 | 
						|
{
 | 
						|
	text	   *in1 = PG_GETARG_TEXT_PP(0);
 | 
						|
	text	   *in2 = PG_GETARG_TEXT_PP(1);
 | 
						|
	float4		res;
 | 
						|
 | 
						|
	res = calc_word_similarity(VARDATA_ANY(in1), VARSIZE_ANY_EXHDR(in1),
 | 
						|
							   VARDATA_ANY(in2), VARSIZE_ANY_EXHDR(in2),
 | 
						|
							   false);
 | 
						|
 | 
						|
	PG_FREE_IF_COPY(in1, 0);
 | 
						|
	PG_FREE_IF_COPY(in2, 1);
 | 
						|
	PG_RETURN_FLOAT4(res);
 | 
						|
}
 | 
						|
 | 
						|
Datum
 | 
						|
similarity_dist(PG_FUNCTION_ARGS)
 | 
						|
{
 | 
						|
	float4		res = DatumGetFloat4(DirectFunctionCall2(similarity,
 | 
						|
														 PG_GETARG_DATUM(0),
 | 
						|
														 PG_GETARG_DATUM(1)));
 | 
						|
 | 
						|
	PG_RETURN_FLOAT4(1.0 - res);
 | 
						|
}
 | 
						|
 | 
						|
Datum
 | 
						|
similarity_op(PG_FUNCTION_ARGS)
 | 
						|
{
 | 
						|
	float4		res = DatumGetFloat4(DirectFunctionCall2(similarity,
 | 
						|
														 PG_GETARG_DATUM(0),
 | 
						|
														 PG_GETARG_DATUM(1)));
 | 
						|
 | 
						|
	PG_RETURN_BOOL(res >= similarity_threshold);
 | 
						|
}
 | 
						|
 | 
						|
Datum
 | 
						|
word_similarity_op(PG_FUNCTION_ARGS)
 | 
						|
{
 | 
						|
	text	   *in1 = PG_GETARG_TEXT_PP(0);
 | 
						|
	text	   *in2 = PG_GETARG_TEXT_PP(1);
 | 
						|
	float4		res;
 | 
						|
 | 
						|
	res = calc_word_similarity(VARDATA_ANY(in1), VARSIZE_ANY_EXHDR(in1),
 | 
						|
							   VARDATA_ANY(in2), VARSIZE_ANY_EXHDR(in2),
 | 
						|
							   true);
 | 
						|
 | 
						|
	PG_FREE_IF_COPY(in1, 0);
 | 
						|
	PG_FREE_IF_COPY(in2, 1);
 | 
						|
	PG_RETURN_BOOL(res >= word_similarity_threshold);
 | 
						|
}
 | 
						|
 | 
						|
Datum
 | 
						|
word_similarity_commutator_op(PG_FUNCTION_ARGS)
 | 
						|
{
 | 
						|
	text	   *in1 = PG_GETARG_TEXT_PP(0);
 | 
						|
	text	   *in2 = PG_GETARG_TEXT_PP(1);
 | 
						|
	float4		res;
 | 
						|
 | 
						|
	res = calc_word_similarity(VARDATA_ANY(in2), VARSIZE_ANY_EXHDR(in2),
 | 
						|
							   VARDATA_ANY(in1), VARSIZE_ANY_EXHDR(in1),
 | 
						|
							   true);
 | 
						|
 | 
						|
	PG_FREE_IF_COPY(in1, 0);
 | 
						|
	PG_FREE_IF_COPY(in2, 1);
 | 
						|
	PG_RETURN_BOOL(res >= word_similarity_threshold);
 | 
						|
}
 | 
						|
 | 
						|
Datum
 | 
						|
word_similarity_dist_op(PG_FUNCTION_ARGS)
 | 
						|
{
 | 
						|
	text	   *in1 = PG_GETARG_TEXT_PP(0);
 | 
						|
	text	   *in2 = PG_GETARG_TEXT_PP(1);
 | 
						|
	float4		res;
 | 
						|
 | 
						|
	res = calc_word_similarity(VARDATA_ANY(in1), VARSIZE_ANY_EXHDR(in1),
 | 
						|
							   VARDATA_ANY(in2), VARSIZE_ANY_EXHDR(in2),
 | 
						|
							   false);
 | 
						|
 | 
						|
	PG_FREE_IF_COPY(in1, 0);
 | 
						|
	PG_FREE_IF_COPY(in2, 1);
 | 
						|
	PG_RETURN_FLOAT4(1.0 - res);
 | 
						|
}
 | 
						|
 | 
						|
Datum
 | 
						|
word_similarity_dist_commutator_op(PG_FUNCTION_ARGS)
 | 
						|
{
 | 
						|
	text	   *in1 = PG_GETARG_TEXT_PP(0);
 | 
						|
	text	   *in2 = PG_GETARG_TEXT_PP(1);
 | 
						|
	float4		res;
 | 
						|
 | 
						|
	res = calc_word_similarity(VARDATA_ANY(in2), VARSIZE_ANY_EXHDR(in2),
 | 
						|
							   VARDATA_ANY(in1), VARSIZE_ANY_EXHDR(in1),
 | 
						|
							   false);
 | 
						|
 | 
						|
	PG_FREE_IF_COPY(in1, 0);
 | 
						|
	PG_FREE_IF_COPY(in2, 1);
 | 
						|
	PG_RETURN_FLOAT4(1.0 - res);
 | 
						|
}
 |