1
0
mirror of https://github.com/postgres/postgres.git synced 2025-04-21 12:05:57 +03:00
postgres/src/backend/executor/nodeGatherMerge.c
Tom Lane 04e9678614 Code review for nodeGatherMerge.c.
Comment the fields of GatherMergeState, and organize them a bit more
sensibly.  Comment GMReaderTupleBuffer more usefully too.  Improve
assorted other comments that were obsolete or just not very good English.

Get rid of the use of a GMReaderTupleBuffer for the leader process;
that was confusing, since only the "done" field was used, and that
in a way redundant with need_to_scan_locally.

In gather_merge_init, avoid calling load_tuple_array for
already-known-exhausted workers.  I'm not sure if there's a live bug there,
but the case is unlikely to be well tested due to timing considerations.

Remove some useless code, such as duplicating the tts_isempty test done by
TupIsNull.

Remove useless initialization of ps.qual, replacing that with an assertion
that we have no qual to check.  (If we did, the code would fail to check
it.)

Avoid applying heap_copytuple to a null tuple.  While that fails to crash,
it's confusing and it makes the code less legible not more so IMO.

Propagate a couple of these changes into nodeGather.c, as well.

Back-patch to v10, partly because of the possibility that the
gather_merge_init change is fixing a live bug, but mostly to keep
the branches in sync to ease future bug fixes.
2017-08-30 17:21:08 -04:00

730 lines
20 KiB
C

/*-------------------------------------------------------------------------
*
* nodeGatherMerge.c
* Scan a plan in multiple workers, and do order-preserving merge.
*
* Portions Copyright (c) 1996-2017, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* src/backend/executor/nodeGatherMerge.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/relscan.h"
#include "access/xact.h"
#include "executor/execdebug.h"
#include "executor/execParallel.h"
#include "executor/nodeGatherMerge.h"
#include "executor/nodeSubplan.h"
#include "executor/tqueue.h"
#include "lib/binaryheap.h"
#include "miscadmin.h"
#include "utils/memutils.h"
#include "utils/rel.h"
/*
* When we read tuples from workers, it's a good idea to read several at once
* for efficiency when possible: this minimizes context-switching overhead.
* But reading too many at a time wastes memory without improving performance.
* We'll read up to MAX_TUPLE_STORE tuples (in addition to the first one).
*/
#define MAX_TUPLE_STORE 10
/*
* Pending-tuple array for each worker. This holds additional tuples that
* we were able to fetch from the worker, but can't process yet. In addition,
* this struct holds the "done" flag indicating the worker is known to have
* no more tuples. (We do not use this struct for the leader; we don't keep
* any pending tuples for the leader, and the need_to_scan_locally flag serves
* as its "done" indicator.)
*/
typedef struct GMReaderTupleBuffer
{
HeapTuple *tuple; /* array of length MAX_TUPLE_STORE */
int nTuples; /* number of tuples currently stored */
int readCounter; /* index of next tuple to extract */
bool done; /* true if reader is known exhausted */
} GMReaderTupleBuffer;
static TupleTableSlot *ExecGatherMerge(PlanState *pstate);
static int32 heap_compare_slots(Datum a, Datum b, void *arg);
static TupleTableSlot *gather_merge_getnext(GatherMergeState *gm_state);
static HeapTuple gm_readnext_tuple(GatherMergeState *gm_state, int nreader,
bool nowait, bool *done);
static void gather_merge_init(GatherMergeState *gm_state);
static void ExecShutdownGatherMergeWorkers(GatherMergeState *node);
static bool gather_merge_readnext(GatherMergeState *gm_state, int reader,
bool nowait);
static void load_tuple_array(GatherMergeState *gm_state, int reader);
/* ----------------------------------------------------------------
* ExecInitGather
* ----------------------------------------------------------------
*/
GatherMergeState *
ExecInitGatherMerge(GatherMerge *node, EState *estate, int eflags)
{
GatherMergeState *gm_state;
Plan *outerNode;
bool hasoid;
TupleDesc tupDesc;
/* Gather merge node doesn't have innerPlan node. */
Assert(innerPlan(node) == NULL);
/*
* create state structure
*/
gm_state = makeNode(GatherMergeState);
gm_state->ps.plan = (Plan *) node;
gm_state->ps.state = estate;
gm_state->ps.ExecProcNode = ExecGatherMerge;
gm_state->initialized = false;
gm_state->gm_initialized = false;
gm_state->tuples_needed = -1;
/*
* Miscellaneous initialization
*
* create expression context for node
*/
ExecAssignExprContext(estate, &gm_state->ps);
/*
* GatherMerge doesn't support checking a qual (it's always more efficient
* to do it in the child node).
*/
Assert(!node->plan.qual);
/*
* tuple table initialization
*/
ExecInitResultTupleSlot(estate, &gm_state->ps);
/*
* now initialize outer plan
*/
outerNode = outerPlan(node);
outerPlanState(gm_state) = ExecInitNode(outerNode, estate, eflags);
/*
* Initialize result tuple type and projection info.
*/
ExecAssignResultTypeFromTL(&gm_state->ps);
ExecAssignProjectionInfo(&gm_state->ps, NULL);
/*
* initialize sort-key information
*/
if (node->numCols)
{
int i;
gm_state->gm_nkeys = node->numCols;
gm_state->gm_sortkeys =
palloc0(sizeof(SortSupportData) * node->numCols);
for (i = 0; i < node->numCols; i++)
{
SortSupport sortKey = gm_state->gm_sortkeys + i;
sortKey->ssup_cxt = CurrentMemoryContext;
sortKey->ssup_collation = node->collations[i];
sortKey->ssup_nulls_first = node->nullsFirst[i];
sortKey->ssup_attno = node->sortColIdx[i];
/*
* We don't perform abbreviated key conversion here, for the same
* reasons that it isn't used in MergeAppend
*/
sortKey->abbreviate = false;
PrepareSortSupportFromOrderingOp(node->sortOperators[i], sortKey);
}
}
/*
* store the tuple descriptor into gather merge state, so we can use it
* later while initializing the gather merge slots.
*/
if (!ExecContextForcesOids(&gm_state->ps, &hasoid))
hasoid = false;
tupDesc = ExecTypeFromTL(outerNode->targetlist, hasoid);
gm_state->tupDesc = tupDesc;
return gm_state;
}
/* ----------------------------------------------------------------
* ExecGatherMerge(node)
*
* Scans the relation via multiple workers and returns
* the next qualifying tuple.
* ----------------------------------------------------------------
*/
static TupleTableSlot *
ExecGatherMerge(PlanState *pstate)
{
GatherMergeState *node = castNode(GatherMergeState, pstate);
TupleTableSlot *slot;
ExprContext *econtext;
int i;
CHECK_FOR_INTERRUPTS();
/*
* As with Gather, we don't launch workers until this node is actually
* executed.
*/
if (!node->initialized)
{
EState *estate = node->ps.state;
GatherMerge *gm = castNode(GatherMerge, node->ps.plan);
/*
* Sometimes we might have to run without parallelism; but if parallel
* mode is active then we can try to fire up some workers.
*/
if (gm->num_workers > 0 && IsInParallelMode())
{
ParallelContext *pcxt;
/* Initialize, or re-initialize, shared state needed by workers. */
if (!node->pei)
node->pei = ExecInitParallelPlan(node->ps.lefttree,
estate,
gm->num_workers,
node->tuples_needed);
else
ExecParallelReinitialize(node->ps.lefttree,
node->pei);
/* Try to launch workers. */
pcxt = node->pei->pcxt;
LaunchParallelWorkers(pcxt);
/* We save # workers launched for the benefit of EXPLAIN */
node->nworkers_launched = pcxt->nworkers_launched;
node->nreaders = 0;
/* Set up tuple queue readers to read the results. */
if (pcxt->nworkers_launched > 0)
{
node->reader = palloc(pcxt->nworkers_launched *
sizeof(TupleQueueReader *));
for (i = 0; i < pcxt->nworkers_launched; ++i)
{
shm_mq_set_handle(node->pei->tqueue[i],
pcxt->worker[i].bgwhandle);
node->reader[node->nreaders++] =
CreateTupleQueueReader(node->pei->tqueue[i],
node->tupDesc);
}
}
else
{
/* No workers? Then never mind. */
ExecShutdownGatherMergeWorkers(node);
}
}
/* always allow leader to participate */
node->need_to_scan_locally = true;
node->initialized = true;
}
/*
* Reset per-tuple memory context to free any expression evaluation
* storage allocated in the previous tuple cycle.
*/
econtext = node->ps.ps_ExprContext;
ResetExprContext(econtext);
/*
* Get next tuple, either from one of our workers, or by running the plan
* ourselves.
*/
slot = gather_merge_getnext(node);
if (TupIsNull(slot))
return NULL;
/*
* Form the result tuple using ExecProject(), and return it.
*/
econtext->ecxt_outertuple = slot;
return ExecProject(node->ps.ps_ProjInfo);
}
/* ----------------------------------------------------------------
* ExecEndGatherMerge
*
* frees any storage allocated through C routines.
* ----------------------------------------------------------------
*/
void
ExecEndGatherMerge(GatherMergeState *node)
{
ExecEndNode(outerPlanState(node)); /* let children clean up first */
ExecShutdownGatherMerge(node);
ExecFreeExprContext(&node->ps);
ExecClearTuple(node->ps.ps_ResultTupleSlot);
}
/* ----------------------------------------------------------------
* ExecShutdownGatherMerge
*
* Destroy the setup for parallel workers including parallel context.
* Collect all the stats after workers are stopped, else some work
* done by workers won't be accounted.
* ----------------------------------------------------------------
*/
void
ExecShutdownGatherMerge(GatherMergeState *node)
{
ExecShutdownGatherMergeWorkers(node);
/* Now destroy the parallel context. */
if (node->pei != NULL)
{
ExecParallelCleanup(node->pei);
node->pei = NULL;
}
}
/* ----------------------------------------------------------------
* ExecShutdownGatherMergeWorkers
*
* Destroy the parallel workers. Collect all the stats after
* workers are stopped, else some work done by workers won't be
* accounted.
* ----------------------------------------------------------------
*/
static void
ExecShutdownGatherMergeWorkers(GatherMergeState *node)
{
/* Shut down tuple queue readers before shutting down workers. */
if (node->reader != NULL)
{
int i;
for (i = 0; i < node->nreaders; ++i)
if (node->reader[i])
DestroyTupleQueueReader(node->reader[i]);
pfree(node->reader);
node->reader = NULL;
}
/* Now shut down the workers. */
if (node->pei != NULL)
ExecParallelFinish(node->pei);
}
/* ----------------------------------------------------------------
* ExecReScanGatherMerge
*
* Prepare to re-scan the result of a GatherMerge.
* ----------------------------------------------------------------
*/
void
ExecReScanGatherMerge(GatherMergeState *node)
{
GatherMerge *gm = (GatherMerge *) node->ps.plan;
PlanState *outerPlan = outerPlanState(node);
/* Make sure any existing workers are gracefully shut down */
ExecShutdownGatherMergeWorkers(node);
/* Mark node so that shared state will be rebuilt at next call */
node->initialized = false;
node->gm_initialized = false;
/*
* Set child node's chgParam to tell it that the next scan might deliver a
* different set of rows within the leader process. (The overall rowset
* shouldn't change, but the leader process's subset might; hence nodes
* between here and the parallel table scan node mustn't optimize on the
* assumption of an unchanging rowset.)
*/
if (gm->rescan_param >= 0)
outerPlan->chgParam = bms_add_member(outerPlan->chgParam,
gm->rescan_param);
/*
* If chgParam of subnode is not null then plan will be re-scanned by
* first ExecProcNode. Note: because this does nothing if we have a
* rescan_param, it's currently guaranteed that parallel-aware child nodes
* will not see a ReScan call until after they get a ReInitializeDSM call.
* That ordering might not be something to rely on, though. A good rule
* of thumb is that ReInitializeDSM should reset only shared state, ReScan
* should reset only local state, and anything that depends on both of
* those steps being finished must wait until the first ExecProcNode call.
*/
if (outerPlan->chgParam == NULL)
ExecReScan(outerPlan);
}
/*
* Initialize the Gather merge tuple read.
*
* Pull at least a single tuple from each worker + leader and set up the heap.
*/
static void
gather_merge_init(GatherMergeState *gm_state)
{
int nreaders = gm_state->nreaders;
bool nowait = true;
int i;
/*
* Allocate gm_slots for the number of workers + one more slot for leader.
* Last slot is always for leader. Leader always calls ExecProcNode() to
* read the tuple which will return the TupleTableSlot. Later it will
* directly get assigned to gm_slot. So just initialize leader gm_slot
* with NULL. For other slots, code below will call
* ExecInitExtraTupleSlot() to create a slot for the worker's results.
*/
gm_state->gm_slots =
palloc((gm_state->nreaders + 1) * sizeof(TupleTableSlot *));
gm_state->gm_slots[gm_state->nreaders] = NULL;
/* Initialize the tuple slot and tuple array for each worker */
gm_state->gm_tuple_buffers =
(GMReaderTupleBuffer *) palloc0(sizeof(GMReaderTupleBuffer) *
gm_state->nreaders);
for (i = 0; i < gm_state->nreaders; i++)
{
/* Allocate the tuple array with length MAX_TUPLE_STORE */
gm_state->gm_tuple_buffers[i].tuple =
(HeapTuple *) palloc0(sizeof(HeapTuple) * MAX_TUPLE_STORE);
/* Initialize slot for worker */
gm_state->gm_slots[i] = ExecInitExtraTupleSlot(gm_state->ps.state);
ExecSetSlotDescriptor(gm_state->gm_slots[i],
gm_state->tupDesc);
}
/* Allocate the resources for the merge */
gm_state->gm_heap = binaryheap_allocate(gm_state->nreaders + 1,
heap_compare_slots,
gm_state);
/*
* First, try to read a tuple from each worker (including leader) in
* nowait mode. After this, if not all workers were able to produce a
* tuple (or a "done" indication), then re-read from remaining workers,
* this time using wait mode. Add all live readers (those producing at
* least one tuple) to the heap.
*/
reread:
for (i = 0; i < nreaders + 1; i++)
{
CHECK_FOR_INTERRUPTS();
/* ignore this source if already known done */
if ((i < nreaders) ?
!gm_state->gm_tuple_buffers[i].done :
gm_state->need_to_scan_locally)
{
if (TupIsNull(gm_state->gm_slots[i]))
{
/* Don't have a tuple yet, try to get one */
if (gather_merge_readnext(gm_state, i, nowait))
binaryheap_add_unordered(gm_state->gm_heap,
Int32GetDatum(i));
}
else
{
/*
* We already got at least one tuple from this worker, but
* might as well see if it has any more ready by now.
*/
load_tuple_array(gm_state, i);
}
}
}
/* need not recheck leader, since nowait doesn't matter for it */
for (i = 0; i < nreaders; i++)
{
if (!gm_state->gm_tuple_buffers[i].done &&
TupIsNull(gm_state->gm_slots[i]))
{
nowait = false;
goto reread;
}
}
/* Now heapify the heap. */
binaryheap_build(gm_state->gm_heap);
gm_state->gm_initialized = true;
}
/*
* Clear out the tuple table slots for each gather merge input.
*/
static void
gather_merge_clear_slots(GatherMergeState *gm_state)
{
int i;
for (i = 0; i < gm_state->nreaders; i++)
{
pfree(gm_state->gm_tuple_buffers[i].tuple);
ExecClearTuple(gm_state->gm_slots[i]);
}
/* Free tuple array as we don't need it any more */
pfree(gm_state->gm_tuple_buffers);
/* Free the binaryheap, which was created for sort */
binaryheap_free(gm_state->gm_heap);
}
/*
* Read the next tuple for gather merge.
*
* Fetch the sorted tuple out of the heap.
*/
static TupleTableSlot *
gather_merge_getnext(GatherMergeState *gm_state)
{
int i;
if (!gm_state->gm_initialized)
{
/*
* First time through: pull the first tuple from each participant, and
* set up the heap.
*/
gather_merge_init(gm_state);
}
else
{
/*
* Otherwise, pull the next tuple from whichever participant we
* returned from last time, and reinsert that participant's index into
* the heap, because it might now compare differently against the
* other elements of the heap.
*/
i = DatumGetInt32(binaryheap_first(gm_state->gm_heap));
if (gather_merge_readnext(gm_state, i, false))
binaryheap_replace_first(gm_state->gm_heap, Int32GetDatum(i));
else
{
/* reader exhausted, remove it from heap */
(void) binaryheap_remove_first(gm_state->gm_heap);
}
}
if (binaryheap_empty(gm_state->gm_heap))
{
/* All the queues are exhausted, and so is the heap */
gather_merge_clear_slots(gm_state);
return NULL;
}
else
{
/* Return next tuple from whichever participant has the leading one */
i = DatumGetInt32(binaryheap_first(gm_state->gm_heap));
return gm_state->gm_slots[i];
}
}
/*
* Read tuple(s) for given reader in nowait mode, and load into its tuple
* array, until we have MAX_TUPLE_STORE of them or would have to block.
*/
static void
load_tuple_array(GatherMergeState *gm_state, int reader)
{
GMReaderTupleBuffer *tuple_buffer;
int i;
/* Don't do anything if this is the leader. */
if (reader == gm_state->nreaders)
return;
tuple_buffer = &gm_state->gm_tuple_buffers[reader];
/* If there's nothing in the array, reset the counters to zero. */
if (tuple_buffer->nTuples == tuple_buffer->readCounter)
tuple_buffer->nTuples = tuple_buffer->readCounter = 0;
/* Try to fill additional slots in the array. */
for (i = tuple_buffer->nTuples; i < MAX_TUPLE_STORE; i++)
{
HeapTuple tuple;
tuple = gm_readnext_tuple(gm_state,
reader,
true,
&tuple_buffer->done);
if (!HeapTupleIsValid(tuple))
break;
tuple_buffer->tuple[i] = heap_copytuple(tuple);
tuple_buffer->nTuples++;
}
}
/*
* Store the next tuple for a given reader into the appropriate slot.
*
* Returns true if successful, false if not (either reader is exhausted,
* or we didn't want to wait for a tuple). Sets done flag if reader
* is found to be exhausted.
*/
static bool
gather_merge_readnext(GatherMergeState *gm_state, int reader, bool nowait)
{
GMReaderTupleBuffer *tuple_buffer;
HeapTuple tup;
/*
* If we're being asked to generate a tuple from the leader, then we just
* call ExecProcNode as normal to produce one.
*/
if (gm_state->nreaders == reader)
{
if (gm_state->need_to_scan_locally)
{
PlanState *outerPlan = outerPlanState(gm_state);
TupleTableSlot *outerTupleSlot;
outerTupleSlot = ExecProcNode(outerPlan);
if (!TupIsNull(outerTupleSlot))
{
gm_state->gm_slots[reader] = outerTupleSlot;
return true;
}
/* need_to_scan_locally serves as "done" flag for leader */
gm_state->need_to_scan_locally = false;
}
return false;
}
/* Otherwise, check the state of the relevant tuple buffer. */
tuple_buffer = &gm_state->gm_tuple_buffers[reader];
if (tuple_buffer->nTuples > tuple_buffer->readCounter)
{
/* Return any tuple previously read that is still buffered. */
tup = tuple_buffer->tuple[tuple_buffer->readCounter++];
}
else if (tuple_buffer->done)
{
/* Reader is known to be exhausted. */
DestroyTupleQueueReader(gm_state->reader[reader]);
gm_state->reader[reader] = NULL;
return false;
}
else
{
/* Read and buffer next tuple. */
tup = gm_readnext_tuple(gm_state,
reader,
nowait,
&tuple_buffer->done);
if (!HeapTupleIsValid(tup))
return false;
tup = heap_copytuple(tup);
/*
* Attempt to read more tuples in nowait mode and store them in the
* pending-tuple array for the reader.
*/
load_tuple_array(gm_state, reader);
}
Assert(HeapTupleIsValid(tup));
/* Build the TupleTableSlot for the given tuple */
ExecStoreTuple(tup, /* tuple to store */
gm_state->gm_slots[reader], /* slot in which to store the
* tuple */
InvalidBuffer, /* buffer associated with this tuple */
true); /* pfree this pointer if not from heap */
return true;
}
/*
* Attempt to read a tuple from given reader.
*/
static HeapTuple
gm_readnext_tuple(GatherMergeState *gm_state, int nreader, bool nowait,
bool *done)
{
TupleQueueReader *reader;
HeapTuple tup;
MemoryContext oldContext;
MemoryContext tupleContext;
/* Check for async events, particularly messages from workers. */
CHECK_FOR_INTERRUPTS();
/* Attempt to read a tuple. */
reader = gm_state->reader[nreader];
/* Run TupleQueueReaders in per-tuple context */
tupleContext = gm_state->ps.ps_ExprContext->ecxt_per_tuple_memory;
oldContext = MemoryContextSwitchTo(tupleContext);
tup = TupleQueueReaderNext(reader, nowait, done);
MemoryContextSwitchTo(oldContext);
return tup;
}
/*
* We have one slot for each item in the heap array. We use SlotNumber
* to store slot indexes. This doesn't actually provide any formal
* type-safety, but it makes the code more self-documenting.
*/
typedef int32 SlotNumber;
/*
* Compare the tuples in the two given slots.
*/
static int32
heap_compare_slots(Datum a, Datum b, void *arg)
{
GatherMergeState *node = (GatherMergeState *) arg;
SlotNumber slot1 = DatumGetInt32(a);
SlotNumber slot2 = DatumGetInt32(b);
TupleTableSlot *s1 = node->gm_slots[slot1];
TupleTableSlot *s2 = node->gm_slots[slot2];
int nkey;
Assert(!TupIsNull(s1));
Assert(!TupIsNull(s2));
for (nkey = 0; nkey < node->gm_nkeys; nkey++)
{
SortSupport sortKey = node->gm_sortkeys + nkey;
AttrNumber attno = sortKey->ssup_attno;
Datum datum1,
datum2;
bool isNull1,
isNull2;
int compare;
datum1 = slot_getattr(s1, attno, &isNull1);
datum2 = slot_getattr(s2, attno, &isNull2);
compare = ApplySortComparator(datum1, isNull1,
datum2, isNull2,
sortKey);
if (compare != 0)
return -compare;
}
return 0;
}