mirror of
https://github.com/postgres/postgres.git
synced 2025-04-27 22:56:53 +03:00
Core by no means makes excessive use of these functions, but quite a large number of those usages do require the caller to call strlen() on the returned string. This is quite wasteful since these functions do already have a good idea of the length of the string, so we might as well just have them return that. Reviewed-by: Andrew Gierth Discussion: https://postgr.es/m/CAApHDvrm2A5x2uHYxsqriO2cUaGcFvND%2BksC9e7Tjep0t2RK_A%40mail.gmail.com
1567 lines
32 KiB
C
1567 lines
32 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* int8.c
|
|
* Internal 64-bit integer operations
|
|
*
|
|
* Portions Copyright (c) 1996-2020, PostgreSQL Global Development Group
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
|
*
|
|
* IDENTIFICATION
|
|
* src/backend/utils/adt/int8.c
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
#include "postgres.h"
|
|
|
|
#include <ctype.h>
|
|
#include <limits.h>
|
|
#include <math.h>
|
|
|
|
#include "common/int.h"
|
|
#include "funcapi.h"
|
|
#include "libpq/pqformat.h"
|
|
#include "nodes/nodeFuncs.h"
|
|
#include "nodes/supportnodes.h"
|
|
#include "optimizer/optimizer.h"
|
|
#include "utils/builtins.h"
|
|
#include "utils/int8.h"
|
|
|
|
|
|
typedef struct
|
|
{
|
|
int64 current;
|
|
int64 finish;
|
|
int64 step;
|
|
} generate_series_fctx;
|
|
|
|
|
|
/***********************************************************************
|
|
**
|
|
** Routines for 64-bit integers.
|
|
**
|
|
***********************************************************************/
|
|
|
|
/*----------------------------------------------------------
|
|
* Formatting and conversion routines.
|
|
*---------------------------------------------------------*/
|
|
|
|
/*
|
|
* scanint8 --- try to parse a string into an int8.
|
|
*
|
|
* If errorOK is false, ereport a useful error message if the string is bad.
|
|
* If errorOK is true, just return "false" for bad input.
|
|
*/
|
|
bool
|
|
scanint8(const char *str, bool errorOK, int64 *result)
|
|
{
|
|
const char *ptr = str;
|
|
int64 tmp = 0;
|
|
bool neg = false;
|
|
|
|
/*
|
|
* Do our own scan, rather than relying on sscanf which might be broken
|
|
* for long long.
|
|
*
|
|
* As INT64_MIN can't be stored as a positive 64 bit integer, accumulate
|
|
* value as a negative number.
|
|
*/
|
|
|
|
/* skip leading spaces */
|
|
while (*ptr && isspace((unsigned char) *ptr))
|
|
ptr++;
|
|
|
|
/* handle sign */
|
|
if (*ptr == '-')
|
|
{
|
|
ptr++;
|
|
neg = true;
|
|
}
|
|
else if (*ptr == '+')
|
|
ptr++;
|
|
|
|
/* require at least one digit */
|
|
if (unlikely(!isdigit((unsigned char) *ptr)))
|
|
goto invalid_syntax;
|
|
|
|
/* process digits */
|
|
while (*ptr && isdigit((unsigned char) *ptr))
|
|
{
|
|
int8 digit = (*ptr++ - '0');
|
|
|
|
if (unlikely(pg_mul_s64_overflow(tmp, 10, &tmp)) ||
|
|
unlikely(pg_sub_s64_overflow(tmp, digit, &tmp)))
|
|
goto out_of_range;
|
|
}
|
|
|
|
/* allow trailing whitespace, but not other trailing chars */
|
|
while (*ptr != '\0' && isspace((unsigned char) *ptr))
|
|
ptr++;
|
|
|
|
if (unlikely(*ptr != '\0'))
|
|
goto invalid_syntax;
|
|
|
|
if (!neg)
|
|
{
|
|
/* could fail if input is most negative number */
|
|
if (unlikely(tmp == PG_INT64_MIN))
|
|
goto out_of_range;
|
|
tmp = -tmp;
|
|
}
|
|
|
|
*result = tmp;
|
|
return true;
|
|
|
|
out_of_range:
|
|
if (!errorOK)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("value \"%s\" is out of range for type %s",
|
|
str, "bigint")));
|
|
return false;
|
|
|
|
invalid_syntax:
|
|
if (!errorOK)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for type %s: \"%s\"",
|
|
"bigint", str)));
|
|
return false;
|
|
}
|
|
|
|
/* int8in()
|
|
*/
|
|
Datum
|
|
int8in(PG_FUNCTION_ARGS)
|
|
{
|
|
char *str = PG_GETARG_CSTRING(0);
|
|
int64 result;
|
|
|
|
(void) scanint8(str, false, &result);
|
|
PG_RETURN_INT64(result);
|
|
}
|
|
|
|
|
|
/* int8out()
|
|
*/
|
|
Datum
|
|
int8out(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 val = PG_GETARG_INT64(0);
|
|
char buf[MAXINT8LEN + 1];
|
|
char *result;
|
|
int len;
|
|
|
|
len = pg_lltoa(val, buf) + 1;
|
|
|
|
/*
|
|
* Since the length is already known, we do a manual palloc() and memcpy()
|
|
* to avoid the strlen() call that would otherwise be done in pstrdup().
|
|
*/
|
|
result = palloc(len);
|
|
memcpy(result, buf, len);
|
|
PG_RETURN_CSTRING(result);
|
|
}
|
|
|
|
/*
|
|
* int8recv - converts external binary format to int8
|
|
*/
|
|
Datum
|
|
int8recv(PG_FUNCTION_ARGS)
|
|
{
|
|
StringInfo buf = (StringInfo) PG_GETARG_POINTER(0);
|
|
|
|
PG_RETURN_INT64(pq_getmsgint64(buf));
|
|
}
|
|
|
|
/*
|
|
* int8send - converts int8 to binary format
|
|
*/
|
|
Datum
|
|
int8send(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 arg1 = PG_GETARG_INT64(0);
|
|
StringInfoData buf;
|
|
|
|
pq_begintypsend(&buf);
|
|
pq_sendint64(&buf, arg1);
|
|
PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
|
|
}
|
|
|
|
|
|
/*----------------------------------------------------------
|
|
* Relational operators for int8s, including cross-data-type comparisons.
|
|
*---------------------------------------------------------*/
|
|
|
|
/* int8relop()
|
|
* Is val1 relop val2?
|
|
*/
|
|
Datum
|
|
int8eq(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 val1 = PG_GETARG_INT64(0);
|
|
int64 val2 = PG_GETARG_INT64(1);
|
|
|
|
PG_RETURN_BOOL(val1 == val2);
|
|
}
|
|
|
|
Datum
|
|
int8ne(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 val1 = PG_GETARG_INT64(0);
|
|
int64 val2 = PG_GETARG_INT64(1);
|
|
|
|
PG_RETURN_BOOL(val1 != val2);
|
|
}
|
|
|
|
Datum
|
|
int8lt(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 val1 = PG_GETARG_INT64(0);
|
|
int64 val2 = PG_GETARG_INT64(1);
|
|
|
|
PG_RETURN_BOOL(val1 < val2);
|
|
}
|
|
|
|
Datum
|
|
int8gt(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 val1 = PG_GETARG_INT64(0);
|
|
int64 val2 = PG_GETARG_INT64(1);
|
|
|
|
PG_RETURN_BOOL(val1 > val2);
|
|
}
|
|
|
|
Datum
|
|
int8le(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 val1 = PG_GETARG_INT64(0);
|
|
int64 val2 = PG_GETARG_INT64(1);
|
|
|
|
PG_RETURN_BOOL(val1 <= val2);
|
|
}
|
|
|
|
Datum
|
|
int8ge(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 val1 = PG_GETARG_INT64(0);
|
|
int64 val2 = PG_GETARG_INT64(1);
|
|
|
|
PG_RETURN_BOOL(val1 >= val2);
|
|
}
|
|
|
|
/* int84relop()
|
|
* Is 64-bit val1 relop 32-bit val2?
|
|
*/
|
|
Datum
|
|
int84eq(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 val1 = PG_GETARG_INT64(0);
|
|
int32 val2 = PG_GETARG_INT32(1);
|
|
|
|
PG_RETURN_BOOL(val1 == val2);
|
|
}
|
|
|
|
Datum
|
|
int84ne(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 val1 = PG_GETARG_INT64(0);
|
|
int32 val2 = PG_GETARG_INT32(1);
|
|
|
|
PG_RETURN_BOOL(val1 != val2);
|
|
}
|
|
|
|
Datum
|
|
int84lt(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 val1 = PG_GETARG_INT64(0);
|
|
int32 val2 = PG_GETARG_INT32(1);
|
|
|
|
PG_RETURN_BOOL(val1 < val2);
|
|
}
|
|
|
|
Datum
|
|
int84gt(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 val1 = PG_GETARG_INT64(0);
|
|
int32 val2 = PG_GETARG_INT32(1);
|
|
|
|
PG_RETURN_BOOL(val1 > val2);
|
|
}
|
|
|
|
Datum
|
|
int84le(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 val1 = PG_GETARG_INT64(0);
|
|
int32 val2 = PG_GETARG_INT32(1);
|
|
|
|
PG_RETURN_BOOL(val1 <= val2);
|
|
}
|
|
|
|
Datum
|
|
int84ge(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 val1 = PG_GETARG_INT64(0);
|
|
int32 val2 = PG_GETARG_INT32(1);
|
|
|
|
PG_RETURN_BOOL(val1 >= val2);
|
|
}
|
|
|
|
/* int48relop()
|
|
* Is 32-bit val1 relop 64-bit val2?
|
|
*/
|
|
Datum
|
|
int48eq(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 val1 = PG_GETARG_INT32(0);
|
|
int64 val2 = PG_GETARG_INT64(1);
|
|
|
|
PG_RETURN_BOOL(val1 == val2);
|
|
}
|
|
|
|
Datum
|
|
int48ne(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 val1 = PG_GETARG_INT32(0);
|
|
int64 val2 = PG_GETARG_INT64(1);
|
|
|
|
PG_RETURN_BOOL(val1 != val2);
|
|
}
|
|
|
|
Datum
|
|
int48lt(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 val1 = PG_GETARG_INT32(0);
|
|
int64 val2 = PG_GETARG_INT64(1);
|
|
|
|
PG_RETURN_BOOL(val1 < val2);
|
|
}
|
|
|
|
Datum
|
|
int48gt(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 val1 = PG_GETARG_INT32(0);
|
|
int64 val2 = PG_GETARG_INT64(1);
|
|
|
|
PG_RETURN_BOOL(val1 > val2);
|
|
}
|
|
|
|
Datum
|
|
int48le(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 val1 = PG_GETARG_INT32(0);
|
|
int64 val2 = PG_GETARG_INT64(1);
|
|
|
|
PG_RETURN_BOOL(val1 <= val2);
|
|
}
|
|
|
|
Datum
|
|
int48ge(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 val1 = PG_GETARG_INT32(0);
|
|
int64 val2 = PG_GETARG_INT64(1);
|
|
|
|
PG_RETURN_BOOL(val1 >= val2);
|
|
}
|
|
|
|
/* int82relop()
|
|
* Is 64-bit val1 relop 16-bit val2?
|
|
*/
|
|
Datum
|
|
int82eq(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 val1 = PG_GETARG_INT64(0);
|
|
int16 val2 = PG_GETARG_INT16(1);
|
|
|
|
PG_RETURN_BOOL(val1 == val2);
|
|
}
|
|
|
|
Datum
|
|
int82ne(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 val1 = PG_GETARG_INT64(0);
|
|
int16 val2 = PG_GETARG_INT16(1);
|
|
|
|
PG_RETURN_BOOL(val1 != val2);
|
|
}
|
|
|
|
Datum
|
|
int82lt(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 val1 = PG_GETARG_INT64(0);
|
|
int16 val2 = PG_GETARG_INT16(1);
|
|
|
|
PG_RETURN_BOOL(val1 < val2);
|
|
}
|
|
|
|
Datum
|
|
int82gt(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 val1 = PG_GETARG_INT64(0);
|
|
int16 val2 = PG_GETARG_INT16(1);
|
|
|
|
PG_RETURN_BOOL(val1 > val2);
|
|
}
|
|
|
|
Datum
|
|
int82le(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 val1 = PG_GETARG_INT64(0);
|
|
int16 val2 = PG_GETARG_INT16(1);
|
|
|
|
PG_RETURN_BOOL(val1 <= val2);
|
|
}
|
|
|
|
Datum
|
|
int82ge(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 val1 = PG_GETARG_INT64(0);
|
|
int16 val2 = PG_GETARG_INT16(1);
|
|
|
|
PG_RETURN_BOOL(val1 >= val2);
|
|
}
|
|
|
|
/* int28relop()
|
|
* Is 16-bit val1 relop 64-bit val2?
|
|
*/
|
|
Datum
|
|
int28eq(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 val1 = PG_GETARG_INT16(0);
|
|
int64 val2 = PG_GETARG_INT64(1);
|
|
|
|
PG_RETURN_BOOL(val1 == val2);
|
|
}
|
|
|
|
Datum
|
|
int28ne(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 val1 = PG_GETARG_INT16(0);
|
|
int64 val2 = PG_GETARG_INT64(1);
|
|
|
|
PG_RETURN_BOOL(val1 != val2);
|
|
}
|
|
|
|
Datum
|
|
int28lt(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 val1 = PG_GETARG_INT16(0);
|
|
int64 val2 = PG_GETARG_INT64(1);
|
|
|
|
PG_RETURN_BOOL(val1 < val2);
|
|
}
|
|
|
|
Datum
|
|
int28gt(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 val1 = PG_GETARG_INT16(0);
|
|
int64 val2 = PG_GETARG_INT64(1);
|
|
|
|
PG_RETURN_BOOL(val1 > val2);
|
|
}
|
|
|
|
Datum
|
|
int28le(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 val1 = PG_GETARG_INT16(0);
|
|
int64 val2 = PG_GETARG_INT64(1);
|
|
|
|
PG_RETURN_BOOL(val1 <= val2);
|
|
}
|
|
|
|
Datum
|
|
int28ge(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 val1 = PG_GETARG_INT16(0);
|
|
int64 val2 = PG_GETARG_INT64(1);
|
|
|
|
PG_RETURN_BOOL(val1 >= val2);
|
|
}
|
|
|
|
/*
|
|
* in_range support function for int8.
|
|
*
|
|
* Note: we needn't supply int8_int4 or int8_int2 variants, as implicit
|
|
* coercion of the offset value takes care of those scenarios just as well.
|
|
*/
|
|
Datum
|
|
in_range_int8_int8(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 val = PG_GETARG_INT64(0);
|
|
int64 base = PG_GETARG_INT64(1);
|
|
int64 offset = PG_GETARG_INT64(2);
|
|
bool sub = PG_GETARG_BOOL(3);
|
|
bool less = PG_GETARG_BOOL(4);
|
|
int64 sum;
|
|
|
|
if (offset < 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_PRECEDING_OR_FOLLOWING_SIZE),
|
|
errmsg("invalid preceding or following size in window function")));
|
|
|
|
if (sub)
|
|
offset = -offset; /* cannot overflow */
|
|
|
|
if (unlikely(pg_add_s64_overflow(base, offset, &sum)))
|
|
{
|
|
/*
|
|
* If sub is false, the true sum is surely more than val, so correct
|
|
* answer is the same as "less". If sub is true, the true sum is
|
|
* surely less than val, so the answer is "!less".
|
|
*/
|
|
PG_RETURN_BOOL(sub ? !less : less);
|
|
}
|
|
|
|
if (less)
|
|
PG_RETURN_BOOL(val <= sum);
|
|
else
|
|
PG_RETURN_BOOL(val >= sum);
|
|
}
|
|
|
|
|
|
/*----------------------------------------------------------
|
|
* Arithmetic operators on 64-bit integers.
|
|
*---------------------------------------------------------*/
|
|
|
|
Datum
|
|
int8um(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 arg = PG_GETARG_INT64(0);
|
|
int64 result;
|
|
|
|
if (unlikely(arg == PG_INT64_MIN))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("bigint out of range")));
|
|
result = -arg;
|
|
PG_RETURN_INT64(result);
|
|
}
|
|
|
|
Datum
|
|
int8up(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 arg = PG_GETARG_INT64(0);
|
|
|
|
PG_RETURN_INT64(arg);
|
|
}
|
|
|
|
Datum
|
|
int8pl(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 arg1 = PG_GETARG_INT64(0);
|
|
int64 arg2 = PG_GETARG_INT64(1);
|
|
int64 result;
|
|
|
|
if (unlikely(pg_add_s64_overflow(arg1, arg2, &result)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("bigint out of range")));
|
|
PG_RETURN_INT64(result);
|
|
}
|
|
|
|
Datum
|
|
int8mi(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 arg1 = PG_GETARG_INT64(0);
|
|
int64 arg2 = PG_GETARG_INT64(1);
|
|
int64 result;
|
|
|
|
if (unlikely(pg_sub_s64_overflow(arg1, arg2, &result)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("bigint out of range")));
|
|
PG_RETURN_INT64(result);
|
|
}
|
|
|
|
Datum
|
|
int8mul(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 arg1 = PG_GETARG_INT64(0);
|
|
int64 arg2 = PG_GETARG_INT64(1);
|
|
int64 result;
|
|
|
|
if (unlikely(pg_mul_s64_overflow(arg1, arg2, &result)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("bigint out of range")));
|
|
PG_RETURN_INT64(result);
|
|
}
|
|
|
|
Datum
|
|
int8div(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 arg1 = PG_GETARG_INT64(0);
|
|
int64 arg2 = PG_GETARG_INT64(1);
|
|
int64 result;
|
|
|
|
if (arg2 == 0)
|
|
{
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DIVISION_BY_ZERO),
|
|
errmsg("division by zero")));
|
|
/* ensure compiler realizes we mustn't reach the division (gcc bug) */
|
|
PG_RETURN_NULL();
|
|
}
|
|
|
|
/*
|
|
* INT64_MIN / -1 is problematic, since the result can't be represented on
|
|
* a two's-complement machine. Some machines produce INT64_MIN, some
|
|
* produce zero, some throw an exception. We can dodge the problem by
|
|
* recognizing that division by -1 is the same as negation.
|
|
*/
|
|
if (arg2 == -1)
|
|
{
|
|
if (unlikely(arg1 == PG_INT64_MIN))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("bigint out of range")));
|
|
result = -arg1;
|
|
PG_RETURN_INT64(result);
|
|
}
|
|
|
|
/* No overflow is possible */
|
|
|
|
result = arg1 / arg2;
|
|
|
|
PG_RETURN_INT64(result);
|
|
}
|
|
|
|
/* int8abs()
|
|
* Absolute value
|
|
*/
|
|
Datum
|
|
int8abs(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 arg1 = PG_GETARG_INT64(0);
|
|
int64 result;
|
|
|
|
if (unlikely(arg1 == PG_INT64_MIN))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("bigint out of range")));
|
|
result = (arg1 < 0) ? -arg1 : arg1;
|
|
PG_RETURN_INT64(result);
|
|
}
|
|
|
|
/* int8mod()
|
|
* Modulo operation.
|
|
*/
|
|
Datum
|
|
int8mod(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 arg1 = PG_GETARG_INT64(0);
|
|
int64 arg2 = PG_GETARG_INT64(1);
|
|
|
|
if (unlikely(arg2 == 0))
|
|
{
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DIVISION_BY_ZERO),
|
|
errmsg("division by zero")));
|
|
/* ensure compiler realizes we mustn't reach the division (gcc bug) */
|
|
PG_RETURN_NULL();
|
|
}
|
|
|
|
/*
|
|
* Some machines throw a floating-point exception for INT64_MIN % -1,
|
|
* which is a bit silly since the correct answer is perfectly
|
|
* well-defined, namely zero.
|
|
*/
|
|
if (arg2 == -1)
|
|
PG_RETURN_INT64(0);
|
|
|
|
/* No overflow is possible */
|
|
|
|
PG_RETURN_INT64(arg1 % arg2);
|
|
}
|
|
|
|
/*
|
|
* Greatest Common Divisor
|
|
*
|
|
* Returns the largest positive integer that exactly divides both inputs.
|
|
* Special cases:
|
|
* - gcd(x, 0) = gcd(0, x) = abs(x)
|
|
* because 0 is divisible by anything
|
|
* - gcd(0, 0) = 0
|
|
* complies with the previous definition and is a common convention
|
|
*
|
|
* Special care must be taken if either input is INT64_MIN ---
|
|
* gcd(0, INT64_MIN), gcd(INT64_MIN, 0) and gcd(INT64_MIN, INT64_MIN) are
|
|
* all equal to abs(INT64_MIN), which cannot be represented as a 64-bit signed
|
|
* integer.
|
|
*/
|
|
static int64
|
|
int8gcd_internal(int64 arg1, int64 arg2)
|
|
{
|
|
int64 swap;
|
|
int64 a1,
|
|
a2;
|
|
|
|
/*
|
|
* Put the greater absolute value in arg1.
|
|
*
|
|
* This would happen automatically in the loop below, but avoids an
|
|
* expensive modulo operation, and simplifies the special-case handling
|
|
* for INT64_MIN below.
|
|
*
|
|
* We do this in negative space in order to handle INT64_MIN.
|
|
*/
|
|
a1 = (arg1 < 0) ? arg1 : -arg1;
|
|
a2 = (arg2 < 0) ? arg2 : -arg2;
|
|
if (a1 > a2)
|
|
{
|
|
swap = arg1;
|
|
arg1 = arg2;
|
|
arg2 = swap;
|
|
}
|
|
|
|
/* Special care needs to be taken with INT64_MIN. See comments above. */
|
|
if (arg1 == PG_INT64_MIN)
|
|
{
|
|
if (arg2 == 0 || arg2 == PG_INT64_MIN)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("bigint out of range")));
|
|
|
|
/*
|
|
* Some machines throw a floating-point exception for INT64_MIN % -1,
|
|
* which is a bit silly since the correct answer is perfectly
|
|
* well-defined, namely zero. Guard against this and just return the
|
|
* result, gcd(INT64_MIN, -1) = 1.
|
|
*/
|
|
if (arg2 == -1)
|
|
return 1;
|
|
}
|
|
|
|
/* Use the Euclidean algorithm to find the GCD */
|
|
while (arg2 != 0)
|
|
{
|
|
swap = arg2;
|
|
arg2 = arg1 % arg2;
|
|
arg1 = swap;
|
|
}
|
|
|
|
/*
|
|
* Make sure the result is positive. (We know we don't have INT64_MIN
|
|
* anymore).
|
|
*/
|
|
if (arg1 < 0)
|
|
arg1 = -arg1;
|
|
|
|
return arg1;
|
|
}
|
|
|
|
Datum
|
|
int8gcd(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 arg1 = PG_GETARG_INT64(0);
|
|
int64 arg2 = PG_GETARG_INT64(1);
|
|
int64 result;
|
|
|
|
result = int8gcd_internal(arg1, arg2);
|
|
|
|
PG_RETURN_INT64(result);
|
|
}
|
|
|
|
/*
|
|
* Least Common Multiple
|
|
*/
|
|
Datum
|
|
int8lcm(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 arg1 = PG_GETARG_INT64(0);
|
|
int64 arg2 = PG_GETARG_INT64(1);
|
|
int64 gcd;
|
|
int64 result;
|
|
|
|
/*
|
|
* Handle lcm(x, 0) = lcm(0, x) = 0 as a special case. This prevents a
|
|
* division-by-zero error below when x is zero, and an overflow error from
|
|
* the GCD computation when x = INT64_MIN.
|
|
*/
|
|
if (arg1 == 0 || arg2 == 0)
|
|
PG_RETURN_INT64(0);
|
|
|
|
/* lcm(x, y) = abs(x / gcd(x, y) * y) */
|
|
gcd = int8gcd_internal(arg1, arg2);
|
|
arg1 = arg1 / gcd;
|
|
|
|
if (unlikely(pg_mul_s64_overflow(arg1, arg2, &result)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("bigint out of range")));
|
|
|
|
/* If the result is INT64_MIN, it cannot be represented. */
|
|
if (unlikely(result == PG_INT64_MIN))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("bigint out of range")));
|
|
|
|
if (result < 0)
|
|
result = -result;
|
|
|
|
PG_RETURN_INT64(result);
|
|
}
|
|
|
|
Datum
|
|
int8inc(PG_FUNCTION_ARGS)
|
|
{
|
|
/*
|
|
* When int8 is pass-by-reference, we provide this special case to avoid
|
|
* palloc overhead for COUNT(): when called as an aggregate, we know that
|
|
* the argument is modifiable local storage, so just update it in-place.
|
|
* (If int8 is pass-by-value, then of course this is useless as well as
|
|
* incorrect, so just ifdef it out.)
|
|
*/
|
|
#ifndef USE_FLOAT8_BYVAL /* controls int8 too */
|
|
if (AggCheckCallContext(fcinfo, NULL))
|
|
{
|
|
int64 *arg = (int64 *) PG_GETARG_POINTER(0);
|
|
|
|
if (unlikely(pg_add_s64_overflow(*arg, 1, arg)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("bigint out of range")));
|
|
|
|
PG_RETURN_POINTER(arg);
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
/* Not called as an aggregate, so just do it the dumb way */
|
|
int64 arg = PG_GETARG_INT64(0);
|
|
int64 result;
|
|
|
|
if (unlikely(pg_add_s64_overflow(arg, 1, &result)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("bigint out of range")));
|
|
|
|
PG_RETURN_INT64(result);
|
|
}
|
|
}
|
|
|
|
Datum
|
|
int8dec(PG_FUNCTION_ARGS)
|
|
{
|
|
/*
|
|
* When int8 is pass-by-reference, we provide this special case to avoid
|
|
* palloc overhead for COUNT(): when called as an aggregate, we know that
|
|
* the argument is modifiable local storage, so just update it in-place.
|
|
* (If int8 is pass-by-value, then of course this is useless as well as
|
|
* incorrect, so just ifdef it out.)
|
|
*/
|
|
#ifndef USE_FLOAT8_BYVAL /* controls int8 too */
|
|
if (AggCheckCallContext(fcinfo, NULL))
|
|
{
|
|
int64 *arg = (int64 *) PG_GETARG_POINTER(0);
|
|
|
|
if (unlikely(pg_sub_s64_overflow(*arg, 1, arg)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("bigint out of range")));
|
|
PG_RETURN_POINTER(arg);
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
/* Not called as an aggregate, so just do it the dumb way */
|
|
int64 arg = PG_GETARG_INT64(0);
|
|
int64 result;
|
|
|
|
if (unlikely(pg_sub_s64_overflow(arg, 1, &result)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("bigint out of range")));
|
|
|
|
PG_RETURN_INT64(result);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* These functions are exactly like int8inc/int8dec but are used for
|
|
* aggregates that count only non-null values. Since the functions are
|
|
* declared strict, the null checks happen before we ever get here, and all we
|
|
* need do is increment the state value. We could actually make these pg_proc
|
|
* entries point right at int8inc/int8dec, but then the opr_sanity regression
|
|
* test would complain about mismatched entries for a built-in function.
|
|
*/
|
|
|
|
Datum
|
|
int8inc_any(PG_FUNCTION_ARGS)
|
|
{
|
|
return int8inc(fcinfo);
|
|
}
|
|
|
|
Datum
|
|
int8inc_float8_float8(PG_FUNCTION_ARGS)
|
|
{
|
|
return int8inc(fcinfo);
|
|
}
|
|
|
|
Datum
|
|
int8dec_any(PG_FUNCTION_ARGS)
|
|
{
|
|
return int8dec(fcinfo);
|
|
}
|
|
|
|
|
|
Datum
|
|
int8larger(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 arg1 = PG_GETARG_INT64(0);
|
|
int64 arg2 = PG_GETARG_INT64(1);
|
|
int64 result;
|
|
|
|
result = ((arg1 > arg2) ? arg1 : arg2);
|
|
|
|
PG_RETURN_INT64(result);
|
|
}
|
|
|
|
Datum
|
|
int8smaller(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 arg1 = PG_GETARG_INT64(0);
|
|
int64 arg2 = PG_GETARG_INT64(1);
|
|
int64 result;
|
|
|
|
result = ((arg1 < arg2) ? arg1 : arg2);
|
|
|
|
PG_RETURN_INT64(result);
|
|
}
|
|
|
|
Datum
|
|
int84pl(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 arg1 = PG_GETARG_INT64(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
int64 result;
|
|
|
|
if (unlikely(pg_add_s64_overflow(arg1, (int64) arg2, &result)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("bigint out of range")));
|
|
PG_RETURN_INT64(result);
|
|
}
|
|
|
|
Datum
|
|
int84mi(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 arg1 = PG_GETARG_INT64(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
int64 result;
|
|
|
|
if (unlikely(pg_sub_s64_overflow(arg1, (int64) arg2, &result)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("bigint out of range")));
|
|
PG_RETURN_INT64(result);
|
|
}
|
|
|
|
Datum
|
|
int84mul(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 arg1 = PG_GETARG_INT64(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
int64 result;
|
|
|
|
if (unlikely(pg_mul_s64_overflow(arg1, (int64) arg2, &result)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("bigint out of range")));
|
|
PG_RETURN_INT64(result);
|
|
}
|
|
|
|
Datum
|
|
int84div(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 arg1 = PG_GETARG_INT64(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
int64 result;
|
|
|
|
if (arg2 == 0)
|
|
{
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DIVISION_BY_ZERO),
|
|
errmsg("division by zero")));
|
|
/* ensure compiler realizes we mustn't reach the division (gcc bug) */
|
|
PG_RETURN_NULL();
|
|
}
|
|
|
|
/*
|
|
* INT64_MIN / -1 is problematic, since the result can't be represented on
|
|
* a two's-complement machine. Some machines produce INT64_MIN, some
|
|
* produce zero, some throw an exception. We can dodge the problem by
|
|
* recognizing that division by -1 is the same as negation.
|
|
*/
|
|
if (arg2 == -1)
|
|
{
|
|
if (unlikely(arg1 == PG_INT64_MIN))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("bigint out of range")));
|
|
result = -arg1;
|
|
PG_RETURN_INT64(result);
|
|
}
|
|
|
|
/* No overflow is possible */
|
|
|
|
result = arg1 / arg2;
|
|
|
|
PG_RETURN_INT64(result);
|
|
}
|
|
|
|
Datum
|
|
int48pl(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int64 arg2 = PG_GETARG_INT64(1);
|
|
int64 result;
|
|
|
|
if (unlikely(pg_add_s64_overflow((int64) arg1, arg2, &result)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("bigint out of range")));
|
|
PG_RETURN_INT64(result);
|
|
}
|
|
|
|
Datum
|
|
int48mi(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int64 arg2 = PG_GETARG_INT64(1);
|
|
int64 result;
|
|
|
|
if (unlikely(pg_sub_s64_overflow((int64) arg1, arg2, &result)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("bigint out of range")));
|
|
PG_RETURN_INT64(result);
|
|
}
|
|
|
|
Datum
|
|
int48mul(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int64 arg2 = PG_GETARG_INT64(1);
|
|
int64 result;
|
|
|
|
if (unlikely(pg_mul_s64_overflow((int64) arg1, arg2, &result)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("bigint out of range")));
|
|
PG_RETURN_INT64(result);
|
|
}
|
|
|
|
Datum
|
|
int48div(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg1 = PG_GETARG_INT32(0);
|
|
int64 arg2 = PG_GETARG_INT64(1);
|
|
|
|
if (unlikely(arg2 == 0))
|
|
{
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DIVISION_BY_ZERO),
|
|
errmsg("division by zero")));
|
|
/* ensure compiler realizes we mustn't reach the division (gcc bug) */
|
|
PG_RETURN_NULL();
|
|
}
|
|
|
|
/* No overflow is possible */
|
|
PG_RETURN_INT64((int64) arg1 / arg2);
|
|
}
|
|
|
|
Datum
|
|
int82pl(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 arg1 = PG_GETARG_INT64(0);
|
|
int16 arg2 = PG_GETARG_INT16(1);
|
|
int64 result;
|
|
|
|
if (unlikely(pg_add_s64_overflow(arg1, (int64) arg2, &result)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("bigint out of range")));
|
|
PG_RETURN_INT64(result);
|
|
}
|
|
|
|
Datum
|
|
int82mi(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 arg1 = PG_GETARG_INT64(0);
|
|
int16 arg2 = PG_GETARG_INT16(1);
|
|
int64 result;
|
|
|
|
if (unlikely(pg_sub_s64_overflow(arg1, (int64) arg2, &result)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("bigint out of range")));
|
|
PG_RETURN_INT64(result);
|
|
}
|
|
|
|
Datum
|
|
int82mul(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 arg1 = PG_GETARG_INT64(0);
|
|
int16 arg2 = PG_GETARG_INT16(1);
|
|
int64 result;
|
|
|
|
if (unlikely(pg_mul_s64_overflow(arg1, (int64) arg2, &result)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("bigint out of range")));
|
|
PG_RETURN_INT64(result);
|
|
}
|
|
|
|
Datum
|
|
int82div(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 arg1 = PG_GETARG_INT64(0);
|
|
int16 arg2 = PG_GETARG_INT16(1);
|
|
int64 result;
|
|
|
|
if (unlikely(arg2 == 0))
|
|
{
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DIVISION_BY_ZERO),
|
|
errmsg("division by zero")));
|
|
/* ensure compiler realizes we mustn't reach the division (gcc bug) */
|
|
PG_RETURN_NULL();
|
|
}
|
|
|
|
/*
|
|
* INT64_MIN / -1 is problematic, since the result can't be represented on
|
|
* a two's-complement machine. Some machines produce INT64_MIN, some
|
|
* produce zero, some throw an exception. We can dodge the problem by
|
|
* recognizing that division by -1 is the same as negation.
|
|
*/
|
|
if (arg2 == -1)
|
|
{
|
|
if (unlikely(arg1 == PG_INT64_MIN))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("bigint out of range")));
|
|
result = -arg1;
|
|
PG_RETURN_INT64(result);
|
|
}
|
|
|
|
/* No overflow is possible */
|
|
|
|
result = arg1 / arg2;
|
|
|
|
PG_RETURN_INT64(result);
|
|
}
|
|
|
|
Datum
|
|
int28pl(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
int64 arg2 = PG_GETARG_INT64(1);
|
|
int64 result;
|
|
|
|
if (unlikely(pg_add_s64_overflow((int64) arg1, arg2, &result)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("bigint out of range")));
|
|
PG_RETURN_INT64(result);
|
|
}
|
|
|
|
Datum
|
|
int28mi(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
int64 arg2 = PG_GETARG_INT64(1);
|
|
int64 result;
|
|
|
|
if (unlikely(pg_sub_s64_overflow((int64) arg1, arg2, &result)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("bigint out of range")));
|
|
PG_RETURN_INT64(result);
|
|
}
|
|
|
|
Datum
|
|
int28mul(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
int64 arg2 = PG_GETARG_INT64(1);
|
|
int64 result;
|
|
|
|
if (unlikely(pg_mul_s64_overflow((int64) arg1, arg2, &result)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("bigint out of range")));
|
|
PG_RETURN_INT64(result);
|
|
}
|
|
|
|
Datum
|
|
int28div(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg1 = PG_GETARG_INT16(0);
|
|
int64 arg2 = PG_GETARG_INT64(1);
|
|
|
|
if (unlikely(arg2 == 0))
|
|
{
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DIVISION_BY_ZERO),
|
|
errmsg("division by zero")));
|
|
/* ensure compiler realizes we mustn't reach the division (gcc bug) */
|
|
PG_RETURN_NULL();
|
|
}
|
|
|
|
/* No overflow is possible */
|
|
PG_RETURN_INT64((int64) arg1 / arg2);
|
|
}
|
|
|
|
/* Binary arithmetics
|
|
*
|
|
* int8and - returns arg1 & arg2
|
|
* int8or - returns arg1 | arg2
|
|
* int8xor - returns arg1 # arg2
|
|
* int8not - returns ~arg1
|
|
* int8shl - returns arg1 << arg2
|
|
* int8shr - returns arg1 >> arg2
|
|
*/
|
|
|
|
Datum
|
|
int8and(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 arg1 = PG_GETARG_INT64(0);
|
|
int64 arg2 = PG_GETARG_INT64(1);
|
|
|
|
PG_RETURN_INT64(arg1 & arg2);
|
|
}
|
|
|
|
Datum
|
|
int8or(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 arg1 = PG_GETARG_INT64(0);
|
|
int64 arg2 = PG_GETARG_INT64(1);
|
|
|
|
PG_RETURN_INT64(arg1 | arg2);
|
|
}
|
|
|
|
Datum
|
|
int8xor(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 arg1 = PG_GETARG_INT64(0);
|
|
int64 arg2 = PG_GETARG_INT64(1);
|
|
|
|
PG_RETURN_INT64(arg1 ^ arg2);
|
|
}
|
|
|
|
Datum
|
|
int8not(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 arg1 = PG_GETARG_INT64(0);
|
|
|
|
PG_RETURN_INT64(~arg1);
|
|
}
|
|
|
|
Datum
|
|
int8shl(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 arg1 = PG_GETARG_INT64(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
|
|
PG_RETURN_INT64(arg1 << arg2);
|
|
}
|
|
|
|
Datum
|
|
int8shr(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 arg1 = PG_GETARG_INT64(0);
|
|
int32 arg2 = PG_GETARG_INT32(1);
|
|
|
|
PG_RETURN_INT64(arg1 >> arg2);
|
|
}
|
|
|
|
/*----------------------------------------------------------
|
|
* Conversion operators.
|
|
*---------------------------------------------------------*/
|
|
|
|
Datum
|
|
int48(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 arg = PG_GETARG_INT32(0);
|
|
|
|
PG_RETURN_INT64((int64) arg);
|
|
}
|
|
|
|
Datum
|
|
int84(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 arg = PG_GETARG_INT64(0);
|
|
|
|
if (unlikely(arg < PG_INT32_MIN) || unlikely(arg > PG_INT32_MAX))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("integer out of range")));
|
|
|
|
PG_RETURN_INT32((int32) arg);
|
|
}
|
|
|
|
Datum
|
|
int28(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 arg = PG_GETARG_INT16(0);
|
|
|
|
PG_RETURN_INT64((int64) arg);
|
|
}
|
|
|
|
Datum
|
|
int82(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 arg = PG_GETARG_INT64(0);
|
|
|
|
if (unlikely(arg < PG_INT16_MIN) || unlikely(arg > PG_INT16_MAX))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("smallint out of range")));
|
|
|
|
PG_RETURN_INT16((int16) arg);
|
|
}
|
|
|
|
Datum
|
|
i8tod(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 arg = PG_GETARG_INT64(0);
|
|
float8 result;
|
|
|
|
result = arg;
|
|
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
/* dtoi8()
|
|
* Convert float8 to 8-byte integer.
|
|
*/
|
|
Datum
|
|
dtoi8(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 num = PG_GETARG_FLOAT8(0);
|
|
|
|
/*
|
|
* Get rid of any fractional part in the input. This is so we don't fail
|
|
* on just-out-of-range values that would round into range. Note
|
|
* assumption that rint() will pass through a NaN or Inf unchanged.
|
|
*/
|
|
num = rint(num);
|
|
|
|
/* Range check */
|
|
if (unlikely(isnan(num) || !FLOAT8_FITS_IN_INT64(num)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("bigint out of range")));
|
|
|
|
PG_RETURN_INT64((int64) num);
|
|
}
|
|
|
|
Datum
|
|
i8tof(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 arg = PG_GETARG_INT64(0);
|
|
float4 result;
|
|
|
|
result = arg;
|
|
|
|
PG_RETURN_FLOAT4(result);
|
|
}
|
|
|
|
/* ftoi8()
|
|
* Convert float4 to 8-byte integer.
|
|
*/
|
|
Datum
|
|
ftoi8(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 num = PG_GETARG_FLOAT4(0);
|
|
|
|
/*
|
|
* Get rid of any fractional part in the input. This is so we don't fail
|
|
* on just-out-of-range values that would round into range. Note
|
|
* assumption that rint() will pass through a NaN or Inf unchanged.
|
|
*/
|
|
num = rint(num);
|
|
|
|
/* Range check */
|
|
if (unlikely(isnan(num) || !FLOAT4_FITS_IN_INT64(num)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("bigint out of range")));
|
|
|
|
PG_RETURN_INT64((int64) num);
|
|
}
|
|
|
|
Datum
|
|
i8tooid(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 arg = PG_GETARG_INT64(0);
|
|
|
|
if (unlikely(arg < 0) || unlikely(arg > PG_UINT32_MAX))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("OID out of range")));
|
|
|
|
PG_RETURN_OID((Oid) arg);
|
|
}
|
|
|
|
Datum
|
|
oidtoi8(PG_FUNCTION_ARGS)
|
|
{
|
|
Oid arg = PG_GETARG_OID(0);
|
|
|
|
PG_RETURN_INT64((int64) arg);
|
|
}
|
|
|
|
/*
|
|
* non-persistent numeric series generator
|
|
*/
|
|
Datum
|
|
generate_series_int8(PG_FUNCTION_ARGS)
|
|
{
|
|
return generate_series_step_int8(fcinfo);
|
|
}
|
|
|
|
Datum
|
|
generate_series_step_int8(PG_FUNCTION_ARGS)
|
|
{
|
|
FuncCallContext *funcctx;
|
|
generate_series_fctx *fctx;
|
|
int64 result;
|
|
MemoryContext oldcontext;
|
|
|
|
/* stuff done only on the first call of the function */
|
|
if (SRF_IS_FIRSTCALL())
|
|
{
|
|
int64 start = PG_GETARG_INT64(0);
|
|
int64 finish = PG_GETARG_INT64(1);
|
|
int64 step = 1;
|
|
|
|
/* see if we were given an explicit step size */
|
|
if (PG_NARGS() == 3)
|
|
step = PG_GETARG_INT64(2);
|
|
if (step == 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
|
|
errmsg("step size cannot equal zero")));
|
|
|
|
/* create a function context for cross-call persistence */
|
|
funcctx = SRF_FIRSTCALL_INIT();
|
|
|
|
/*
|
|
* switch to memory context appropriate for multiple function calls
|
|
*/
|
|
oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
|
|
|
|
/* allocate memory for user context */
|
|
fctx = (generate_series_fctx *) palloc(sizeof(generate_series_fctx));
|
|
|
|
/*
|
|
* Use fctx to keep state from call to call. Seed current with the
|
|
* original start value
|
|
*/
|
|
fctx->current = start;
|
|
fctx->finish = finish;
|
|
fctx->step = step;
|
|
|
|
funcctx->user_fctx = fctx;
|
|
MemoryContextSwitchTo(oldcontext);
|
|
}
|
|
|
|
/* stuff done on every call of the function */
|
|
funcctx = SRF_PERCALL_SETUP();
|
|
|
|
/*
|
|
* get the saved state and use current as the result for this iteration
|
|
*/
|
|
fctx = funcctx->user_fctx;
|
|
result = fctx->current;
|
|
|
|
if ((fctx->step > 0 && fctx->current <= fctx->finish) ||
|
|
(fctx->step < 0 && fctx->current >= fctx->finish))
|
|
{
|
|
/*
|
|
* Increment current in preparation for next iteration. If next-value
|
|
* computation overflows, this is the final result.
|
|
*/
|
|
if (pg_add_s64_overflow(fctx->current, fctx->step, &fctx->current))
|
|
fctx->step = 0;
|
|
|
|
/* do when there is more left to send */
|
|
SRF_RETURN_NEXT(funcctx, Int64GetDatum(result));
|
|
}
|
|
else
|
|
/* do when there is no more left */
|
|
SRF_RETURN_DONE(funcctx);
|
|
}
|
|
|
|
/*
|
|
* Planner support function for generate_series(int8, int8 [, int8])
|
|
*/
|
|
Datum
|
|
generate_series_int8_support(PG_FUNCTION_ARGS)
|
|
{
|
|
Node *rawreq = (Node *) PG_GETARG_POINTER(0);
|
|
Node *ret = NULL;
|
|
|
|
if (IsA(rawreq, SupportRequestRows))
|
|
{
|
|
/* Try to estimate the number of rows returned */
|
|
SupportRequestRows *req = (SupportRequestRows *) rawreq;
|
|
|
|
if (is_funcclause(req->node)) /* be paranoid */
|
|
{
|
|
List *args = ((FuncExpr *) req->node)->args;
|
|
Node *arg1,
|
|
*arg2,
|
|
*arg3;
|
|
|
|
/* We can use estimated argument values here */
|
|
arg1 = estimate_expression_value(req->root, linitial(args));
|
|
arg2 = estimate_expression_value(req->root, lsecond(args));
|
|
if (list_length(args) >= 3)
|
|
arg3 = estimate_expression_value(req->root, lthird(args));
|
|
else
|
|
arg3 = NULL;
|
|
|
|
/*
|
|
* If any argument is constant NULL, we can safely assume that
|
|
* zero rows are returned. Otherwise, if they're all non-NULL
|
|
* constants, we can calculate the number of rows that will be
|
|
* returned. Use double arithmetic to avoid overflow hazards.
|
|
*/
|
|
if ((IsA(arg1, Const) &&
|
|
((Const *) arg1)->constisnull) ||
|
|
(IsA(arg2, Const) &&
|
|
((Const *) arg2)->constisnull) ||
|
|
(arg3 != NULL && IsA(arg3, Const) &&
|
|
((Const *) arg3)->constisnull))
|
|
{
|
|
req->rows = 0;
|
|
ret = (Node *) req;
|
|
}
|
|
else if (IsA(arg1, Const) &&
|
|
IsA(arg2, Const) &&
|
|
(arg3 == NULL || IsA(arg3, Const)))
|
|
{
|
|
double start,
|
|
finish,
|
|
step;
|
|
|
|
start = DatumGetInt64(((Const *) arg1)->constvalue);
|
|
finish = DatumGetInt64(((Const *) arg2)->constvalue);
|
|
step = arg3 ? DatumGetInt64(((Const *) arg3)->constvalue) : 1;
|
|
|
|
/* This equation works for either sign of step */
|
|
if (step != 0)
|
|
{
|
|
req->rows = floor((finish - start + step) / step);
|
|
ret = (Node *) req;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
PG_RETURN_POINTER(ret);
|
|
}
|