mirror of
https://github.com/postgres/postgres.git
synced 2025-07-20 05:03:10 +03:00
217 lines
4.4 KiB
C
217 lines
4.4 KiB
C
/*--------
|
|
* Module: tuplelist.c
|
|
*
|
|
* Description: This module contains functions for creating a manual
|
|
* result set (the TupleList) and retrieving data from
|
|
* it for a specific row/column.
|
|
*
|
|
* Classes: TupleListClass (Functions prefix: "TL_")
|
|
*
|
|
* API functions: none
|
|
*
|
|
* Comments: See "notice.txt" for copyright and license information.
|
|
*--------
|
|
*/
|
|
|
|
#include "tuplelist.h"
|
|
|
|
#include <stdlib.h>
|
|
#include "tuple.h"
|
|
|
|
|
|
TupleListClass *
|
|
TL_Constructor(UInt4 fieldcnt)
|
|
{
|
|
TupleListClass *rv;
|
|
|
|
mylog("in TL_Constructor\n");
|
|
|
|
rv = (TupleListClass *) malloc(sizeof(TupleListClass));
|
|
if (rv)
|
|
{
|
|
rv->num_fields = fieldcnt;
|
|
rv->num_tuples = 0;
|
|
rv->list_start = NULL;
|
|
rv->list_end = NULL;
|
|
rv->lastref = NULL;
|
|
rv->last_indexed = -1;
|
|
}
|
|
|
|
mylog("exit TL_Constructor\n");
|
|
|
|
return rv;
|
|
}
|
|
|
|
|
|
void
|
|
TL_Destructor(TupleListClass *self)
|
|
{
|
|
int lf;
|
|
TupleNode *node,
|
|
*tp;
|
|
|
|
mylog("TupleList: in DESTRUCTOR\n");
|
|
|
|
node = self->list_start;
|
|
while (node != NULL)
|
|
{
|
|
for (lf = 0; lf < self->num_fields; lf++)
|
|
if (node->tuple[lf].value != NULL)
|
|
free(node->tuple[lf].value);
|
|
tp = node->next;
|
|
free(node);
|
|
node = tp;
|
|
}
|
|
|
|
free(self);
|
|
|
|
mylog("TupleList: exit DESTRUCTOR\n");
|
|
}
|
|
|
|
|
|
void *
|
|
TL_get_fieldval(TupleListClass *self, Int4 tupleno, Int2 fieldno)
|
|
{
|
|
Int4 lf;
|
|
Int4 delta,
|
|
from_end;
|
|
char end_is_closer,
|
|
start_is_closer;
|
|
TupleNode *rv;
|
|
|
|
if (self->last_indexed == -1)
|
|
/* we have an empty tuple list */
|
|
return NULL;
|
|
|
|
/* some more sanity checks */
|
|
if ((tupleno >= self->num_tuples) || (tupleno < 0))
|
|
/* illegal tuple number range */
|
|
return NULL;
|
|
|
|
if ((fieldno >= self->num_fields) || (fieldno < 0))
|
|
/* illegel field number range */
|
|
return NULL;
|
|
|
|
/*
|
|
* check if we are accessing the same tuple that was used in the last
|
|
* fetch (e.g: for fetching all the fields one after another. Do this
|
|
* to speed things up
|
|
*/
|
|
if (tupleno == self->last_indexed)
|
|
return self->lastref->tuple[fieldno].value;
|
|
|
|
/* now for the tricky part... */
|
|
|
|
/*
|
|
* Since random access is quite inefficient for linked lists we use
|
|
* the lastref pointer that points to the last element referenced by a
|
|
* get_fieldval() call in conjunction with the its index number that
|
|
* is stored in last_indexed. (So we use some locality of reference
|
|
* principle to speed things up)
|
|
*/
|
|
|
|
delta = tupleno - self->last_indexed;
|
|
/* if delta is positive, we have to go forward */
|
|
|
|
/*
|
|
* now check if we are closer to the start or the end of the list than
|
|
* to our last_indexed pointer
|
|
*/
|
|
from_end = (self->num_tuples - 1) - tupleno;
|
|
|
|
start_is_closer = labs(delta) > tupleno;
|
|
|
|
/*
|
|
* true if we are closer to the start of the list than to the
|
|
* last_indexed pointer
|
|
*/
|
|
|
|
end_is_closer = labs(delta) > from_end;
|
|
/* true if we are closer at the end of the list */
|
|
|
|
if (end_is_closer)
|
|
{
|
|
/* scanning from the end is the shortest way. so we do that... */
|
|
rv = self->list_end;
|
|
for (lf = 0; lf < from_end; lf++)
|
|
rv = rv->prev;
|
|
}
|
|
else if (start_is_closer)
|
|
{
|
|
/*
|
|
* the shortest way is to start the search from the head of the
|
|
* list
|
|
*/
|
|
rv = self->list_start;
|
|
for (lf = 0; lf < tupleno; lf++)
|
|
rv = rv->next;
|
|
}
|
|
else
|
|
{
|
|
/* the closest way is starting from our lastref - pointer */
|
|
rv = self->lastref;
|
|
|
|
/*
|
|
* at first determine whether we have to search forward or
|
|
* backwards
|
|
*/
|
|
if (delta < 0)
|
|
{
|
|
/* we have to search backwards */
|
|
for (lf = 0; lf < (-1) * delta; lf++)
|
|
rv = rv->prev;
|
|
}
|
|
else
|
|
{
|
|
/* ok, we have to search forward... */
|
|
for (lf = 0; lf < delta; lf++)
|
|
rv = rv->next;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* now we have got our return pointer, so update the lastref and the
|
|
* last_indexed values
|
|
*/
|
|
self->lastref = rv;
|
|
self->last_indexed = tupleno;
|
|
|
|
return rv->tuple[fieldno].value;
|
|
}
|
|
|
|
|
|
char
|
|
TL_add_tuple(TupleListClass *self, TupleNode *new_field)
|
|
{
|
|
/*
|
|
* we append the tuple at the end of the doubly linked list of the
|
|
* tuples we have already read in
|
|
*/
|
|
|
|
new_field->prev = NULL;
|
|
new_field->next = NULL;
|
|
|
|
if (self->list_start == NULL)
|
|
{
|
|
/* the list is empty, we have to add the first tuple */
|
|
self->list_start = new_field;
|
|
self->list_end = new_field;
|
|
self->lastref = new_field;
|
|
self->last_indexed = 0;
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* there is already an element in the list, so add the new one at
|
|
* the end of the list
|
|
*/
|
|
self->list_end->next = new_field;
|
|
new_field->prev = self->list_end;
|
|
self->list_end = new_field;
|
|
}
|
|
self->num_tuples++;
|
|
|
|
/* this method of building a list cannot fail, so we return 1 */
|
|
return 1;
|
|
}
|