mirror of
https://github.com/postgres/postgres.git
synced 2025-04-18 13:44:19 +03:00
This changes the check for valid characters in the salt string to only allow plain ASCII letters and digits. The previous coding was locale-dependent which doesn't really seem like a great idea here; moreover it could not work correctly in multibyte encodings. This fixes a careless pointer-use-after-pfree, too. Reported-by: Tom Lane <tgl@sss.pgh.pa.us> Reported-by: Andres Freund <andres@anarazel.de> Author: Bernd Helmle <mailings@oopsware.de> Discussion: https://postgr.es/m/6fab35422df6b6b9727fdcc243c5fa1c667dd3b5.camel@oopsware.de
643 lines
20 KiB
C
643 lines
20 KiB
C
/*
|
|
* contrib/pgcrypto/crypt-sha.c
|
|
*
|
|
* This implements shacrypt password hash functions and follows the
|
|
* public available reference implementation from
|
|
*
|
|
* https://www.akkadia.org/drepper/SHA-crypt.txt
|
|
*
|
|
* This code is public domain.
|
|
*
|
|
* Please see the inline comments for details about the algorithm.
|
|
*
|
|
* Basically the following code implements password hashing with sha256 and
|
|
* sha512 digest via OpenSSL. Additionally, an extended salt generation (see
|
|
* crypt-gensalt.c for details) is provided, which generates a salt suitable
|
|
* for either sha256crypt and sha512crypt password hash generation.
|
|
*
|
|
* Official identifiers for suitable password hashes used in salts are
|
|
* 5 : sha256crypt and
|
|
* 6 : sha512crypt
|
|
*
|
|
* The hashing code below supports and uses salt length up to 16 bytes. Longer
|
|
* input is possible, but any additional byte of the input is disregarded.
|
|
* gen_salt(), when called with a sha256crypt or sha512crypt identifier will
|
|
* always generate a 16 byte long salt string.
|
|
*
|
|
* Output is compatible with any sha256crypt and sha512crypt output
|
|
* generated by e.g. OpenSSL or libc crypt().
|
|
*
|
|
* The described algorithm uses default computing rounds of 5000. Currently,
|
|
* even when no specific rounds specification is used, we always explicitly
|
|
* print out the rounds option flag with the final hash password string.
|
|
*
|
|
* The length of the specific password hash (without magic bytes and salt
|
|
* string) is:
|
|
*
|
|
* sha256crypt: 43 bytes and
|
|
* sha512crypt: 86 bytes.
|
|
*
|
|
* Overall hashed password length is:
|
|
*
|
|
* sha256crypt: 80 bytes and
|
|
* sha512crypt: 123 bytes
|
|
*
|
|
*/
|
|
#include "postgres.h"
|
|
|
|
#include "common/string.h"
|
|
#include "mb/pg_wchar.h"
|
|
#include "miscadmin.h"
|
|
|
|
#include "px-crypt.h"
|
|
#include "px.h"
|
|
|
|
typedef enum
|
|
{
|
|
PGCRYPTO_SHA256CRYPT = 0,
|
|
PGCRYPTO_SHA512CRYPT = 1,
|
|
PGCRYPTO_SHA_UNKOWN
|
|
} PGCRYPTO_SHA_t;
|
|
|
|
static const char _crypt_itoa64[64 + 1] =
|
|
"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
|
|
|
|
/*
|
|
* Modern UNIX password, based on SHA crypt hashes
|
|
*/
|
|
char *
|
|
px_crypt_shacrypt(const char *pw, const char *salt, char *passwd, unsigned dstlen)
|
|
{
|
|
static const char rounds_prefix[] = "rounds=";
|
|
static const char *magic_bytes[2] = {"$5$", "$6$"};
|
|
|
|
/* Used to create the password hash string */
|
|
StringInfo out_buf = NULL;
|
|
|
|
PGCRYPTO_SHA_t type = PGCRYPTO_SHA_UNKOWN;
|
|
PX_MD *digestA = NULL;
|
|
PX_MD *digestB = NULL;
|
|
int err;
|
|
|
|
const char *dec_salt_binary; /* pointer into the real salt string */
|
|
StringInfo decoded_salt = NULL; /* decoded salt string */
|
|
unsigned char sha_buf[PX_SHACRYPT_DIGEST_MAX_LEN];
|
|
|
|
/* temporary buffer for digests */
|
|
unsigned char sha_buf_tmp[PX_SHACRYPT_DIGEST_MAX_LEN];
|
|
char rounds_custom = 0;
|
|
char *p_bytes = NULL;
|
|
char *s_bytes = NULL;
|
|
char *cp = NULL;
|
|
const char *fp = NULL; /* intermediate pointer within salt string */
|
|
const char *ep = NULL; /* holds pointer to the end of the salt string */
|
|
size_t buf_size = 0; /* buffer size for sha256crypt/sha512crypt */
|
|
unsigned int block; /* number of bytes processed */
|
|
uint32 rounds = PX_SHACRYPT_ROUNDS_DEFAULT;
|
|
unsigned int len,
|
|
salt_len = 0;
|
|
|
|
/* Sanity checks */
|
|
if (!passwd)
|
|
return NULL;
|
|
|
|
if (pw == NULL)
|
|
elog(ERROR, "null value for password rejected");
|
|
|
|
if (salt == NULL)
|
|
elog(ERROR, "null value for salt rejected");
|
|
|
|
/*
|
|
* Make sure result buffers are large enough.
|
|
*/
|
|
if (dstlen < PX_SHACRYPT_BUF_LEN)
|
|
elog(ERROR, "insufficient result buffer size to encrypt password");
|
|
|
|
/* Init result buffer */
|
|
out_buf = makeStringInfoExt(PX_SHACRYPT_BUF_LEN);
|
|
decoded_salt = makeStringInfoExt(PX_SHACRYPT_SALT_MAX_LEN);
|
|
|
|
/* Init contents of buffers properly */
|
|
memset(&sha_buf, '\0', sizeof(sha_buf));
|
|
memset(&sha_buf_tmp, '\0', sizeof(sha_buf_tmp));
|
|
|
|
/*
|
|
* Decode the salt string. We need to know how many rounds and which
|
|
* digest we have to use to hash the password.
|
|
*/
|
|
len = strlen(pw);
|
|
dec_salt_binary = salt;
|
|
|
|
/*
|
|
* Analyze and prepare the salt string
|
|
*
|
|
* The magic string should be specified in the first three bytes of the
|
|
* salt string. Do some sanity checks first.
|
|
*/
|
|
if (strlen(dec_salt_binary) < 3)
|
|
ereport(ERROR,
|
|
errcode(ERRCODE_INVALID_PARAMETER_VALUE),
|
|
errmsg("invalid salt"));
|
|
|
|
/*
|
|
* Check format of magic bytes. These should define either 5=sha256crypt
|
|
* or 6=sha512crypt in the second byte, enclosed by ascii dollar signs.
|
|
*/
|
|
if ((dec_salt_binary[0] != '$') || (dec_salt_binary[2] != '$'))
|
|
ereport(ERROR,
|
|
errcode(ERRCODE_INVALID_PARAMETER_VALUE),
|
|
errmsg("invalid format of salt"),
|
|
errhint("magic byte format for shacrypt is either \"$5$\" or \"$6$\""));
|
|
|
|
/*
|
|
* Check magic byte for supported shacrypt digest.
|
|
*
|
|
* We're just interested in the very first 3 bytes of the salt string,
|
|
* since this defines the digest length to use.
|
|
*/
|
|
if (strncmp(dec_salt_binary, magic_bytes[0], strlen(magic_bytes[0])) == 0)
|
|
{
|
|
type = PGCRYPTO_SHA256CRYPT;
|
|
dec_salt_binary += strlen(magic_bytes[0]);
|
|
}
|
|
else if (strncmp(dec_salt_binary, magic_bytes[1], strlen(magic_bytes[1])) == 0)
|
|
{
|
|
type = PGCRYPTO_SHA512CRYPT;
|
|
dec_salt_binary += strlen(magic_bytes[1]);
|
|
}
|
|
|
|
/*
|
|
* dec_salt_binary pointer is positioned after the magic bytes now
|
|
*
|
|
* We extract any options in the following code branch. The only optional
|
|
* setting we need to take care of is the "rounds" option. Note that the
|
|
* salt generator already checked for invalid settings before, but we need
|
|
* to do it here again to protect against injection of wrong values when
|
|
* called without the generator.
|
|
*
|
|
* If there is any garbage added after the magic byte and the options/salt
|
|
* string, we don't treat this special: This is just absorbed as part of
|
|
* the salt with up to PX_SHACRYPT_SALT_LEN_MAX.
|
|
*
|
|
* Unknown magic byte is handled further below.
|
|
*/
|
|
if (strncmp(dec_salt_binary,
|
|
rounds_prefix, sizeof(rounds_prefix) - 1) == 0)
|
|
{
|
|
const char *num = dec_salt_binary + sizeof(rounds_prefix) - 1;
|
|
char *endp;
|
|
int srounds = strtoint(num, &endp, 10);
|
|
|
|
if (*endp != '$')
|
|
ereport(ERROR,
|
|
errcode(ERRCODE_SYNTAX_ERROR),
|
|
errmsg("could not parse salt options"));
|
|
|
|
dec_salt_binary = endp + 1;
|
|
|
|
/*
|
|
* We violate supported lower or upper bound of rounds, but in this
|
|
* case we change this value to the supported lower or upper value. We
|
|
* don't do this silently and print a NOTICE in such a case.
|
|
*
|
|
* Note that a salt string generated with gen_salt() would never
|
|
* generated such a salt string, since it would error out.
|
|
*
|
|
* But Drepper's upstream reference implementation supports this when
|
|
* passing the salt string directly, so we maintain compatibility.
|
|
*/
|
|
if (srounds > PX_SHACRYPT_ROUNDS_MAX)
|
|
{
|
|
ereport(NOTICE,
|
|
errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("rounds=%d exceeds maximum supported value (%d), using %d instead",
|
|
srounds, PX_SHACRYPT_ROUNDS_MAX,
|
|
PX_SHACRYPT_ROUNDS_MAX));
|
|
srounds = PX_SHACRYPT_ROUNDS_MAX;
|
|
}
|
|
else if (srounds < PX_SHACRYPT_ROUNDS_MIN)
|
|
{
|
|
ereport(NOTICE,
|
|
errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("rounds=%d is below supported value (%d), using %d instead",
|
|
srounds, PX_SHACRYPT_ROUNDS_MIN,
|
|
PX_SHACRYPT_ROUNDS_MIN));
|
|
srounds = PX_SHACRYPT_ROUNDS_MIN;
|
|
}
|
|
|
|
rounds = (uint32) srounds;
|
|
rounds_custom = 1;
|
|
}
|
|
|
|
/*
|
|
* Choose the correct digest length and add the magic bytes to the result
|
|
* buffer. Also handle possible invalid magic byte we've extracted above.
|
|
*/
|
|
switch (type)
|
|
{
|
|
case PGCRYPTO_SHA256CRYPT:
|
|
{
|
|
/* Two PX_MD objects required */
|
|
err = px_find_digest("sha256", &digestA);
|
|
if (err)
|
|
goto error;
|
|
|
|
err = px_find_digest("sha256", &digestB);
|
|
if (err)
|
|
goto error;
|
|
|
|
/* digest buffer length is 32 for sha256 */
|
|
buf_size = 32;
|
|
|
|
appendStringInfoString(out_buf, magic_bytes[0]);
|
|
break;
|
|
}
|
|
|
|
case PGCRYPTO_SHA512CRYPT:
|
|
{
|
|
/* Two PX_MD objects required */
|
|
err = px_find_digest("sha512", &digestA);
|
|
if (err)
|
|
goto error;
|
|
|
|
err = px_find_digest("sha512", &digestB);
|
|
if (err)
|
|
goto error;
|
|
|
|
buf_size = PX_SHACRYPT_DIGEST_MAX_LEN;
|
|
|
|
appendStringInfoString(out_buf, magic_bytes[1]);
|
|
break;
|
|
}
|
|
|
|
case PGCRYPTO_SHA_UNKOWN:
|
|
elog(ERROR, "unknown crypt identifier \"%c\"", salt[1]);
|
|
}
|
|
|
|
if (rounds_custom > 0)
|
|
appendStringInfo(out_buf, "rounds=%u$", rounds);
|
|
|
|
/*
|
|
* We need the real decoded salt string from salt input, this is every
|
|
* character before the last '$' in the preamble. Append every compatible
|
|
* character up to PX_SHACRYPT_SALT_MAX_LEN to the result buffer. Note
|
|
* that depending on the input, there might be no '$' marker after the
|
|
* salt, when there is no password hash attached at the end.
|
|
*
|
|
* We try hard to recognize mistakes, but since we might get an input
|
|
* string which might also have the password hash after the salt string
|
|
* section we give up as soon we reach the end of the input or if there
|
|
* are any bytes consumed for the salt string until we reach the first '$'
|
|
* marker thereafter.
|
|
*/
|
|
for (ep = dec_salt_binary;
|
|
*ep && ep < (dec_salt_binary + PX_SHACRYPT_SALT_MAX_LEN);
|
|
ep++)
|
|
{
|
|
/*
|
|
* Filter out any string which shouldn't be here.
|
|
*
|
|
* First check for accidentally embedded magic strings here. We don't
|
|
* support '$' in salt strings anyways and seeing a magic byte trying
|
|
* to identify shacrypt hashes might indicate that something went
|
|
* wrong when generating this salt string. Note that we later check
|
|
* for non-supported literals anyways, but any '$' here confuses us at
|
|
* this point.
|
|
*/
|
|
fp = strstr(dec_salt_binary, magic_bytes[0]);
|
|
if (fp != NULL)
|
|
elog(ERROR, "bogus magic byte found in salt string");
|
|
|
|
fp = strstr(dec_salt_binary, magic_bytes[1]);
|
|
if (fp != NULL)
|
|
elog(ERROR, "bogus magic byte found in salt string");
|
|
|
|
/*
|
|
* This looks very strict, but we assume the caller did something
|
|
* wrong when we see a "rounds=" option here.
|
|
*/
|
|
fp = strstr(dec_salt_binary, rounds_prefix);
|
|
if (fp != NULL)
|
|
elog(ERROR, "invalid rounds option specified in salt string");
|
|
|
|
if (*ep != '$')
|
|
{
|
|
if (strchr(_crypt_itoa64, *ep) != NULL)
|
|
appendStringInfoCharMacro(decoded_salt, *ep);
|
|
else
|
|
ereport(ERROR,
|
|
errcode(ERRCODE_INVALID_PARAMETER_VALUE),
|
|
errmsg("invalid character in salt string: \"%.*s\"",
|
|
pg_mblen(ep), ep));
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* We encountered a '$' marker. Check if we already absorbed some
|
|
* bytes from input. If true, we are optimistic and terminate at
|
|
* this stage. If not, we try further.
|
|
*
|
|
* If we already consumed enough bytes for the salt string,
|
|
* everything that is after this marker is considered to be part
|
|
* of an optionally specified password hash and ignored.
|
|
*/
|
|
if (decoded_salt->len > 0)
|
|
break;
|
|
}
|
|
}
|
|
|
|
salt_len = decoded_salt->len;
|
|
appendStringInfoString(out_buf, decoded_salt->data);
|
|
elog(DEBUG1, "using salt \"%s\", salt len = %d, rounds = %u",
|
|
decoded_salt->data, decoded_salt->len, rounds);
|
|
|
|
/*
|
|
* Sanity check: at this point the salt string buffer must not exceed
|
|
* expected size.
|
|
*/
|
|
if (out_buf->len > (3 + 17 * rounds_custom + salt_len))
|
|
elog(ERROR, "unexpected length of salt string");
|
|
|
|
/*-
|
|
* 1. Start digest A
|
|
* 2. Add the password string to digest A
|
|
* 3. Add the salt to digest A
|
|
*/
|
|
px_md_update(digestA, (const unsigned char *) pw, len);
|
|
px_md_update(digestA, (const unsigned char *) decoded_salt->data, salt_len);
|
|
|
|
/*-
|
|
* 4. Create digest B
|
|
* 5. Add password to digest B
|
|
* 6. Add the salt string to digest B
|
|
* 7. Add the password again to digest B
|
|
* 8. Finalize digest B
|
|
*/
|
|
px_md_update(digestB, (const unsigned char *) pw, len);
|
|
px_md_update(digestB, (const unsigned char *) dec_salt_binary, salt_len);
|
|
px_md_update(digestB, (const unsigned char *) pw, len);
|
|
px_md_finish(digestB, sha_buf);
|
|
|
|
/*
|
|
* 9. For each block (excluding the NULL byte), add digest B to digest A.
|
|
*/
|
|
for (block = len; block > buf_size; block -= buf_size)
|
|
px_md_update(digestA, sha_buf, buf_size);
|
|
|
|
/*-
|
|
* 10. For the remaining N bytes of the password string, add the first N
|
|
* bytes of digest B to A.
|
|
*/
|
|
px_md_update(digestA, sha_buf, block);
|
|
|
|
/*-
|
|
* 11. For each bit of the binary representation of the length of the
|
|
* password string up to and including the highest 1-digit, starting from
|
|
* to lowest bit position (numeric value 1)
|
|
*
|
|
* a) for a 1-digit add digest B (sha_buf) to digest A
|
|
* b) for a 0-digit add the password string
|
|
*/
|
|
block = len;
|
|
while (block)
|
|
{
|
|
px_md_update(digestA,
|
|
(block & 1) ? sha_buf : (const unsigned char *) pw,
|
|
(block & 1) ? buf_size : len);
|
|
|
|
/* right shift to next byte */
|
|
block >>= 1;
|
|
}
|
|
|
|
/* 12. Finalize digest A */
|
|
px_md_finish(digestA, sha_buf);
|
|
|
|
/* 13. Start digest DP */
|
|
px_md_reset(digestB);
|
|
|
|
/*-
|
|
* 14 Add every byte of the password string (excluding trailing NULL)
|
|
* to the digest DP
|
|
*/
|
|
for (block = len; block > 0; block--)
|
|
px_md_update(digestB, (const unsigned char *) pw, len);
|
|
|
|
/* 15. Finalize digest DP */
|
|
px_md_finish(digestB, sha_buf_tmp);
|
|
|
|
/*-
|
|
* 16. produce byte sequence P with same length as password.
|
|
* a) for each block of 32 or 64 bytes of length of the password
|
|
* string the entire digest DP is used
|
|
* b) for the remaining N (up to 31 or 63) bytes use the
|
|
* first N bytes of digest DP
|
|
*/
|
|
if ((p_bytes = palloc0(len)) == NULL)
|
|
{
|
|
goto error;
|
|
}
|
|
|
|
/* N step of 16, copy over the bytes from password */
|
|
for (cp = p_bytes, block = len; block > buf_size; block -= buf_size, cp += buf_size)
|
|
memcpy(cp, sha_buf_tmp, buf_size);
|
|
memcpy(cp, sha_buf_tmp, block);
|
|
|
|
/*
|
|
* 17. Start digest DS
|
|
*/
|
|
px_md_reset(digestB);
|
|
|
|
/*-
|
|
* 18. Repeat the following 16+A[0] times, where A[0] represents the first
|
|
* byte in digest A interpreted as an 8-bit unsigned value
|
|
* add the salt to digest DS
|
|
*/
|
|
for (block = 16 + sha_buf[0]; block > 0; block--)
|
|
px_md_update(digestB, (const unsigned char *) dec_salt_binary, salt_len);
|
|
|
|
/*
|
|
* 19. Finalize digest DS
|
|
*/
|
|
px_md_finish(digestB, sha_buf_tmp);
|
|
|
|
/*-
|
|
* 20. Produce byte sequence S of the same length as the salt string where
|
|
*
|
|
* a) for each block of 32 or 64 bytes of length of the salt string the
|
|
* entire digest DS is used
|
|
*
|
|
* b) for the remaining N (up to 31 or 63) bytes use the first N
|
|
* bytes of digest DS
|
|
*/
|
|
if ((s_bytes = palloc0(salt_len)) == NULL)
|
|
goto error;
|
|
|
|
for (cp = s_bytes, block = salt_len; block > buf_size; block -= buf_size, cp += buf_size)
|
|
memcpy(cp, sha_buf_tmp, buf_size);
|
|
memcpy(cp, sha_buf_tmp, block);
|
|
|
|
/* Make sure we don't leave something important behind */
|
|
px_memset(&sha_buf_tmp, 0, sizeof sha_buf);
|
|
|
|
/*-
|
|
* 21. Repeat a loop according to the number specified in the rounds=<N>
|
|
* specification in the salt (or the default value if none is
|
|
* present). Each round is numbered, starting with 0 and up to N-1.
|
|
*
|
|
* The loop uses a digest as input. In the first round it is the
|
|
* digest produced in step 12. In the latter steps it is the digest
|
|
* produced in step 21.h of the previous round. The following text
|
|
* uses the notation "digest A/B" to describe this behavior.
|
|
*/
|
|
for (block = 0; block < rounds; block++)
|
|
{
|
|
/*
|
|
* Make it possible to abort in case large values for "rounds" are
|
|
* specified.
|
|
*/
|
|
CHECK_FOR_INTERRUPTS();
|
|
|
|
/* a) start digest B */
|
|
px_md_reset(digestB);
|
|
|
|
/*-
|
|
* b) for odd round numbers add the byte sequence P to digest B
|
|
* c) for even round numbers add digest A/B
|
|
*/
|
|
px_md_update(digestB,
|
|
(block & 1) ? (const unsigned char *) p_bytes : sha_buf,
|
|
(block & 1) ? len : buf_size);
|
|
|
|
/* d) for all round numbers not divisible by 3 add the byte sequence S */
|
|
if ((block % 3) != 0)
|
|
px_md_update(digestB, (const unsigned char *) s_bytes, salt_len);
|
|
|
|
/* e) for all round numbers not divisible by 7 add the byte sequence P */
|
|
if ((block % 7) != 0)
|
|
px_md_update(digestB, (const unsigned char *) p_bytes, len);
|
|
|
|
/*-
|
|
* f) for odd round numbers add digest A/C
|
|
* g) for even round numbers add the byte sequence P
|
|
*/
|
|
px_md_update(digestB,
|
|
(block & 1) ? sha_buf : (const unsigned char *) p_bytes,
|
|
(block & 1) ? buf_size : len);
|
|
|
|
/* h) finish digest C. */
|
|
px_md_finish(digestB, sha_buf);
|
|
}
|
|
|
|
px_md_free(digestA);
|
|
px_md_free(digestB);
|
|
|
|
digestA = NULL;
|
|
digestB = NULL;
|
|
|
|
pfree(s_bytes);
|
|
pfree(p_bytes);
|
|
|
|
s_bytes = NULL;
|
|
p_bytes = NULL;
|
|
|
|
/* prepare final result buffer */
|
|
appendStringInfoCharMacro(out_buf, '$');
|
|
|
|
#define b64_from_24bit(B2, B1, B0, N) \
|
|
do { \
|
|
unsigned int w = ((B2) << 16) | ((B1) << 8) | (B0); \
|
|
int i = (N); \
|
|
while (i-- > 0) \
|
|
{ \
|
|
appendStringInfoCharMacro(out_buf, _crypt_itoa64[w & 0x3f]); \
|
|
w >>= 6; \
|
|
} \
|
|
} while (0)
|
|
|
|
switch (type)
|
|
{
|
|
case PGCRYPTO_SHA256CRYPT:
|
|
{
|
|
b64_from_24bit(sha_buf[0], sha_buf[10], sha_buf[20], 4);
|
|
b64_from_24bit(sha_buf[21], sha_buf[1], sha_buf[11], 4);
|
|
b64_from_24bit(sha_buf[12], sha_buf[22], sha_buf[2], 4);
|
|
b64_from_24bit(sha_buf[3], sha_buf[13], sha_buf[23], 4);
|
|
b64_from_24bit(sha_buf[24], sha_buf[4], sha_buf[14], 4);
|
|
b64_from_24bit(sha_buf[15], sha_buf[25], sha_buf[5], 4);
|
|
b64_from_24bit(sha_buf[6], sha_buf[16], sha_buf[26], 4);
|
|
b64_from_24bit(sha_buf[27], sha_buf[7], sha_buf[17], 4);
|
|
b64_from_24bit(sha_buf[18], sha_buf[28], sha_buf[8], 4);
|
|
b64_from_24bit(sha_buf[9], sha_buf[19], sha_buf[29], 4);
|
|
b64_from_24bit(0, sha_buf[31], sha_buf[30], 3);
|
|
|
|
break;
|
|
}
|
|
|
|
case PGCRYPTO_SHA512CRYPT:
|
|
{
|
|
b64_from_24bit(sha_buf[0], sha_buf[21], sha_buf[42], 4);
|
|
b64_from_24bit(sha_buf[22], sha_buf[43], sha_buf[1], 4);
|
|
b64_from_24bit(sha_buf[44], sha_buf[2], sha_buf[23], 4);
|
|
b64_from_24bit(sha_buf[3], sha_buf[24], sha_buf[45], 4);
|
|
b64_from_24bit(sha_buf[25], sha_buf[46], sha_buf[4], 4);
|
|
b64_from_24bit(sha_buf[47], sha_buf[5], sha_buf[26], 4);
|
|
b64_from_24bit(sha_buf[6], sha_buf[27], sha_buf[48], 4);
|
|
b64_from_24bit(sha_buf[28], sha_buf[49], sha_buf[7], 4);
|
|
b64_from_24bit(sha_buf[50], sha_buf[8], sha_buf[29], 4);
|
|
b64_from_24bit(sha_buf[9], sha_buf[30], sha_buf[51], 4);
|
|
b64_from_24bit(sha_buf[31], sha_buf[52], sha_buf[10], 4);
|
|
b64_from_24bit(sha_buf[53], sha_buf[11], sha_buf[32], 4);
|
|
b64_from_24bit(sha_buf[12], sha_buf[33], sha_buf[54], 4);
|
|
b64_from_24bit(sha_buf[34], sha_buf[55], sha_buf[13], 4);
|
|
b64_from_24bit(sha_buf[56], sha_buf[14], sha_buf[35], 4);
|
|
b64_from_24bit(sha_buf[15], sha_buf[36], sha_buf[57], 4);
|
|
b64_from_24bit(sha_buf[37], sha_buf[58], sha_buf[16], 4);
|
|
b64_from_24bit(sha_buf[59], sha_buf[17], sha_buf[38], 4);
|
|
b64_from_24bit(sha_buf[18], sha_buf[39], sha_buf[60], 4);
|
|
b64_from_24bit(sha_buf[40], sha_buf[61], sha_buf[19], 4);
|
|
b64_from_24bit(sha_buf[62], sha_buf[20], sha_buf[41], 4);
|
|
b64_from_24bit(0, 0, sha_buf[63], 2);
|
|
|
|
break;
|
|
}
|
|
|
|
case PGCRYPTO_SHA_UNKOWN:
|
|
/* we shouldn't land here ... */
|
|
elog(ERROR, "unsupported digest length");
|
|
}
|
|
|
|
/*
|
|
* Copy over result to specified buffer.
|
|
*
|
|
* The passwd character buffer should have at least PX_SHACRYPT_BUF_LEN
|
|
* allocated, since we checked above if dstlen is smaller than
|
|
* PX_SHACRYPT_BUF_LEN (which also includes the NULL byte).
|
|
*
|
|
* In that case we would have failed above already.
|
|
*/
|
|
memcpy(passwd, out_buf->data, out_buf->len);
|
|
|
|
/* make sure nothing important is left behind */
|
|
px_memset(&sha_buf, 0, sizeof sha_buf);
|
|
destroyStringInfo(out_buf);
|
|
destroyStringInfo(decoded_salt);
|
|
|
|
/* ...and we're done */
|
|
return passwd;
|
|
|
|
error:
|
|
if (digestA != NULL)
|
|
px_md_free(digestA);
|
|
|
|
if (digestB != NULL)
|
|
px_md_free(digestB);
|
|
|
|
destroyStringInfo(out_buf);
|
|
destroyStringInfo(decoded_salt);
|
|
|
|
ereport(ERROR,
|
|
errcode(ERRCODE_INTERNAL_ERROR),
|
|
errmsg("cannot create encrypted password"));
|
|
return NULL; /* keep compiler quiet */
|
|
}
|