1
0
mirror of https://github.com/postgres/postgres.git synced 2025-04-18 13:44:19 +03:00
postgres/contrib/pgcrypto/crypt-sha.c
Tom Lane 969ab9d4f5 Follow-up fixes for SHA-2 patch (commit 749a9e20c).
This changes the check for valid characters in the salt string to
only allow plain ASCII letters and digits.  The previous coding was
locale-dependent which doesn't really seem like a great idea here;
moreover it could not work correctly in multibyte encodings.

This fixes a careless pointer-use-after-pfree, too.

Reported-by: Tom Lane <tgl@sss.pgh.pa.us>
Reported-by: Andres Freund <andres@anarazel.de>
Author: Bernd Helmle <mailings@oopsware.de>
Discussion: https://postgr.es/m/6fab35422df6b6b9727fdcc243c5fa1c667dd3b5.camel@oopsware.de
2025-04-07 14:14:28 -04:00

643 lines
20 KiB
C

/*
* contrib/pgcrypto/crypt-sha.c
*
* This implements shacrypt password hash functions and follows the
* public available reference implementation from
*
* https://www.akkadia.org/drepper/SHA-crypt.txt
*
* This code is public domain.
*
* Please see the inline comments for details about the algorithm.
*
* Basically the following code implements password hashing with sha256 and
* sha512 digest via OpenSSL. Additionally, an extended salt generation (see
* crypt-gensalt.c for details) is provided, which generates a salt suitable
* for either sha256crypt and sha512crypt password hash generation.
*
* Official identifiers for suitable password hashes used in salts are
* 5 : sha256crypt and
* 6 : sha512crypt
*
* The hashing code below supports and uses salt length up to 16 bytes. Longer
* input is possible, but any additional byte of the input is disregarded.
* gen_salt(), when called with a sha256crypt or sha512crypt identifier will
* always generate a 16 byte long salt string.
*
* Output is compatible with any sha256crypt and sha512crypt output
* generated by e.g. OpenSSL or libc crypt().
*
* The described algorithm uses default computing rounds of 5000. Currently,
* even when no specific rounds specification is used, we always explicitly
* print out the rounds option flag with the final hash password string.
*
* The length of the specific password hash (without magic bytes and salt
* string) is:
*
* sha256crypt: 43 bytes and
* sha512crypt: 86 bytes.
*
* Overall hashed password length is:
*
* sha256crypt: 80 bytes and
* sha512crypt: 123 bytes
*
*/
#include "postgres.h"
#include "common/string.h"
#include "mb/pg_wchar.h"
#include "miscadmin.h"
#include "px-crypt.h"
#include "px.h"
typedef enum
{
PGCRYPTO_SHA256CRYPT = 0,
PGCRYPTO_SHA512CRYPT = 1,
PGCRYPTO_SHA_UNKOWN
} PGCRYPTO_SHA_t;
static const char _crypt_itoa64[64 + 1] =
"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
/*
* Modern UNIX password, based on SHA crypt hashes
*/
char *
px_crypt_shacrypt(const char *pw, const char *salt, char *passwd, unsigned dstlen)
{
static const char rounds_prefix[] = "rounds=";
static const char *magic_bytes[2] = {"$5$", "$6$"};
/* Used to create the password hash string */
StringInfo out_buf = NULL;
PGCRYPTO_SHA_t type = PGCRYPTO_SHA_UNKOWN;
PX_MD *digestA = NULL;
PX_MD *digestB = NULL;
int err;
const char *dec_salt_binary; /* pointer into the real salt string */
StringInfo decoded_salt = NULL; /* decoded salt string */
unsigned char sha_buf[PX_SHACRYPT_DIGEST_MAX_LEN];
/* temporary buffer for digests */
unsigned char sha_buf_tmp[PX_SHACRYPT_DIGEST_MAX_LEN];
char rounds_custom = 0;
char *p_bytes = NULL;
char *s_bytes = NULL;
char *cp = NULL;
const char *fp = NULL; /* intermediate pointer within salt string */
const char *ep = NULL; /* holds pointer to the end of the salt string */
size_t buf_size = 0; /* buffer size for sha256crypt/sha512crypt */
unsigned int block; /* number of bytes processed */
uint32 rounds = PX_SHACRYPT_ROUNDS_DEFAULT;
unsigned int len,
salt_len = 0;
/* Sanity checks */
if (!passwd)
return NULL;
if (pw == NULL)
elog(ERROR, "null value for password rejected");
if (salt == NULL)
elog(ERROR, "null value for salt rejected");
/*
* Make sure result buffers are large enough.
*/
if (dstlen < PX_SHACRYPT_BUF_LEN)
elog(ERROR, "insufficient result buffer size to encrypt password");
/* Init result buffer */
out_buf = makeStringInfoExt(PX_SHACRYPT_BUF_LEN);
decoded_salt = makeStringInfoExt(PX_SHACRYPT_SALT_MAX_LEN);
/* Init contents of buffers properly */
memset(&sha_buf, '\0', sizeof(sha_buf));
memset(&sha_buf_tmp, '\0', sizeof(sha_buf_tmp));
/*
* Decode the salt string. We need to know how many rounds and which
* digest we have to use to hash the password.
*/
len = strlen(pw);
dec_salt_binary = salt;
/*
* Analyze and prepare the salt string
*
* The magic string should be specified in the first three bytes of the
* salt string. Do some sanity checks first.
*/
if (strlen(dec_salt_binary) < 3)
ereport(ERROR,
errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("invalid salt"));
/*
* Check format of magic bytes. These should define either 5=sha256crypt
* or 6=sha512crypt in the second byte, enclosed by ascii dollar signs.
*/
if ((dec_salt_binary[0] != '$') || (dec_salt_binary[2] != '$'))
ereport(ERROR,
errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("invalid format of salt"),
errhint("magic byte format for shacrypt is either \"$5$\" or \"$6$\""));
/*
* Check magic byte for supported shacrypt digest.
*
* We're just interested in the very first 3 bytes of the salt string,
* since this defines the digest length to use.
*/
if (strncmp(dec_salt_binary, magic_bytes[0], strlen(magic_bytes[0])) == 0)
{
type = PGCRYPTO_SHA256CRYPT;
dec_salt_binary += strlen(magic_bytes[0]);
}
else if (strncmp(dec_salt_binary, magic_bytes[1], strlen(magic_bytes[1])) == 0)
{
type = PGCRYPTO_SHA512CRYPT;
dec_salt_binary += strlen(magic_bytes[1]);
}
/*
* dec_salt_binary pointer is positioned after the magic bytes now
*
* We extract any options in the following code branch. The only optional
* setting we need to take care of is the "rounds" option. Note that the
* salt generator already checked for invalid settings before, but we need
* to do it here again to protect against injection of wrong values when
* called without the generator.
*
* If there is any garbage added after the magic byte and the options/salt
* string, we don't treat this special: This is just absorbed as part of
* the salt with up to PX_SHACRYPT_SALT_LEN_MAX.
*
* Unknown magic byte is handled further below.
*/
if (strncmp(dec_salt_binary,
rounds_prefix, sizeof(rounds_prefix) - 1) == 0)
{
const char *num = dec_salt_binary + sizeof(rounds_prefix) - 1;
char *endp;
int srounds = strtoint(num, &endp, 10);
if (*endp != '$')
ereport(ERROR,
errcode(ERRCODE_SYNTAX_ERROR),
errmsg("could not parse salt options"));
dec_salt_binary = endp + 1;
/*
* We violate supported lower or upper bound of rounds, but in this
* case we change this value to the supported lower or upper value. We
* don't do this silently and print a NOTICE in such a case.
*
* Note that a salt string generated with gen_salt() would never
* generated such a salt string, since it would error out.
*
* But Drepper's upstream reference implementation supports this when
* passing the salt string directly, so we maintain compatibility.
*/
if (srounds > PX_SHACRYPT_ROUNDS_MAX)
{
ereport(NOTICE,
errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("rounds=%d exceeds maximum supported value (%d), using %d instead",
srounds, PX_SHACRYPT_ROUNDS_MAX,
PX_SHACRYPT_ROUNDS_MAX));
srounds = PX_SHACRYPT_ROUNDS_MAX;
}
else if (srounds < PX_SHACRYPT_ROUNDS_MIN)
{
ereport(NOTICE,
errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("rounds=%d is below supported value (%d), using %d instead",
srounds, PX_SHACRYPT_ROUNDS_MIN,
PX_SHACRYPT_ROUNDS_MIN));
srounds = PX_SHACRYPT_ROUNDS_MIN;
}
rounds = (uint32) srounds;
rounds_custom = 1;
}
/*
* Choose the correct digest length and add the magic bytes to the result
* buffer. Also handle possible invalid magic byte we've extracted above.
*/
switch (type)
{
case PGCRYPTO_SHA256CRYPT:
{
/* Two PX_MD objects required */
err = px_find_digest("sha256", &digestA);
if (err)
goto error;
err = px_find_digest("sha256", &digestB);
if (err)
goto error;
/* digest buffer length is 32 for sha256 */
buf_size = 32;
appendStringInfoString(out_buf, magic_bytes[0]);
break;
}
case PGCRYPTO_SHA512CRYPT:
{
/* Two PX_MD objects required */
err = px_find_digest("sha512", &digestA);
if (err)
goto error;
err = px_find_digest("sha512", &digestB);
if (err)
goto error;
buf_size = PX_SHACRYPT_DIGEST_MAX_LEN;
appendStringInfoString(out_buf, magic_bytes[1]);
break;
}
case PGCRYPTO_SHA_UNKOWN:
elog(ERROR, "unknown crypt identifier \"%c\"", salt[1]);
}
if (rounds_custom > 0)
appendStringInfo(out_buf, "rounds=%u$", rounds);
/*
* We need the real decoded salt string from salt input, this is every
* character before the last '$' in the preamble. Append every compatible
* character up to PX_SHACRYPT_SALT_MAX_LEN to the result buffer. Note
* that depending on the input, there might be no '$' marker after the
* salt, when there is no password hash attached at the end.
*
* We try hard to recognize mistakes, but since we might get an input
* string which might also have the password hash after the salt string
* section we give up as soon we reach the end of the input or if there
* are any bytes consumed for the salt string until we reach the first '$'
* marker thereafter.
*/
for (ep = dec_salt_binary;
*ep && ep < (dec_salt_binary + PX_SHACRYPT_SALT_MAX_LEN);
ep++)
{
/*
* Filter out any string which shouldn't be here.
*
* First check for accidentally embedded magic strings here. We don't
* support '$' in salt strings anyways and seeing a magic byte trying
* to identify shacrypt hashes might indicate that something went
* wrong when generating this salt string. Note that we later check
* for non-supported literals anyways, but any '$' here confuses us at
* this point.
*/
fp = strstr(dec_salt_binary, magic_bytes[0]);
if (fp != NULL)
elog(ERROR, "bogus magic byte found in salt string");
fp = strstr(dec_salt_binary, magic_bytes[1]);
if (fp != NULL)
elog(ERROR, "bogus magic byte found in salt string");
/*
* This looks very strict, but we assume the caller did something
* wrong when we see a "rounds=" option here.
*/
fp = strstr(dec_salt_binary, rounds_prefix);
if (fp != NULL)
elog(ERROR, "invalid rounds option specified in salt string");
if (*ep != '$')
{
if (strchr(_crypt_itoa64, *ep) != NULL)
appendStringInfoCharMacro(decoded_salt, *ep);
else
ereport(ERROR,
errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("invalid character in salt string: \"%.*s\"",
pg_mblen(ep), ep));
}
else
{
/*
* We encountered a '$' marker. Check if we already absorbed some
* bytes from input. If true, we are optimistic and terminate at
* this stage. If not, we try further.
*
* If we already consumed enough bytes for the salt string,
* everything that is after this marker is considered to be part
* of an optionally specified password hash and ignored.
*/
if (decoded_salt->len > 0)
break;
}
}
salt_len = decoded_salt->len;
appendStringInfoString(out_buf, decoded_salt->data);
elog(DEBUG1, "using salt \"%s\", salt len = %d, rounds = %u",
decoded_salt->data, decoded_salt->len, rounds);
/*
* Sanity check: at this point the salt string buffer must not exceed
* expected size.
*/
if (out_buf->len > (3 + 17 * rounds_custom + salt_len))
elog(ERROR, "unexpected length of salt string");
/*-
* 1. Start digest A
* 2. Add the password string to digest A
* 3. Add the salt to digest A
*/
px_md_update(digestA, (const unsigned char *) pw, len);
px_md_update(digestA, (const unsigned char *) decoded_salt->data, salt_len);
/*-
* 4. Create digest B
* 5. Add password to digest B
* 6. Add the salt string to digest B
* 7. Add the password again to digest B
* 8. Finalize digest B
*/
px_md_update(digestB, (const unsigned char *) pw, len);
px_md_update(digestB, (const unsigned char *) dec_salt_binary, salt_len);
px_md_update(digestB, (const unsigned char *) pw, len);
px_md_finish(digestB, sha_buf);
/*
* 9. For each block (excluding the NULL byte), add digest B to digest A.
*/
for (block = len; block > buf_size; block -= buf_size)
px_md_update(digestA, sha_buf, buf_size);
/*-
* 10. For the remaining N bytes of the password string, add the first N
* bytes of digest B to A.
*/
px_md_update(digestA, sha_buf, block);
/*-
* 11. For each bit of the binary representation of the length of the
* password string up to and including the highest 1-digit, starting from
* to lowest bit position (numeric value 1)
*
* a) for a 1-digit add digest B (sha_buf) to digest A
* b) for a 0-digit add the password string
*/
block = len;
while (block)
{
px_md_update(digestA,
(block & 1) ? sha_buf : (const unsigned char *) pw,
(block & 1) ? buf_size : len);
/* right shift to next byte */
block >>= 1;
}
/* 12. Finalize digest A */
px_md_finish(digestA, sha_buf);
/* 13. Start digest DP */
px_md_reset(digestB);
/*-
* 14 Add every byte of the password string (excluding trailing NULL)
* to the digest DP
*/
for (block = len; block > 0; block--)
px_md_update(digestB, (const unsigned char *) pw, len);
/* 15. Finalize digest DP */
px_md_finish(digestB, sha_buf_tmp);
/*-
* 16. produce byte sequence P with same length as password.
* a) for each block of 32 or 64 bytes of length of the password
* string the entire digest DP is used
* b) for the remaining N (up to 31 or 63) bytes use the
* first N bytes of digest DP
*/
if ((p_bytes = palloc0(len)) == NULL)
{
goto error;
}
/* N step of 16, copy over the bytes from password */
for (cp = p_bytes, block = len; block > buf_size; block -= buf_size, cp += buf_size)
memcpy(cp, sha_buf_tmp, buf_size);
memcpy(cp, sha_buf_tmp, block);
/*
* 17. Start digest DS
*/
px_md_reset(digestB);
/*-
* 18. Repeat the following 16+A[0] times, where A[0] represents the first
* byte in digest A interpreted as an 8-bit unsigned value
* add the salt to digest DS
*/
for (block = 16 + sha_buf[0]; block > 0; block--)
px_md_update(digestB, (const unsigned char *) dec_salt_binary, salt_len);
/*
* 19. Finalize digest DS
*/
px_md_finish(digestB, sha_buf_tmp);
/*-
* 20. Produce byte sequence S of the same length as the salt string where
*
* a) for each block of 32 or 64 bytes of length of the salt string the
* entire digest DS is used
*
* b) for the remaining N (up to 31 or 63) bytes use the first N
* bytes of digest DS
*/
if ((s_bytes = palloc0(salt_len)) == NULL)
goto error;
for (cp = s_bytes, block = salt_len; block > buf_size; block -= buf_size, cp += buf_size)
memcpy(cp, sha_buf_tmp, buf_size);
memcpy(cp, sha_buf_tmp, block);
/* Make sure we don't leave something important behind */
px_memset(&sha_buf_tmp, 0, sizeof sha_buf);
/*-
* 21. Repeat a loop according to the number specified in the rounds=<N>
* specification in the salt (or the default value if none is
* present). Each round is numbered, starting with 0 and up to N-1.
*
* The loop uses a digest as input. In the first round it is the
* digest produced in step 12. In the latter steps it is the digest
* produced in step 21.h of the previous round. The following text
* uses the notation "digest A/B" to describe this behavior.
*/
for (block = 0; block < rounds; block++)
{
/*
* Make it possible to abort in case large values for "rounds" are
* specified.
*/
CHECK_FOR_INTERRUPTS();
/* a) start digest B */
px_md_reset(digestB);
/*-
* b) for odd round numbers add the byte sequence P to digest B
* c) for even round numbers add digest A/B
*/
px_md_update(digestB,
(block & 1) ? (const unsigned char *) p_bytes : sha_buf,
(block & 1) ? len : buf_size);
/* d) for all round numbers not divisible by 3 add the byte sequence S */
if ((block % 3) != 0)
px_md_update(digestB, (const unsigned char *) s_bytes, salt_len);
/* e) for all round numbers not divisible by 7 add the byte sequence P */
if ((block % 7) != 0)
px_md_update(digestB, (const unsigned char *) p_bytes, len);
/*-
* f) for odd round numbers add digest A/C
* g) for even round numbers add the byte sequence P
*/
px_md_update(digestB,
(block & 1) ? sha_buf : (const unsigned char *) p_bytes,
(block & 1) ? buf_size : len);
/* h) finish digest C. */
px_md_finish(digestB, sha_buf);
}
px_md_free(digestA);
px_md_free(digestB);
digestA = NULL;
digestB = NULL;
pfree(s_bytes);
pfree(p_bytes);
s_bytes = NULL;
p_bytes = NULL;
/* prepare final result buffer */
appendStringInfoCharMacro(out_buf, '$');
#define b64_from_24bit(B2, B1, B0, N) \
do { \
unsigned int w = ((B2) << 16) | ((B1) << 8) | (B0); \
int i = (N); \
while (i-- > 0) \
{ \
appendStringInfoCharMacro(out_buf, _crypt_itoa64[w & 0x3f]); \
w >>= 6; \
} \
} while (0)
switch (type)
{
case PGCRYPTO_SHA256CRYPT:
{
b64_from_24bit(sha_buf[0], sha_buf[10], sha_buf[20], 4);
b64_from_24bit(sha_buf[21], sha_buf[1], sha_buf[11], 4);
b64_from_24bit(sha_buf[12], sha_buf[22], sha_buf[2], 4);
b64_from_24bit(sha_buf[3], sha_buf[13], sha_buf[23], 4);
b64_from_24bit(sha_buf[24], sha_buf[4], sha_buf[14], 4);
b64_from_24bit(sha_buf[15], sha_buf[25], sha_buf[5], 4);
b64_from_24bit(sha_buf[6], sha_buf[16], sha_buf[26], 4);
b64_from_24bit(sha_buf[27], sha_buf[7], sha_buf[17], 4);
b64_from_24bit(sha_buf[18], sha_buf[28], sha_buf[8], 4);
b64_from_24bit(sha_buf[9], sha_buf[19], sha_buf[29], 4);
b64_from_24bit(0, sha_buf[31], sha_buf[30], 3);
break;
}
case PGCRYPTO_SHA512CRYPT:
{
b64_from_24bit(sha_buf[0], sha_buf[21], sha_buf[42], 4);
b64_from_24bit(sha_buf[22], sha_buf[43], sha_buf[1], 4);
b64_from_24bit(sha_buf[44], sha_buf[2], sha_buf[23], 4);
b64_from_24bit(sha_buf[3], sha_buf[24], sha_buf[45], 4);
b64_from_24bit(sha_buf[25], sha_buf[46], sha_buf[4], 4);
b64_from_24bit(sha_buf[47], sha_buf[5], sha_buf[26], 4);
b64_from_24bit(sha_buf[6], sha_buf[27], sha_buf[48], 4);
b64_from_24bit(sha_buf[28], sha_buf[49], sha_buf[7], 4);
b64_from_24bit(sha_buf[50], sha_buf[8], sha_buf[29], 4);
b64_from_24bit(sha_buf[9], sha_buf[30], sha_buf[51], 4);
b64_from_24bit(sha_buf[31], sha_buf[52], sha_buf[10], 4);
b64_from_24bit(sha_buf[53], sha_buf[11], sha_buf[32], 4);
b64_from_24bit(sha_buf[12], sha_buf[33], sha_buf[54], 4);
b64_from_24bit(sha_buf[34], sha_buf[55], sha_buf[13], 4);
b64_from_24bit(sha_buf[56], sha_buf[14], sha_buf[35], 4);
b64_from_24bit(sha_buf[15], sha_buf[36], sha_buf[57], 4);
b64_from_24bit(sha_buf[37], sha_buf[58], sha_buf[16], 4);
b64_from_24bit(sha_buf[59], sha_buf[17], sha_buf[38], 4);
b64_from_24bit(sha_buf[18], sha_buf[39], sha_buf[60], 4);
b64_from_24bit(sha_buf[40], sha_buf[61], sha_buf[19], 4);
b64_from_24bit(sha_buf[62], sha_buf[20], sha_buf[41], 4);
b64_from_24bit(0, 0, sha_buf[63], 2);
break;
}
case PGCRYPTO_SHA_UNKOWN:
/* we shouldn't land here ... */
elog(ERROR, "unsupported digest length");
}
/*
* Copy over result to specified buffer.
*
* The passwd character buffer should have at least PX_SHACRYPT_BUF_LEN
* allocated, since we checked above if dstlen is smaller than
* PX_SHACRYPT_BUF_LEN (which also includes the NULL byte).
*
* In that case we would have failed above already.
*/
memcpy(passwd, out_buf->data, out_buf->len);
/* make sure nothing important is left behind */
px_memset(&sha_buf, 0, sizeof sha_buf);
destroyStringInfo(out_buf);
destroyStringInfo(decoded_salt);
/* ...and we're done */
return passwd;
error:
if (digestA != NULL)
px_md_free(digestA);
if (digestB != NULL)
px_md_free(digestB);
destroyStringInfo(out_buf);
destroyStringInfo(decoded_salt);
ereport(ERROR,
errcode(ERRCODE_INTERNAL_ERROR),
errmsg("cannot create encrypted password"));
return NULL; /* keep compiler quiet */
}