1
0
mirror of https://github.com/postgres/postgres.git synced 2025-04-18 13:44:19 +03:00
postgres/contrib/pg_buffercache/pg_buffercache_pages.c
Tomas Vondra 3887d0cfeb Cleanup of pg_numa.c
This moves/renames some of the functions defined in pg_numa.c:

* pg_numa_get_pagesize() is renamed to pg_get_shmem_pagesize(), and
  moved to src/backend/storage/ipc/shmem.c. The new name better reflects
  that the page size is not related to NUMA, and it's specifically about
  the page size used for the main shared memory segment.

* move pg_numa_available() to src/backend/storage/ipc/shmem.c, i.e. into
  the backend (which more appropriate for functions callable from SQL).
  While at it, improve the comment to explain what page size it returns.

* remove unnecessary includes from src/port/pg_numa.c, adding
  unnecessary dependencies (src/port should be suitable for frontent).
  These were either leftovers or unnecessary thanks to the other changes
  in this commit.

This eliminates unnecessary dependencies on backend symbols, which we
don't want in src/port.

Reported-by: Kirill Reshke <reshkekirill@gmail.com>
Reviewed-by: Andres Freund <andres@anarazel.de>
https://postgr.es/m/CALdSSPi5fj0a7UG7Fmw2cUD1uWuckU_e8dJ+6x-bJEokcSXzqA@mail.gmail.com
2025-04-09 21:50:17 +02:00

775 lines
22 KiB
C

/*-------------------------------------------------------------------------
*
* pg_buffercache_pages.c
* display some contents of the buffer cache
*
* contrib/pg_buffercache/pg_buffercache_pages.c
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/htup_details.h"
#include "access/relation.h"
#include "catalog/pg_type.h"
#include "funcapi.h"
#include "port/pg_numa.h"
#include "storage/buf_internals.h"
#include "storage/bufmgr.h"
#include "utils/rel.h"
#define NUM_BUFFERCACHE_PAGES_MIN_ELEM 8
#define NUM_BUFFERCACHE_PAGES_ELEM 9
#define NUM_BUFFERCACHE_SUMMARY_ELEM 5
#define NUM_BUFFERCACHE_USAGE_COUNTS_ELEM 4
#define NUM_BUFFERCACHE_EVICT_ELEM 2
#define NUM_BUFFERCACHE_EVICT_RELATION_ELEM 3
#define NUM_BUFFERCACHE_EVICT_ALL_ELEM 3
#define NUM_BUFFERCACHE_NUMA_ELEM 3
PG_MODULE_MAGIC_EXT(
.name = "pg_buffercache",
.version = PG_VERSION
);
/*
* Record structure holding the to be exposed cache data.
*/
typedef struct
{
uint32 bufferid;
RelFileNumber relfilenumber;
Oid reltablespace;
Oid reldatabase;
ForkNumber forknum;
BlockNumber blocknum;
bool isvalid;
bool isdirty;
uint16 usagecount;
/*
* An int32 is sufficiently large, as MAX_BACKENDS prevents a buffer from
* being pinned by too many backends and each backend will only pin once
* because of bufmgr.c's PrivateRefCount infrastructure.
*/
int32 pinning_backends;
} BufferCachePagesRec;
/*
* Function context for data persisting over repeated calls.
*/
typedef struct
{
TupleDesc tupdesc;
BufferCachePagesRec *record;
} BufferCachePagesContext;
/*
* Record structure holding the to be exposed cache data.
*/
typedef struct
{
uint32 bufferid;
int64 page_num;
int32 numa_node;
} BufferCacheNumaRec;
/*
* Function context for data persisting over repeated calls.
*/
typedef struct
{
TupleDesc tupdesc;
int buffers_per_page;
int pages_per_buffer;
int os_page_size;
BufferCacheNumaRec *record;
} BufferCacheNumaContext;
/*
* Function returning data from the shared buffer cache - buffer number,
* relation node/tablespace/database/blocknum and dirty indicator.
*/
PG_FUNCTION_INFO_V1(pg_buffercache_pages);
PG_FUNCTION_INFO_V1(pg_buffercache_numa_pages);
PG_FUNCTION_INFO_V1(pg_buffercache_summary);
PG_FUNCTION_INFO_V1(pg_buffercache_usage_counts);
PG_FUNCTION_INFO_V1(pg_buffercache_evict);
PG_FUNCTION_INFO_V1(pg_buffercache_evict_relation);
PG_FUNCTION_INFO_V1(pg_buffercache_evict_all);
/* Only need to touch memory once per backend process lifetime */
static bool firstNumaTouch = true;
Datum
pg_buffercache_pages(PG_FUNCTION_ARGS)
{
FuncCallContext *funcctx;
Datum result;
MemoryContext oldcontext;
BufferCachePagesContext *fctx; /* User function context. */
TupleDesc tupledesc;
TupleDesc expected_tupledesc;
HeapTuple tuple;
if (SRF_IS_FIRSTCALL())
{
int i;
funcctx = SRF_FIRSTCALL_INIT();
/* Switch context when allocating stuff to be used in later calls */
oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
/* Create a user function context for cross-call persistence */
fctx = (BufferCachePagesContext *) palloc(sizeof(BufferCachePagesContext));
/*
* To smoothly support upgrades from version 1.0 of this extension
* transparently handle the (non-)existence of the pinning_backends
* column. We unfortunately have to get the result type for that... -
* we can't use the result type determined by the function definition
* without potentially crashing when somebody uses the old (or even
* wrong) function definition though.
*/
if (get_call_result_type(fcinfo, NULL, &expected_tupledesc) != TYPEFUNC_COMPOSITE)
elog(ERROR, "return type must be a row type");
if (expected_tupledesc->natts < NUM_BUFFERCACHE_PAGES_MIN_ELEM ||
expected_tupledesc->natts > NUM_BUFFERCACHE_PAGES_ELEM)
elog(ERROR, "incorrect number of output arguments");
/* Construct a tuple descriptor for the result rows. */
tupledesc = CreateTemplateTupleDesc(expected_tupledesc->natts);
TupleDescInitEntry(tupledesc, (AttrNumber) 1, "bufferid",
INT4OID, -1, 0);
TupleDescInitEntry(tupledesc, (AttrNumber) 2, "relfilenode",
OIDOID, -1, 0);
TupleDescInitEntry(tupledesc, (AttrNumber) 3, "reltablespace",
OIDOID, -1, 0);
TupleDescInitEntry(tupledesc, (AttrNumber) 4, "reldatabase",
OIDOID, -1, 0);
TupleDescInitEntry(tupledesc, (AttrNumber) 5, "relforknumber",
INT2OID, -1, 0);
TupleDescInitEntry(tupledesc, (AttrNumber) 6, "relblocknumber",
INT8OID, -1, 0);
TupleDescInitEntry(tupledesc, (AttrNumber) 7, "isdirty",
BOOLOID, -1, 0);
TupleDescInitEntry(tupledesc, (AttrNumber) 8, "usage_count",
INT2OID, -1, 0);
if (expected_tupledesc->natts == NUM_BUFFERCACHE_PAGES_ELEM)
TupleDescInitEntry(tupledesc, (AttrNumber) 9, "pinning_backends",
INT4OID, -1, 0);
fctx->tupdesc = BlessTupleDesc(tupledesc);
/* Allocate NBuffers worth of BufferCachePagesRec records. */
fctx->record = (BufferCachePagesRec *)
MemoryContextAllocHuge(CurrentMemoryContext,
sizeof(BufferCachePagesRec) * NBuffers);
/* Set max calls and remember the user function context. */
funcctx->max_calls = NBuffers;
funcctx->user_fctx = fctx;
/* Return to original context when allocating transient memory */
MemoryContextSwitchTo(oldcontext);
/*
* Scan through all the buffers, saving the relevant fields in the
* fctx->record structure.
*
* We don't hold the partition locks, so we don't get a consistent
* snapshot across all buffers, but we do grab the buffer header
* locks, so the information of each buffer is self-consistent.
*/
for (i = 0; i < NBuffers; i++)
{
BufferDesc *bufHdr;
uint32 buf_state;
bufHdr = GetBufferDescriptor(i);
/* Lock each buffer header before inspecting. */
buf_state = LockBufHdr(bufHdr);
fctx->record[i].bufferid = BufferDescriptorGetBuffer(bufHdr);
fctx->record[i].relfilenumber = BufTagGetRelNumber(&bufHdr->tag);
fctx->record[i].reltablespace = bufHdr->tag.spcOid;
fctx->record[i].reldatabase = bufHdr->tag.dbOid;
fctx->record[i].forknum = BufTagGetForkNum(&bufHdr->tag);
fctx->record[i].blocknum = bufHdr->tag.blockNum;
fctx->record[i].usagecount = BUF_STATE_GET_USAGECOUNT(buf_state);
fctx->record[i].pinning_backends = BUF_STATE_GET_REFCOUNT(buf_state);
if (buf_state & BM_DIRTY)
fctx->record[i].isdirty = true;
else
fctx->record[i].isdirty = false;
/* Note if the buffer is valid, and has storage created */
if ((buf_state & BM_VALID) && (buf_state & BM_TAG_VALID))
fctx->record[i].isvalid = true;
else
fctx->record[i].isvalid = false;
UnlockBufHdr(bufHdr, buf_state);
}
}
funcctx = SRF_PERCALL_SETUP();
/* Get the saved state */
fctx = funcctx->user_fctx;
if (funcctx->call_cntr < funcctx->max_calls)
{
uint32 i = funcctx->call_cntr;
Datum values[NUM_BUFFERCACHE_PAGES_ELEM];
bool nulls[NUM_BUFFERCACHE_PAGES_ELEM];
values[0] = Int32GetDatum(fctx->record[i].bufferid);
nulls[0] = false;
/*
* Set all fields except the bufferid to null if the buffer is unused
* or not valid.
*/
if (fctx->record[i].blocknum == InvalidBlockNumber ||
fctx->record[i].isvalid == false)
{
nulls[1] = true;
nulls[2] = true;
nulls[3] = true;
nulls[4] = true;
nulls[5] = true;
nulls[6] = true;
nulls[7] = true;
/* unused for v1.0 callers, but the array is always long enough */
nulls[8] = true;
}
else
{
values[1] = ObjectIdGetDatum(fctx->record[i].relfilenumber);
nulls[1] = false;
values[2] = ObjectIdGetDatum(fctx->record[i].reltablespace);
nulls[2] = false;
values[3] = ObjectIdGetDatum(fctx->record[i].reldatabase);
nulls[3] = false;
values[4] = ObjectIdGetDatum(fctx->record[i].forknum);
nulls[4] = false;
values[5] = Int64GetDatum((int64) fctx->record[i].blocknum);
nulls[5] = false;
values[6] = BoolGetDatum(fctx->record[i].isdirty);
nulls[6] = false;
values[7] = Int16GetDatum(fctx->record[i].usagecount);
nulls[7] = false;
/* unused for v1.0 callers, but the array is always long enough */
values[8] = Int32GetDatum(fctx->record[i].pinning_backends);
nulls[8] = false;
}
/* Build and return the tuple. */
tuple = heap_form_tuple(fctx->tupdesc, values, nulls);
result = HeapTupleGetDatum(tuple);
SRF_RETURN_NEXT(funcctx, result);
}
else
SRF_RETURN_DONE(funcctx);
}
/*
* Inquire about NUMA memory mappings for shared buffers.
*
* Returns NUMA node ID for each memory page used by the buffer. Buffers may
* be smaller or larger than OS memory pages. For each buffer we return one
* entry for each memory page used by the buffer (it fhe buffer is smaller,
* it only uses a part of one memory page).
*
* We expect both sizes (for buffers and memory pages) to be a power-of-2, so
* one is always a multiple of the other.
*
* In order to get reliable results we also need to touch memory pages, so
* that the inquiry about NUMA memory node doesn't return -2 (which indicates
* unmapped/unallocated pages).
*/
Datum
pg_buffercache_numa_pages(PG_FUNCTION_ARGS)
{
FuncCallContext *funcctx;
MemoryContext oldcontext;
BufferCacheNumaContext *fctx; /* User function context. */
TupleDesc tupledesc;
TupleDesc expected_tupledesc;
HeapTuple tuple;
Datum result;
if (SRF_IS_FIRSTCALL())
{
int i,
idx;
Size os_page_size;
void **os_page_ptrs;
int *os_page_status;
uint64 os_page_count;
int pages_per_buffer;
int max_entries;
volatile uint64 touch pg_attribute_unused();
char *startptr,
*endptr;
if (pg_numa_init() == -1)
elog(ERROR, "libnuma initialization failed or NUMA is not supported on this platform");
/*
* The database block size and OS memory page size are unlikely to be
* the same. The block size is 1-32KB, the memory page size depends on
* platform. On x86 it's usually 4KB, on ARM it's 4KB or 64KB, but
* there are also features like THP etc. Moreover, we don't quite know
* how the pages and buffers "align" in memory - the buffers may be
* shifted in some way, using more memory pages than necessary.
*
* So we need to be careful about mappping buffers to memory pages. We
* calculate the maximum number of pages a buffer might use, so that
* we allocate enough space for the entries. And then we count the
* actual number of entries as we scan the buffers.
*
* This information is needed before calling move_pages() for NUMA
* node id inquiry.
*/
os_page_size = pg_get_shmem_pagesize();
/*
* The pages and block size is expected to be 2^k, so one divides the
* other (we don't know in which direction). This does not say
* anything about relative alignment of pages/buffers.
*/
Assert((os_page_size % BLCKSZ == 0) || (BLCKSZ % os_page_size == 0));
/*
* How many addresses we are going to query? Simply get the page for
* the first buffer, and first page after the last buffer, and count
* the pages from that.
*/
startptr = (char *) TYPEALIGN_DOWN(os_page_size,
BufferGetBlock(1));
endptr = (char *) TYPEALIGN(os_page_size,
(char *) BufferGetBlock(NBuffers) + BLCKSZ);
os_page_count = (endptr - startptr) / os_page_size;
/* Used to determine the NUMA node for all OS pages at once */
os_page_ptrs = palloc0(sizeof(void *) * os_page_count);
os_page_status = palloc(sizeof(uint64) * os_page_count);
/* Fill pointers for all the memory pages. */
idx = 0;
for (char *ptr = startptr; ptr < endptr; ptr += os_page_size)
{
os_page_ptrs[idx++] = ptr;
/* Only need to touch memory once per backend process lifetime */
if (firstNumaTouch)
pg_numa_touch_mem_if_required(touch, ptr);
}
Assert(idx == os_page_count);
elog(DEBUG1, "NUMA: NBuffers=%d os_page_count=" UINT64_FORMAT " "
"os_page_size=%zu", NBuffers, os_page_count, os_page_size);
/*
* If we ever get 0xff back from kernel inquiry, then we probably have
* bug in our buffers to OS page mapping code here.
*/
memset(os_page_status, 0xff, sizeof(int) * os_page_count);
/* Query NUMA status for all the pointers */
if (pg_numa_query_pages(0, os_page_count, os_page_ptrs, os_page_status) == -1)
elog(ERROR, "failed NUMA pages inquiry: %m");
/* Initialize the multi-call context, load entries about buffers */
funcctx = SRF_FIRSTCALL_INIT();
/* Switch context when allocating stuff to be used in later calls */
oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
/* Create a user function context for cross-call persistence */
fctx = (BufferCacheNumaContext *) palloc(sizeof(BufferCacheNumaContext));
if (get_call_result_type(fcinfo, NULL, &expected_tupledesc) != TYPEFUNC_COMPOSITE)
elog(ERROR, "return type must be a row type");
if (expected_tupledesc->natts != NUM_BUFFERCACHE_NUMA_ELEM)
elog(ERROR, "incorrect number of output arguments");
/* Construct a tuple descriptor for the result rows. */
tupledesc = CreateTemplateTupleDesc(expected_tupledesc->natts);
TupleDescInitEntry(tupledesc, (AttrNumber) 1, "bufferid",
INT4OID, -1, 0);
TupleDescInitEntry(tupledesc, (AttrNumber) 2, "os_page_num",
INT8OID, -1, 0);
TupleDescInitEntry(tupledesc, (AttrNumber) 3, "numa_node",
INT4OID, -1, 0);
fctx->tupdesc = BlessTupleDesc(tupledesc);
/*
* Each buffer needs at least one entry, but it might be offset in
* some way, and use one extra entry. So we allocate space for the
* maximum number of entries we might need, and then count the exact
* number as we're walking buffers. That way we can do it in one pass,
* without reallocating memory.
*/
pages_per_buffer = Max(1, BLCKSZ / os_page_size) + 1;
max_entries = NBuffers * pages_per_buffer;
/* Allocate entries for BufferCachePagesRec records. */
fctx->record = (BufferCacheNumaRec *)
MemoryContextAllocHuge(CurrentMemoryContext,
sizeof(BufferCacheNumaRec) * max_entries);
/* Return to original context when allocating transient memory */
MemoryContextSwitchTo(oldcontext);
if (firstNumaTouch)
elog(DEBUG1, "NUMA: page-faulting the buffercache for proper NUMA readouts");
/*
* Scan through all the buffers, saving the relevant fields in the
* fctx->record structure.
*
* We don't hold the partition locks, so we don't get a consistent
* snapshot across all buffers, but we do grab the buffer header
* locks, so the information of each buffer is self-consistent.
*
* This loop touches and stores addresses into os_page_ptrs[] as input
* to one big big move_pages(2) inquiry system call. Basically we ask
* for all memory pages for NBuffers.
*/
startptr = (char *) TYPEALIGN_DOWN(os_page_size, (char *) BufferGetBlock(1));
idx = 0;
for (i = 0; i < NBuffers; i++)
{
char *buffptr = (char *) BufferGetBlock(i + 1);
BufferDesc *bufHdr;
uint32 buf_state;
uint32 bufferid;
int32 page_num;
char *startptr_buff,
*endptr_buff;
CHECK_FOR_INTERRUPTS();
bufHdr = GetBufferDescriptor(i);
/* Lock each buffer header before inspecting. */
buf_state = LockBufHdr(bufHdr);
bufferid = BufferDescriptorGetBuffer(bufHdr);
UnlockBufHdr(bufHdr, buf_state);
/* start of the first page of this buffer */
startptr_buff = (char *) TYPEALIGN_DOWN(os_page_size, buffptr);
/* end of the buffer (no need to align to memory page) */
endptr_buff = buffptr + BLCKSZ;
Assert(startptr_buff < endptr_buff);
/* calculate ID of the first page for this buffer */
page_num = (startptr_buff - startptr) / os_page_size;
/* Add an entry for each OS page overlapping with this buffer. */
for (char *ptr = startptr_buff; ptr < endptr_buff; ptr += os_page_size)
{
fctx->record[idx].bufferid = bufferid;
fctx->record[idx].page_num = page_num;
fctx->record[idx].numa_node = os_page_status[page_num];
/* advance to the next entry/page */
++idx;
++page_num;
}
}
Assert((idx >= os_page_count) && (idx <= max_entries));
/* Set max calls and remember the user function context. */
funcctx->max_calls = idx;
funcctx->user_fctx = fctx;
/* Remember this backend touched the pages */
firstNumaTouch = false;
}
funcctx = SRF_PERCALL_SETUP();
/* Get the saved state */
fctx = funcctx->user_fctx;
if (funcctx->call_cntr < funcctx->max_calls)
{
uint32 i = funcctx->call_cntr;
Datum values[NUM_BUFFERCACHE_NUMA_ELEM];
bool nulls[NUM_BUFFERCACHE_NUMA_ELEM];
values[0] = Int32GetDatum(fctx->record[i].bufferid);
nulls[0] = false;
values[1] = Int64GetDatum(fctx->record[i].page_num);
nulls[1] = false;
values[2] = Int32GetDatum(fctx->record[i].numa_node);
nulls[2] = false;
/* Build and return the tuple. */
tuple = heap_form_tuple(fctx->tupdesc, values, nulls);
result = HeapTupleGetDatum(tuple);
SRF_RETURN_NEXT(funcctx, result);
}
else
SRF_RETURN_DONE(funcctx);
}
Datum
pg_buffercache_summary(PG_FUNCTION_ARGS)
{
Datum result;
TupleDesc tupledesc;
HeapTuple tuple;
Datum values[NUM_BUFFERCACHE_SUMMARY_ELEM];
bool nulls[NUM_BUFFERCACHE_SUMMARY_ELEM];
int32 buffers_used = 0;
int32 buffers_unused = 0;
int32 buffers_dirty = 0;
int32 buffers_pinned = 0;
int64 usagecount_total = 0;
if (get_call_result_type(fcinfo, NULL, &tupledesc) != TYPEFUNC_COMPOSITE)
elog(ERROR, "return type must be a row type");
for (int i = 0; i < NBuffers; i++)
{
BufferDesc *bufHdr;
uint32 buf_state;
/*
* This function summarizes the state of all headers. Locking the
* buffer headers wouldn't provide an improved result as the state of
* the buffer can still change after we release the lock and it'd
* noticeably increase the cost of the function.
*/
bufHdr = GetBufferDescriptor(i);
buf_state = pg_atomic_read_u32(&bufHdr->state);
if (buf_state & BM_VALID)
{
buffers_used++;
usagecount_total += BUF_STATE_GET_USAGECOUNT(buf_state);
if (buf_state & BM_DIRTY)
buffers_dirty++;
}
else
buffers_unused++;
if (BUF_STATE_GET_REFCOUNT(buf_state) > 0)
buffers_pinned++;
}
memset(nulls, 0, sizeof(nulls));
values[0] = Int32GetDatum(buffers_used);
values[1] = Int32GetDatum(buffers_unused);
values[2] = Int32GetDatum(buffers_dirty);
values[3] = Int32GetDatum(buffers_pinned);
if (buffers_used != 0)
values[4] = Float8GetDatum((double) usagecount_total / buffers_used);
else
nulls[4] = true;
/* Build and return the tuple. */
tuple = heap_form_tuple(tupledesc, values, nulls);
result = HeapTupleGetDatum(tuple);
PG_RETURN_DATUM(result);
}
Datum
pg_buffercache_usage_counts(PG_FUNCTION_ARGS)
{
ReturnSetInfo *rsinfo = (ReturnSetInfo *) fcinfo->resultinfo;
int usage_counts[BM_MAX_USAGE_COUNT + 1] = {0};
int dirty[BM_MAX_USAGE_COUNT + 1] = {0};
int pinned[BM_MAX_USAGE_COUNT + 1] = {0};
Datum values[NUM_BUFFERCACHE_USAGE_COUNTS_ELEM];
bool nulls[NUM_BUFFERCACHE_USAGE_COUNTS_ELEM] = {0};
InitMaterializedSRF(fcinfo, 0);
for (int i = 0; i < NBuffers; i++)
{
BufferDesc *bufHdr = GetBufferDescriptor(i);
uint32 buf_state = pg_atomic_read_u32(&bufHdr->state);
int usage_count;
usage_count = BUF_STATE_GET_USAGECOUNT(buf_state);
usage_counts[usage_count]++;
if (buf_state & BM_DIRTY)
dirty[usage_count]++;
if (BUF_STATE_GET_REFCOUNT(buf_state) > 0)
pinned[usage_count]++;
}
for (int i = 0; i < BM_MAX_USAGE_COUNT + 1; i++)
{
values[0] = Int32GetDatum(i);
values[1] = Int32GetDatum(usage_counts[i]);
values[2] = Int32GetDatum(dirty[i]);
values[3] = Int32GetDatum(pinned[i]);
tuplestore_putvalues(rsinfo->setResult, rsinfo->setDesc, values, nulls);
}
return (Datum) 0;
}
/*
* Helper function to check if the user has superuser privileges.
*/
static void
pg_buffercache_superuser_check(char *func_name)
{
if (!superuser())
ereport(ERROR,
(errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
errmsg("must be superuser to use %s()",
func_name)));
}
/*
* Try to evict a shared buffer.
*/
Datum
pg_buffercache_evict(PG_FUNCTION_ARGS)
{
Datum result;
TupleDesc tupledesc;
HeapTuple tuple;
Datum values[NUM_BUFFERCACHE_EVICT_ELEM];
bool nulls[NUM_BUFFERCACHE_EVICT_ELEM] = {0};
Buffer buf = PG_GETARG_INT32(0);
bool buffer_flushed;
if (get_call_result_type(fcinfo, NULL, &tupledesc) != TYPEFUNC_COMPOSITE)
elog(ERROR, "return type must be a row type");
pg_buffercache_superuser_check("pg_buffercache_evict");
if (buf < 1 || buf > NBuffers)
elog(ERROR, "bad buffer ID: %d", buf);
values[0] = BoolGetDatum(EvictUnpinnedBuffer(buf, &buffer_flushed));
values[1] = BoolGetDatum(buffer_flushed);
tuple = heap_form_tuple(tupledesc, values, nulls);
result = HeapTupleGetDatum(tuple);
PG_RETURN_DATUM(result);
}
/*
* Try to evict specified relation.
*/
Datum
pg_buffercache_evict_relation(PG_FUNCTION_ARGS)
{
Datum result;
TupleDesc tupledesc;
HeapTuple tuple;
Datum values[NUM_BUFFERCACHE_EVICT_RELATION_ELEM];
bool nulls[NUM_BUFFERCACHE_EVICT_RELATION_ELEM] = {0};
Oid relOid;
Relation rel;
int32 buffers_evicted = 0;
int32 buffers_flushed = 0;
int32 buffers_skipped = 0;
if (get_call_result_type(fcinfo, NULL, &tupledesc) != TYPEFUNC_COMPOSITE)
elog(ERROR, "return type must be a row type");
pg_buffercache_superuser_check("pg_buffercache_evict_relation");
relOid = PG_GETARG_OID(0);
rel = relation_open(relOid, AccessShareLock);
if (RelationUsesLocalBuffers(rel))
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("relation uses local buffers, %s() is intended to be used for shared buffers only",
"pg_buffercache_evict_relation")));
EvictRelUnpinnedBuffers(rel, &buffers_evicted, &buffers_flushed,
&buffers_skipped);
relation_close(rel, AccessShareLock);
values[0] = Int32GetDatum(buffers_evicted);
values[1] = Int32GetDatum(buffers_flushed);
values[2] = Int32GetDatum(buffers_skipped);
tuple = heap_form_tuple(tupledesc, values, nulls);
result = HeapTupleGetDatum(tuple);
PG_RETURN_DATUM(result);
}
/*
* Try to evict all shared buffers.
*/
Datum
pg_buffercache_evict_all(PG_FUNCTION_ARGS)
{
Datum result;
TupleDesc tupledesc;
HeapTuple tuple;
Datum values[NUM_BUFFERCACHE_EVICT_ALL_ELEM];
bool nulls[NUM_BUFFERCACHE_EVICT_ALL_ELEM] = {0};
int32 buffers_evicted = 0;
int32 buffers_flushed = 0;
int32 buffers_skipped = 0;
if (get_call_result_type(fcinfo, NULL, &tupledesc) != TYPEFUNC_COMPOSITE)
elog(ERROR, "return type must be a row type");
pg_buffercache_superuser_check("pg_buffercache_evict_all");
EvictAllUnpinnedBuffers(&buffers_evicted, &buffers_flushed,
&buffers_skipped);
values[0] = Int32GetDatum(buffers_evicted);
values[1] = Int32GetDatum(buffers_flushed);
values[2] = Int32GetDatum(buffers_skipped);
tuple = heap_form_tuple(tupledesc, values, nulls);
result = HeapTupleGetDatum(tuple);
PG_RETURN_DATUM(result);
}