/*------------------------------------------------------------------------- * * prepunion.c * Routines to plan set-operation queries. The filename is a leftover * from a time when only UNIONs were implemented. * * There are two code paths in the planner for set-operation queries. * If a subquery consists entirely of simple UNION ALL operations, it * is converted into an "append relation". Otherwise, it is handled * by the general code in this module (plan_set_operations and its * subroutines). There is some support code here for the append-relation * case, but most of the heavy lifting for that is done elsewhere, * notably in prepjointree.c and allpaths.c. * * There is also some code here to support planning of queries that use * inheritance (SELECT FROM foo*). Inheritance trees are converted into * append relations, and thenceforth share code with the UNION ALL case. * * * Portions Copyright (c) 1996-2017, PostgreSQL Global Development Group * Portions Copyright (c) 1994, Regents of the University of California * * * IDENTIFICATION * src/backend/optimizer/prep/prepunion.c * *------------------------------------------------------------------------- */ #include "postgres.h" #include #include "access/heapam.h" #include "access/htup_details.h" #include "access/sysattr.h" #include "catalog/pg_inherits_fn.h" #include "catalog/pg_type.h" #include "miscadmin.h" #include "nodes/makefuncs.h" #include "nodes/nodeFuncs.h" #include "optimizer/cost.h" #include "optimizer/pathnode.h" #include "optimizer/paths.h" #include "optimizer/planmain.h" #include "optimizer/planner.h" #include "optimizer/prep.h" #include "optimizer/tlist.h" #include "parser/parse_coerce.h" #include "parser/parsetree.h" #include "utils/lsyscache.h" #include "utils/rel.h" #include "utils/selfuncs.h" typedef struct { PlannerInfo *root; int nappinfos; AppendRelInfo **appinfos; } adjust_appendrel_attrs_context; static Path *recurse_set_operations(Node *setOp, PlannerInfo *root, List *colTypes, List *colCollations, bool junkOK, int flag, List *refnames_tlist, List **pTargetList, double *pNumGroups); static Path *generate_recursion_path(SetOperationStmt *setOp, PlannerInfo *root, List *refnames_tlist, List **pTargetList); static Path *generate_union_path(SetOperationStmt *op, PlannerInfo *root, List *refnames_tlist, List **pTargetList, double *pNumGroups); static Path *generate_nonunion_path(SetOperationStmt *op, PlannerInfo *root, List *refnames_tlist, List **pTargetList, double *pNumGroups); static List *recurse_union_children(Node *setOp, PlannerInfo *root, SetOperationStmt *top_union, List *refnames_tlist, List **tlist_list); static Path *make_union_unique(SetOperationStmt *op, Path *path, List *tlist, PlannerInfo *root); static bool choose_hashed_setop(PlannerInfo *root, List *groupClauses, Path *input_path, double dNumGroups, double dNumOutputRows, const char *construct); static List *generate_setop_tlist(List *colTypes, List *colCollations, int flag, Index varno, bool hack_constants, List *input_tlist, List *refnames_tlist); static List *generate_append_tlist(List *colTypes, List *colCollations, bool flag, List *input_tlists, List *refnames_tlist); static List *generate_setop_grouplist(SetOperationStmt *op, List *targetlist); static void expand_inherited_rtentry(PlannerInfo *root, RangeTblEntry *rte, Index rti); static void make_inh_translation_list(Relation oldrelation, Relation newrelation, Index newvarno, List **translated_vars); static Bitmapset *translate_col_privs(const Bitmapset *parent_privs, List *translated_vars); static Node *adjust_appendrel_attrs_mutator(Node *node, adjust_appendrel_attrs_context *context); static Relids adjust_child_relids(Relids relids, int nappinfos, AppendRelInfo **appinfos); static List *adjust_inherited_tlist(List *tlist, AppendRelInfo *context); /* * plan_set_operations * * Plans the queries for a tree of set operations (UNION/INTERSECT/EXCEPT) * * This routine only deals with the setOperations tree of the given query. * Any top-level ORDER BY requested in root->parse->sortClause will be handled * when we return to grouping_planner; likewise for LIMIT. * * What we return is an "upperrel" RelOptInfo containing at least one Path * that implements the set-operation tree. In addition, root->processed_tlist * receives a targetlist representing the output of the topmost setop node. */ RelOptInfo * plan_set_operations(PlannerInfo *root) { Query *parse = root->parse; SetOperationStmt *topop = castNode(SetOperationStmt, parse->setOperations); Node *node; RangeTblEntry *leftmostRTE; Query *leftmostQuery; RelOptInfo *setop_rel; Path *path; List *top_tlist; Assert(topop); /* check for unsupported stuff */ Assert(parse->jointree->fromlist == NIL); Assert(parse->jointree->quals == NULL); Assert(parse->groupClause == NIL); Assert(parse->havingQual == NULL); Assert(parse->windowClause == NIL); Assert(parse->distinctClause == NIL); /* * We'll need to build RelOptInfos for each of the leaf subqueries, which * are RTE_SUBQUERY rangetable entries in this Query. Prepare the index * arrays for that. */ setup_simple_rel_arrays(root); /* * Find the leftmost component Query. We need to use its column names for * all generated tlists (else SELECT INTO won't work right). */ node = topop->larg; while (node && IsA(node, SetOperationStmt)) node = ((SetOperationStmt *) node)->larg; Assert(node && IsA(node, RangeTblRef)); leftmostRTE = root->simple_rte_array[((RangeTblRef *) node)->rtindex]; leftmostQuery = leftmostRTE->subquery; Assert(leftmostQuery != NULL); /* * We return our results in the (SETOP, NULL) upperrel. For the moment, * this is also the parent rel of all Paths in the setop tree; we may well * change that in future. */ setop_rel = fetch_upper_rel(root, UPPERREL_SETOP, NULL); /* * We don't currently worry about setting setop_rel's consider_parallel * flag, nor about allowing FDWs to contribute paths to it. */ /* * If the topmost node is a recursive union, it needs special processing. */ if (root->hasRecursion) { path = generate_recursion_path(topop, root, leftmostQuery->targetList, &top_tlist); } else { /* * Recurse on setOperations tree to generate paths for set ops. The * final output path should have just the column types shown as the * output from the top-level node, plus possibly resjunk working * columns (we can rely on upper-level nodes to deal with that). */ path = recurse_set_operations((Node *) topop, root, topop->colTypes, topop->colCollations, true, -1, leftmostQuery->targetList, &top_tlist, NULL); } /* Must return the built tlist into root->processed_tlist. */ root->processed_tlist = top_tlist; /* Add only the final path to the SETOP upperrel. */ add_path(setop_rel, path); /* Let extensions possibly add some more paths */ if (create_upper_paths_hook) (*create_upper_paths_hook) (root, UPPERREL_SETOP, NULL, setop_rel); /* Select cheapest path */ set_cheapest(setop_rel); return setop_rel; } /* * recurse_set_operations * Recursively handle one step in a tree of set operations * * colTypes: OID list of set-op's result column datatypes * colCollations: OID list of set-op's result column collations * junkOK: if true, child resjunk columns may be left in the result * flag: if >= 0, add a resjunk output column indicating value of flag * refnames_tlist: targetlist to take column names from * * Returns a path for the subtree, as well as these output parameters: * *pTargetList: receives the fully-fledged tlist for the subtree's top plan * *pNumGroups: if not NULL, we estimate the number of distinct groups * in the result, and store it there * * The pTargetList output parameter is mostly redundant with the pathtarget * of the returned path, but for the moment we need it because much of the * logic in this file depends on flag columns being marked resjunk. Pending * a redesign of how that works, this is the easy way out. * * We don't have to care about typmods here: the only allowed difference * between set-op input and output typmods is input is a specific typmod * and output is -1, and that does not require a coercion. */ static Path * recurse_set_operations(Node *setOp, PlannerInfo *root, List *colTypes, List *colCollations, bool junkOK, int flag, List *refnames_tlist, List **pTargetList, double *pNumGroups) { if (IsA(setOp, RangeTblRef)) { RangeTblRef *rtr = (RangeTblRef *) setOp; RangeTblEntry *rte = root->simple_rte_array[rtr->rtindex]; Query *subquery = rte->subquery; RelOptInfo *rel; PlannerInfo *subroot; RelOptInfo *final_rel; Path *subpath; Path *path; List *tlist; Assert(subquery != NULL); /* * We need to build a RelOptInfo for each leaf subquery. This isn't * used for much here, but it carries the subroot data structures * forward to setrefs.c processing. */ rel = build_simple_rel(root, rtr->rtindex, NULL); /* plan_params should not be in use in current query level */ Assert(root->plan_params == NIL); /* Generate a subroot and Paths for the subquery */ subroot = rel->subroot = subquery_planner(root->glob, subquery, root, false, root->tuple_fraction); /* * It should not be possible for the primitive query to contain any * cross-references to other primitive queries in the setop tree. */ if (root->plan_params) elog(ERROR, "unexpected outer reference in set operation subquery"); /* * Mark rel with estimated output rows, width, etc. Note that we have * to do this before generating outer-query paths, else * cost_subqueryscan is not happy. */ set_subquery_size_estimates(root, rel); /* * For the moment, we consider only a single Path for the subquery. * This should change soon (make it look more like * set_subquery_pathlist). */ final_rel = fetch_upper_rel(subroot, UPPERREL_FINAL, NULL); subpath = get_cheapest_fractional_path(final_rel, root->tuple_fraction); /* * Stick a SubqueryScanPath atop that. * * We don't bother to determine the subquery's output ordering since * it won't be reflected in the set-op result anyhow; so just label * the SubqueryScanPath with nil pathkeys. (XXX that should change * soon too, likely.) */ path = (Path *) create_subqueryscan_path(root, rel, subpath, NIL, NULL); /* * Figure out the appropriate target list, and update the * SubqueryScanPath with the PathTarget form of that. */ tlist = generate_setop_tlist(colTypes, colCollations, flag, rtr->rtindex, true, subroot->processed_tlist, refnames_tlist); path = apply_projection_to_path(root, rel, path, create_pathtarget(root, tlist)); /* Return the fully-fledged tlist to caller, too */ *pTargetList = tlist; /* * Estimate number of groups if caller wants it. If the subquery used * grouping or aggregation, its output is probably mostly unique * anyway; otherwise do statistical estimation. * * XXX you don't really want to know about this: we do the estimation * using the subquery's original targetlist expressions, not the * subroot->processed_tlist which might seem more appropriate. The * reason is that if the subquery is itself a setop, it may return a * processed_tlist containing "varno 0" Vars generated by * generate_append_tlist, and those would confuse estimate_num_groups * mightily. We ought to get rid of the "varno 0" hack, but that * requires a redesign of the parsetree representation of setops, so * that there can be an RTE corresponding to each setop's output. */ if (pNumGroups) { if (subquery->groupClause || subquery->groupingSets || subquery->distinctClause || subroot->hasHavingQual || subquery->hasAggs) *pNumGroups = subpath->rows; else *pNumGroups = estimate_num_groups(subroot, get_tlist_exprs(subquery->targetList, false), subpath->rows, NULL); } return (Path *) path; } else if (IsA(setOp, SetOperationStmt)) { SetOperationStmt *op = (SetOperationStmt *) setOp; Path *path; /* UNIONs are much different from INTERSECT/EXCEPT */ if (op->op == SETOP_UNION) path = generate_union_path(op, root, refnames_tlist, pTargetList, pNumGroups); else path = generate_nonunion_path(op, root, refnames_tlist, pTargetList, pNumGroups); /* * If necessary, add a Result node to project the caller-requested * output columns. * * XXX you don't really want to know about this: setrefs.c will apply * fix_upper_expr() to the Result node's tlist. This would fail if the * Vars generated by generate_setop_tlist() were not exactly equal() * to the corresponding tlist entries of the subplan. However, since * the subplan was generated by generate_union_plan() or * generate_nonunion_plan(), and hence its tlist was generated by * generate_append_tlist(), this will work. We just tell * generate_setop_tlist() to use varno 0. */ if (flag >= 0 || !tlist_same_datatypes(*pTargetList, colTypes, junkOK) || !tlist_same_collations(*pTargetList, colCollations, junkOK)) { *pTargetList = generate_setop_tlist(colTypes, colCollations, flag, 0, false, *pTargetList, refnames_tlist); path = apply_projection_to_path(root, path->parent, path, create_pathtarget(root, *pTargetList)); } return path; } else { elog(ERROR, "unrecognized node type: %d", (int) nodeTag(setOp)); *pTargetList = NIL; return NULL; /* keep compiler quiet */ } } /* * Generate path for a recursive UNION node */ static Path * generate_recursion_path(SetOperationStmt *setOp, PlannerInfo *root, List *refnames_tlist, List **pTargetList) { RelOptInfo *result_rel = fetch_upper_rel(root, UPPERREL_SETOP, NULL); Path *path; Path *lpath; Path *rpath; List *lpath_tlist; List *rpath_tlist; List *tlist; List *groupList; double dNumGroups; /* Parser should have rejected other cases */ if (setOp->op != SETOP_UNION) elog(ERROR, "only UNION queries can be recursive"); /* Worktable ID should be assigned */ Assert(root->wt_param_id >= 0); /* * Unlike a regular UNION node, process the left and right inputs * separately without any intention of combining them into one Append. */ lpath = recurse_set_operations(setOp->larg, root, setOp->colTypes, setOp->colCollations, false, -1, refnames_tlist, &lpath_tlist, NULL); /* The right path will want to look at the left one ... */ root->non_recursive_path = lpath; rpath = recurse_set_operations(setOp->rarg, root, setOp->colTypes, setOp->colCollations, false, -1, refnames_tlist, &rpath_tlist, NULL); root->non_recursive_path = NULL; /* * Generate tlist for RecursiveUnion path node --- same as in Append cases */ tlist = generate_append_tlist(setOp->colTypes, setOp->colCollations, false, list_make2(lpath_tlist, rpath_tlist), refnames_tlist); *pTargetList = tlist; /* * If UNION, identify the grouping operators */ if (setOp->all) { groupList = NIL; dNumGroups = 0; } else { /* Identify the grouping semantics */ groupList = generate_setop_grouplist(setOp, tlist); /* We only support hashing here */ if (!grouping_is_hashable(groupList)) ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("could not implement recursive UNION"), errdetail("All column datatypes must be hashable."))); /* * For the moment, take the number of distinct groups as equal to the * total input size, ie, the worst case. */ dNumGroups = lpath->rows + rpath->rows * 10; } /* * And make the path node. */ path = (Path *) create_recursiveunion_path(root, result_rel, lpath, rpath, create_pathtarget(root, tlist), groupList, root->wt_param_id, dNumGroups); return path; } /* * Generate path for a UNION or UNION ALL node */ static Path * generate_union_path(SetOperationStmt *op, PlannerInfo *root, List *refnames_tlist, List **pTargetList, double *pNumGroups) { RelOptInfo *result_rel = fetch_upper_rel(root, UPPERREL_SETOP, NULL); double save_fraction = root->tuple_fraction; List *pathlist; List *child_tlists1; List *child_tlists2; List *tlist_list; List *tlist; Path *path; /* * If plain UNION, tell children to fetch all tuples. * * Note: in UNION ALL, we pass the top-level tuple_fraction unmodified to * each arm of the UNION ALL. One could make a case for reducing the * tuple fraction for later arms (discounting by the expected size of the * earlier arms' results) but it seems not worth the trouble. The normal * case where tuple_fraction isn't already zero is a LIMIT at top level, * and passing it down as-is is usually enough to get the desired result * of preferring fast-start plans. */ if (!op->all) root->tuple_fraction = 0.0; /* * If any of my children are identical UNION nodes (same op, all-flag, and * colTypes) then they can be merged into this node so that we generate * only one Append and unique-ification for the lot. Recurse to find such * nodes and compute their children's paths. */ pathlist = list_concat(recurse_union_children(op->larg, root, op, refnames_tlist, &child_tlists1), recurse_union_children(op->rarg, root, op, refnames_tlist, &child_tlists2)); tlist_list = list_concat(child_tlists1, child_tlists2); /* * Generate tlist for Append plan node. * * The tlist for an Append plan isn't important as far as the Append is * concerned, but we must make it look real anyway for the benefit of the * next plan level up. */ tlist = generate_append_tlist(op->colTypes, op->colCollations, false, tlist_list, refnames_tlist); *pTargetList = tlist; /* * Append the child results together. */ path = (Path *) create_append_path(result_rel, pathlist, NULL, 0, NIL); /* We have to manually jam the right tlist into the path; ick */ path->pathtarget = create_pathtarget(root, tlist); /* * For UNION ALL, we just need the Append path. For UNION, need to add * node(s) to remove duplicates. */ if (!op->all) path = make_union_unique(op, path, tlist, root); /* * Estimate number of groups if caller wants it. For now we just assume * the output is unique --- this is certainly true for the UNION case, and * we want worst-case estimates anyway. */ if (pNumGroups) *pNumGroups = path->rows; /* Undo effects of possibly forcing tuple_fraction to 0 */ root->tuple_fraction = save_fraction; return path; } /* * Generate path for an INTERSECT, INTERSECT ALL, EXCEPT, or EXCEPT ALL node */ static Path * generate_nonunion_path(SetOperationStmt *op, PlannerInfo *root, List *refnames_tlist, List **pTargetList, double *pNumGroups) { RelOptInfo *result_rel = fetch_upper_rel(root, UPPERREL_SETOP, NULL); double save_fraction = root->tuple_fraction; Path *lpath, *rpath, *path; List *lpath_tlist, *rpath_tlist, *tlist_list, *tlist, *groupList, *pathlist; double dLeftGroups, dRightGroups, dNumGroups, dNumOutputRows; bool use_hash; SetOpCmd cmd; int firstFlag; /* * Tell children to fetch all tuples. */ root->tuple_fraction = 0.0; /* Recurse on children, ensuring their outputs are marked */ lpath = recurse_set_operations(op->larg, root, op->colTypes, op->colCollations, false, 0, refnames_tlist, &lpath_tlist, &dLeftGroups); rpath = recurse_set_operations(op->rarg, root, op->colTypes, op->colCollations, false, 1, refnames_tlist, &rpath_tlist, &dRightGroups); /* Undo effects of forcing tuple_fraction to 0 */ root->tuple_fraction = save_fraction; /* * For EXCEPT, we must put the left input first. For INTERSECT, either * order should give the same results, and we prefer to put the smaller * input first in order to minimize the size of the hash table in the * hashing case. "Smaller" means the one with the fewer groups. */ if (op->op == SETOP_EXCEPT || dLeftGroups <= dRightGroups) { pathlist = list_make2(lpath, rpath); tlist_list = list_make2(lpath_tlist, rpath_tlist); firstFlag = 0; } else { pathlist = list_make2(rpath, lpath); tlist_list = list_make2(rpath_tlist, lpath_tlist); firstFlag = 1; } /* * Generate tlist for Append plan node. * * The tlist for an Append plan isn't important as far as the Append is * concerned, but we must make it look real anyway for the benefit of the * next plan level up. In fact, it has to be real enough that the flag * column is shown as a variable not a constant, else setrefs.c will get * confused. */ tlist = generate_append_tlist(op->colTypes, op->colCollations, true, tlist_list, refnames_tlist); *pTargetList = tlist; /* * Append the child results together. */ path = (Path *) create_append_path(result_rel, pathlist, NULL, 0, NIL); /* We have to manually jam the right tlist into the path; ick */ path->pathtarget = create_pathtarget(root, tlist); /* Identify the grouping semantics */ groupList = generate_setop_grouplist(op, tlist); /* punt if nothing to group on (can this happen?) */ if (groupList == NIL) return path; /* * Estimate number of distinct groups that we'll need hashtable entries * for; this is the size of the left-hand input for EXCEPT, or the smaller * input for INTERSECT. Also estimate the number of eventual output rows. * In non-ALL cases, we estimate each group produces one output row; in * ALL cases use the relevant relation size. These are worst-case * estimates, of course, but we need to be conservative. */ if (op->op == SETOP_EXCEPT) { dNumGroups = dLeftGroups; dNumOutputRows = op->all ? lpath->rows : dNumGroups; } else { dNumGroups = Min(dLeftGroups, dRightGroups); dNumOutputRows = op->all ? Min(lpath->rows, rpath->rows) : dNumGroups; } /* * Decide whether to hash or sort, and add a sort node if needed. */ use_hash = choose_hashed_setop(root, groupList, path, dNumGroups, dNumOutputRows, (op->op == SETOP_INTERSECT) ? "INTERSECT" : "EXCEPT"); if (!use_hash) path = (Path *) create_sort_path(root, result_rel, path, make_pathkeys_for_sortclauses(root, groupList, tlist), -1.0); /* * Finally, add a SetOp path node to generate the correct output. */ switch (op->op) { case SETOP_INTERSECT: cmd = op->all ? SETOPCMD_INTERSECT_ALL : SETOPCMD_INTERSECT; break; case SETOP_EXCEPT: cmd = op->all ? SETOPCMD_EXCEPT_ALL : SETOPCMD_EXCEPT; break; default: elog(ERROR, "unrecognized set op: %d", (int) op->op); cmd = SETOPCMD_INTERSECT; /* keep compiler quiet */ break; } path = (Path *) create_setop_path(root, result_rel, path, cmd, use_hash ? SETOP_HASHED : SETOP_SORTED, groupList, list_length(op->colTypes) + 1, use_hash ? firstFlag : -1, dNumGroups, dNumOutputRows); if (pNumGroups) *pNumGroups = dNumGroups; return path; } /* * Pull up children of a UNION node that are identically-propertied UNIONs. * * NOTE: we can also pull a UNION ALL up into a UNION, since the distinct * output rows will be lost anyway. * * NOTE: currently, we ignore collations while determining if a child has * the same properties. This is semantically sound only so long as all * collations have the same notion of equality. It is valid from an * implementation standpoint because we don't care about the ordering of * a UNION child's result: UNION ALL results are always unordered, and * generate_union_path will force a fresh sort if the top level is a UNION. */ static List * recurse_union_children(Node *setOp, PlannerInfo *root, SetOperationStmt *top_union, List *refnames_tlist, List **tlist_list) { List *result; List *child_tlist; if (IsA(setOp, SetOperationStmt)) { SetOperationStmt *op = (SetOperationStmt *) setOp; if (op->op == top_union->op && (op->all == top_union->all || op->all) && equal(op->colTypes, top_union->colTypes)) { /* Same UNION, so fold children into parent's subpath list */ List *child_tlists1; List *child_tlists2; result = list_concat(recurse_union_children(op->larg, root, top_union, refnames_tlist, &child_tlists1), recurse_union_children(op->rarg, root, top_union, refnames_tlist, &child_tlists2)); *tlist_list = list_concat(child_tlists1, child_tlists2); return result; } } /* * Not same, so plan this child separately. * * Note we disallow any resjunk columns in child results. This is * necessary since the Append node that implements the union won't do any * projection, and upper levels will get confused if some of our output * tuples have junk and some don't. This case only arises when we have an * EXCEPT or INTERSECT as child, else there won't be resjunk anyway. */ result = list_make1(recurse_set_operations(setOp, root, top_union->colTypes, top_union->colCollations, false, -1, refnames_tlist, &child_tlist, NULL)); *tlist_list = list_make1(child_tlist); return result; } /* * Add nodes to the given path tree to unique-ify the result of a UNION. */ static Path * make_union_unique(SetOperationStmt *op, Path *path, List *tlist, PlannerInfo *root) { RelOptInfo *result_rel = fetch_upper_rel(root, UPPERREL_SETOP, NULL); List *groupList; double dNumGroups; /* Identify the grouping semantics */ groupList = generate_setop_grouplist(op, tlist); /* punt if nothing to group on (can this happen?) */ if (groupList == NIL) return path; /* * XXX for the moment, take the number of distinct groups as equal to the * total input size, ie, the worst case. This is too conservative, but we * don't want to risk having the hashtable overrun memory; also, it's not * clear how to get a decent estimate of the true size. One should note * as well the propensity of novices to write UNION rather than UNION ALL * even when they don't expect any duplicates... */ dNumGroups = path->rows; /* Decide whether to hash or sort */ if (choose_hashed_setop(root, groupList, path, dNumGroups, dNumGroups, "UNION")) { /* Hashed aggregate plan --- no sort needed */ path = (Path *) create_agg_path(root, result_rel, path, create_pathtarget(root, tlist), AGG_HASHED, AGGSPLIT_SIMPLE, groupList, NIL, NULL, dNumGroups); } else { /* Sort and Unique */ path = (Path *) create_sort_path(root, result_rel, path, make_pathkeys_for_sortclauses(root, groupList, tlist), -1.0); /* We have to manually jam the right tlist into the path; ick */ path->pathtarget = create_pathtarget(root, tlist); path = (Path *) create_upper_unique_path(root, result_rel, path, list_length(path->pathkeys), dNumGroups); } return path; } /* * choose_hashed_setop - should we use hashing for a set operation? */ static bool choose_hashed_setop(PlannerInfo *root, List *groupClauses, Path *input_path, double dNumGroups, double dNumOutputRows, const char *construct) { int numGroupCols = list_length(groupClauses); bool can_sort; bool can_hash; Size hashentrysize; Path hashed_p; Path sorted_p; double tuple_fraction; /* Check whether the operators support sorting or hashing */ can_sort = grouping_is_sortable(groupClauses); can_hash = grouping_is_hashable(groupClauses); if (can_hash && can_sort) { /* we have a meaningful choice to make, continue ... */ } else if (can_hash) return true; else if (can_sort) return false; else ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), /* translator: %s is UNION, INTERSECT, or EXCEPT */ errmsg("could not implement %s", construct), errdetail("Some of the datatypes only support hashing, while others only support sorting."))); /* Prefer sorting when enable_hashagg is off */ if (!enable_hashagg) return false; /* * Don't do it if it doesn't look like the hashtable will fit into * work_mem. */ hashentrysize = MAXALIGN(input_path->pathtarget->width) + MAXALIGN(SizeofMinimalTupleHeader); if (hashentrysize * dNumGroups > work_mem * 1024L) return false; /* * See if the estimated cost is no more than doing it the other way. * * We need to consider input_plan + hashagg versus input_plan + sort + * group. Note that the actual result plan might involve a SetOp or * Unique node, not Agg or Group, but the cost estimates for Agg and Group * should be close enough for our purposes here. * * These path variables are dummies that just hold cost fields; we don't * make actual Paths for these steps. */ cost_agg(&hashed_p, root, AGG_HASHED, NULL, numGroupCols, dNumGroups, input_path->startup_cost, input_path->total_cost, input_path->rows); /* * Now for the sorted case. Note that the input is *always* unsorted, * since it was made by appending unrelated sub-relations together. */ sorted_p.startup_cost = input_path->startup_cost; sorted_p.total_cost = input_path->total_cost; /* XXX cost_sort doesn't actually look at pathkeys, so just pass NIL */ cost_sort(&sorted_p, root, NIL, sorted_p.total_cost, input_path->rows, input_path->pathtarget->width, 0.0, work_mem, -1.0); cost_group(&sorted_p, root, numGroupCols, dNumGroups, sorted_p.startup_cost, sorted_p.total_cost, input_path->rows); /* * Now make the decision using the top-level tuple fraction. First we * have to convert an absolute count (LIMIT) into fractional form. */ tuple_fraction = root->tuple_fraction; if (tuple_fraction >= 1.0) tuple_fraction /= dNumOutputRows; if (compare_fractional_path_costs(&hashed_p, &sorted_p, tuple_fraction) < 0) { /* Hashed is cheaper, so use it */ return true; } return false; } /* * Generate targetlist for a set-operation plan node * * colTypes: OID list of set-op's result column datatypes * colCollations: OID list of set-op's result column collations * flag: -1 if no flag column needed, 0 or 1 to create a const flag column * varno: varno to use in generated Vars * hack_constants: true to copy up constants (see comments in code) * input_tlist: targetlist of this node's input node * refnames_tlist: targetlist to take column names from */ static List * generate_setop_tlist(List *colTypes, List *colCollations, int flag, Index varno, bool hack_constants, List *input_tlist, List *refnames_tlist) { List *tlist = NIL; int resno = 1; ListCell *ctlc, *cclc, *itlc, *rtlc; TargetEntry *tle; Node *expr; /* there's no forfour() so we must chase one list manually */ rtlc = list_head(refnames_tlist); forthree(ctlc, colTypes, cclc, colCollations, itlc, input_tlist) { Oid colType = lfirst_oid(ctlc); Oid colColl = lfirst_oid(cclc); TargetEntry *inputtle = (TargetEntry *) lfirst(itlc); TargetEntry *reftle = (TargetEntry *) lfirst(rtlc); rtlc = lnext(rtlc); Assert(inputtle->resno == resno); Assert(reftle->resno == resno); Assert(!inputtle->resjunk); Assert(!reftle->resjunk); /* * Generate columns referencing input columns and having appropriate * data types and column names. Insert datatype coercions where * necessary. * * HACK: constants in the input's targetlist are copied up as-is * rather than being referenced as subquery outputs. This is mainly * to ensure that when we try to coerce them to the output column's * datatype, the right things happen for UNKNOWN constants. But do * this only at the first level of subquery-scan plans; we don't want * phony constants appearing in the output tlists of upper-level * nodes! */ if (hack_constants && inputtle->expr && IsA(inputtle->expr, Const)) expr = (Node *) inputtle->expr; else expr = (Node *) makeVar(varno, inputtle->resno, exprType((Node *) inputtle->expr), exprTypmod((Node *) inputtle->expr), exprCollation((Node *) inputtle->expr), 0); if (exprType(expr) != colType) { /* * Note: it's not really cool to be applying coerce_to_common_type * here; one notable point is that assign_expr_collations never * gets run on any generated nodes. For the moment that's not a * problem because we force the correct exposed collation below. * It would likely be best to make the parser generate the correct * output tlist for every set-op to begin with, though. */ expr = coerce_to_common_type(NULL, /* no UNKNOWNs here */ expr, colType, "UNION/INTERSECT/EXCEPT"); } /* * Ensure the tlist entry's exposed collation matches the set-op. This * is necessary because plan_set_operations() reports the result * ordering as a list of SortGroupClauses, which don't carry collation * themselves but just refer to tlist entries. If we don't show the * right collation then planner.c might do the wrong thing in * higher-level queries. * * Note we use RelabelType, not CollateExpr, since this expression * will reach the executor without any further processing. */ if (exprCollation(expr) != colColl) { expr = (Node *) makeRelabelType((Expr *) expr, exprType(expr), exprTypmod(expr), colColl, COERCE_IMPLICIT_CAST); } tle = makeTargetEntry((Expr *) expr, (AttrNumber) resno++, pstrdup(reftle->resname), false); /* * By convention, all non-resjunk columns in a setop tree have * ressortgroupref equal to their resno. In some cases the ref isn't * needed, but this is a cleaner way than modifying the tlist later. */ tle->ressortgroupref = tle->resno; tlist = lappend(tlist, tle); } if (flag >= 0) { /* Add a resjunk flag column */ /* flag value is the given constant */ expr = (Node *) makeConst(INT4OID, -1, InvalidOid, sizeof(int32), Int32GetDatum(flag), false, true); tle = makeTargetEntry((Expr *) expr, (AttrNumber) resno++, pstrdup("flag"), true); tlist = lappend(tlist, tle); } return tlist; } /* * Generate targetlist for a set-operation Append node * * colTypes: OID list of set-op's result column datatypes * colCollations: OID list of set-op's result column collations * flag: true to create a flag column copied up from subplans * input_tlists: list of tlists for sub-plans of the Append * refnames_tlist: targetlist to take column names from * * The entries in the Append's targetlist should always be simple Vars; * we just have to make sure they have the right datatypes/typmods/collations. * The Vars are always generated with varno 0. * * XXX a problem with the varno-zero approach is that set_pathtarget_cost_width * cannot figure out a realistic width for the tlist we make here. But we * ought to refactor this code to produce a PathTarget directly, anyway. */ static List * generate_append_tlist(List *colTypes, List *colCollations, bool flag, List *input_tlists, List *refnames_tlist) { List *tlist = NIL; int resno = 1; ListCell *curColType; ListCell *curColCollation; ListCell *ref_tl_item; int colindex; TargetEntry *tle; Node *expr; ListCell *tlistl; int32 *colTypmods; /* * First extract typmods to use. * * If the inputs all agree on type and typmod of a particular column, use * that typmod; else use -1. */ colTypmods = (int32 *) palloc(list_length(colTypes) * sizeof(int32)); foreach(tlistl, input_tlists) { List *subtlist = (List *) lfirst(tlistl); ListCell *subtlistl; curColType = list_head(colTypes); colindex = 0; foreach(subtlistl, subtlist) { TargetEntry *subtle = (TargetEntry *) lfirst(subtlistl); if (subtle->resjunk) continue; Assert(curColType != NULL); if (exprType((Node *) subtle->expr) == lfirst_oid(curColType)) { /* If first subplan, copy the typmod; else compare */ int32 subtypmod = exprTypmod((Node *) subtle->expr); if (tlistl == list_head(input_tlists)) colTypmods[colindex] = subtypmod; else if (subtypmod != colTypmods[colindex]) colTypmods[colindex] = -1; } else { /* types disagree, so force typmod to -1 */ colTypmods[colindex] = -1; } curColType = lnext(curColType); colindex++; } Assert(curColType == NULL); } /* * Now we can build the tlist for the Append. */ colindex = 0; forthree(curColType, colTypes, curColCollation, colCollations, ref_tl_item, refnames_tlist) { Oid colType = lfirst_oid(curColType); int32 colTypmod = colTypmods[colindex++]; Oid colColl = lfirst_oid(curColCollation); TargetEntry *reftle = (TargetEntry *) lfirst(ref_tl_item); Assert(reftle->resno == resno); Assert(!reftle->resjunk); expr = (Node *) makeVar(0, resno, colType, colTypmod, colColl, 0); tle = makeTargetEntry((Expr *) expr, (AttrNumber) resno++, pstrdup(reftle->resname), false); /* * By convention, all non-resjunk columns in a setop tree have * ressortgroupref equal to their resno. In some cases the ref isn't * needed, but this is a cleaner way than modifying the tlist later. */ tle->ressortgroupref = tle->resno; tlist = lappend(tlist, tle); } if (flag) { /* Add a resjunk flag column */ /* flag value is shown as copied up from subplan */ expr = (Node *) makeVar(0, resno, INT4OID, -1, InvalidOid, 0); tle = makeTargetEntry((Expr *) expr, (AttrNumber) resno++, pstrdup("flag"), true); tlist = lappend(tlist, tle); } pfree(colTypmods); return tlist; } /* * generate_setop_grouplist * Build a SortGroupClause list defining the sort/grouping properties * of the setop's output columns. * * Parse analysis already determined the properties and built a suitable * list, except that the entries do not have sortgrouprefs set because * the parser output representation doesn't include a tlist for each * setop. So what we need to do here is copy that list and install * proper sortgrouprefs into it (copying those from the targetlist). */ static List * generate_setop_grouplist(SetOperationStmt *op, List *targetlist) { List *grouplist = copyObject(op->groupClauses); ListCell *lg; ListCell *lt; lg = list_head(grouplist); foreach(lt, targetlist) { TargetEntry *tle = (TargetEntry *) lfirst(lt); SortGroupClause *sgc; if (tle->resjunk) { /* resjunk columns should not have sortgrouprefs */ Assert(tle->ressortgroupref == 0); continue; /* ignore resjunk columns */ } /* non-resjunk columns should have sortgroupref = resno */ Assert(tle->ressortgroupref == tle->resno); /* non-resjunk columns should have grouping clauses */ Assert(lg != NULL); sgc = (SortGroupClause *) lfirst(lg); lg = lnext(lg); Assert(sgc->tleSortGroupRef == 0); sgc->tleSortGroupRef = tle->ressortgroupref; } Assert(lg == NULL); return grouplist; } /* * expand_inherited_tables * Expand each rangetable entry that represents an inheritance set * into an "append relation". At the conclusion of this process, * the "inh" flag is set in all and only those RTEs that are append * relation parents. */ void expand_inherited_tables(PlannerInfo *root) { Index nrtes; Index rti; ListCell *rl; /* * expand_inherited_rtentry may add RTEs to parse->rtable; there is no * need to scan them since they can't have inh=true. So just scan as far * as the original end of the rtable list. */ nrtes = list_length(root->parse->rtable); rl = list_head(root->parse->rtable); for (rti = 1; rti <= nrtes; rti++) { RangeTblEntry *rte = (RangeTblEntry *) lfirst(rl); expand_inherited_rtentry(root, rte, rti); rl = lnext(rl); } } /* * expand_inherited_rtentry * Check whether a rangetable entry represents an inheritance set. * If so, add entries for all the child tables to the query's * rangetable, and build AppendRelInfo nodes for all the child tables * and add them to root->append_rel_list. If not, clear the entry's * "inh" flag to prevent later code from looking for AppendRelInfos. * * Note that the original RTE is considered to represent the whole * inheritance set. The first of the generated RTEs is an RTE for the same * table, but with inh = false, to represent the parent table in its role * as a simple member of the inheritance set. * * A childless table is never considered to be an inheritance set. For * regular inheritance, a parent RTE must always have at least two associated * AppendRelInfos: one corresponding to the parent table as a simple member of * inheritance set and one or more corresponding to the actual children. * Since a partitioned table is not scanned, it might have only one associated * AppendRelInfo. */ static void expand_inherited_rtentry(PlannerInfo *root, RangeTblEntry *rte, Index rti) { Query *parse = root->parse; Oid parentOID; PlanRowMark *oldrc; Relation oldrelation; LOCKMODE lockmode; List *inhOIDs; List *appinfos; ListCell *l; bool has_child; PartitionedChildRelInfo *pcinfo; List *partitioned_child_rels = NIL; /* Does RT entry allow inheritance? */ if (!rte->inh) return; /* Ignore any already-expanded UNION ALL nodes */ if (rte->rtekind != RTE_RELATION) { Assert(rte->rtekind == RTE_SUBQUERY); return; } /* Fast path for common case of childless table */ parentOID = rte->relid; if (!has_subclass(parentOID)) { /* Clear flag before returning */ rte->inh = false; return; } /* * The rewriter should already have obtained an appropriate lock on each * relation named in the query. However, for each child relation we add * to the query, we must obtain an appropriate lock, because this will be * the first use of those relations in the parse/rewrite/plan pipeline. * * If the parent relation is the query's result relation, then we need * RowExclusiveLock. Otherwise, if it's accessed FOR UPDATE/SHARE, we * need RowShareLock; otherwise AccessShareLock. We can't just grab * AccessShareLock because then the executor would be trying to upgrade * the lock, leading to possible deadlocks. (This code should match the * parser and rewriter.) */ oldrc = get_plan_rowmark(root->rowMarks, rti); if (rti == parse->resultRelation) lockmode = RowExclusiveLock; else if (oldrc && RowMarkRequiresRowShareLock(oldrc->markType)) lockmode = RowShareLock; else lockmode = AccessShareLock; /* Scan for all members of inheritance set, acquire needed locks */ inhOIDs = find_all_inheritors(parentOID, lockmode, NULL); /* * Check that there's at least one descendant, else treat as no-child * case. This could happen despite above has_subclass() check, if table * once had a child but no longer does. */ if (list_length(inhOIDs) < 2) { /* Clear flag before returning */ rte->inh = false; return; } /* * If parent relation is selected FOR UPDATE/SHARE, we need to mark its * PlanRowMark as isParent = true, and generate a new PlanRowMark for each * child. */ if (oldrc) oldrc->isParent = true; /* * Must open the parent relation to examine its tupdesc. We need not lock * it; we assume the rewriter already did. */ oldrelation = heap_open(parentOID, NoLock); /* Scan the inheritance set and expand it */ appinfos = NIL; has_child = false; foreach(l, inhOIDs) { Oid childOID = lfirst_oid(l); Relation newrelation; RangeTblEntry *childrte; Index childRTindex; AppendRelInfo *appinfo; /* Open rel if needed; we already have required locks */ if (childOID != parentOID) newrelation = heap_open(childOID, NoLock); else newrelation = oldrelation; /* * It is possible that the parent table has children that are temp * tables of other backends. We cannot safely access such tables * (because of buffering issues), and the best thing to do seems to be * to silently ignore them. */ if (childOID != parentOID && RELATION_IS_OTHER_TEMP(newrelation)) { heap_close(newrelation, lockmode); continue; } /* * Build an RTE for the child, and attach to query's rangetable list. * We copy most fields of the parent's RTE, but replace relation OID * and relkind, and set inh = false. Also, set requiredPerms to zero * since all required permissions checks are done on the original RTE. * Likewise, set the child's securityQuals to empty, because we only * want to apply the parent's RLS conditions regardless of what RLS * properties individual children may have. (This is an intentional * choice to make inherited RLS work like regular permissions checks.) * The parent securityQuals will be propagated to children along with * other base restriction clauses, so we don't need to do it here. */ childrte = copyObject(rte); childrte->relid = childOID; childrte->relkind = newrelation->rd_rel->relkind; childrte->inh = false; childrte->requiredPerms = 0; childrte->securityQuals = NIL; parse->rtable = lappend(parse->rtable, childrte); childRTindex = list_length(parse->rtable); /* * Build an AppendRelInfo for this parent and child, unless the child * is a partitioned table. */ if (childrte->relkind != RELKIND_PARTITIONED_TABLE) { /* Remember if we saw a real child. */ if (childOID != parentOID) has_child = true; appinfo = makeNode(AppendRelInfo); appinfo->parent_relid = rti; appinfo->child_relid = childRTindex; appinfo->parent_reltype = oldrelation->rd_rel->reltype; appinfo->child_reltype = newrelation->rd_rel->reltype; make_inh_translation_list(oldrelation, newrelation, childRTindex, &appinfo->translated_vars); appinfo->parent_reloid = parentOID; appinfos = lappend(appinfos, appinfo); /* * Translate the column permissions bitmaps to the child's attnums * (we have to build the translated_vars list before we can do * this). But if this is the parent table, leave copyObject's * result alone. * * Note: we need to do this even though the executor won't run any * permissions checks on the child RTE. The * insertedCols/updatedCols bitmaps may be examined for * trigger-firing purposes. */ if (childOID != parentOID) { childrte->selectedCols = translate_col_privs(rte->selectedCols, appinfo->translated_vars); childrte->insertedCols = translate_col_privs(rte->insertedCols, appinfo->translated_vars); childrte->updatedCols = translate_col_privs(rte->updatedCols, appinfo->translated_vars); } } else partitioned_child_rels = lappend_int(partitioned_child_rels, childRTindex); /* * Build a PlanRowMark if parent is marked FOR UPDATE/SHARE. */ if (oldrc) { PlanRowMark *newrc = makeNode(PlanRowMark); newrc->rti = childRTindex; newrc->prti = rti; newrc->rowmarkId = oldrc->rowmarkId; /* Reselect rowmark type, because relkind might not match parent */ newrc->markType = select_rowmark_type(childrte, oldrc->strength); newrc->allMarkTypes = (1 << newrc->markType); newrc->strength = oldrc->strength; newrc->waitPolicy = oldrc->waitPolicy; /* * We mark RowMarks for partitioned child tables as parent * RowMarks so that the executor ignores them (except their * existence means that the child tables be locked using * appropriate mode). */ newrc->isParent = (childrte->relkind == RELKIND_PARTITIONED_TABLE); /* Include child's rowmark type in parent's allMarkTypes */ oldrc->allMarkTypes |= newrc->allMarkTypes; root->rowMarks = lappend(root->rowMarks, newrc); } /* Close child relations, but keep locks */ if (childOID != parentOID) heap_close(newrelation, NoLock); } heap_close(oldrelation, NoLock); /* * If all the children were temp tables or a partitioned parent did not * have any leaf partitions, pretend it's a non-inheritance situation; we * don't need Append node in that case. The duplicate RTE we added for * the parent table is harmless, so we don't bother to get rid of it; * ditto for the useless PlanRowMark node. */ if (!has_child) { /* Clear flag before returning */ rte->inh = false; return; } /* * We keep a list of objects in root, each of which maps a partitioned * parent RT index to the list of RT indexes of its partitioned child * tables. When creating an Append or a ModifyTable path for the parent, * we copy the child RT index list verbatim to the path so that it could * be carried over to the executor so that the latter could identify the * partitioned child tables. */ if (partitioned_child_rels != NIL) { pcinfo = makeNode(PartitionedChildRelInfo); Assert(rte->relkind == RELKIND_PARTITIONED_TABLE); pcinfo->parent_relid = rti; pcinfo->child_rels = partitioned_child_rels; root->pcinfo_list = lappend(root->pcinfo_list, pcinfo); } /* Otherwise, OK to add to root->append_rel_list */ root->append_rel_list = list_concat(root->append_rel_list, appinfos); } /* * make_inh_translation_list * Build the list of translations from parent Vars to child Vars for * an inheritance child. * * For paranoia's sake, we match type/collation as well as attribute name. */ static void make_inh_translation_list(Relation oldrelation, Relation newrelation, Index newvarno, List **translated_vars) { List *vars = NIL; TupleDesc old_tupdesc = RelationGetDescr(oldrelation); TupleDesc new_tupdesc = RelationGetDescr(newrelation); int oldnatts = old_tupdesc->natts; int newnatts = new_tupdesc->natts; int old_attno; for (old_attno = 0; old_attno < oldnatts; old_attno++) { Form_pg_attribute att; char *attname; Oid atttypid; int32 atttypmod; Oid attcollation; int new_attno; att = TupleDescAttr(old_tupdesc, old_attno); if (att->attisdropped) { /* Just put NULL into this list entry */ vars = lappend(vars, NULL); continue; } attname = NameStr(att->attname); atttypid = att->atttypid; atttypmod = att->atttypmod; attcollation = att->attcollation; /* * When we are generating the "translation list" for the parent table * of an inheritance set, no need to search for matches. */ if (oldrelation == newrelation) { vars = lappend(vars, makeVar(newvarno, (AttrNumber) (old_attno + 1), atttypid, atttypmod, attcollation, 0)); continue; } /* * Otherwise we have to search for the matching column by name. * There's no guarantee it'll have the same column position, because * of cases like ALTER TABLE ADD COLUMN and multiple inheritance. * However, in simple cases it will be the same column number, so try * that before we go groveling through all the columns. * * Note: the test for (att = ...) != NULL cannot fail, it's just a * notational device to include the assignment into the if-clause. */ if (old_attno < newnatts && (att = TupleDescAttr(new_tupdesc, old_attno)) != NULL && !att->attisdropped && att->attinhcount != 0 && strcmp(attname, NameStr(att->attname)) == 0) new_attno = old_attno; else { for (new_attno = 0; new_attno < newnatts; new_attno++) { att = TupleDescAttr(new_tupdesc, new_attno); if (!att->attisdropped && att->attinhcount != 0 && strcmp(attname, NameStr(att->attname)) == 0) break; } if (new_attno >= newnatts) elog(ERROR, "could not find inherited attribute \"%s\" of relation \"%s\"", attname, RelationGetRelationName(newrelation)); } /* Found it, check type and collation match */ if (atttypid != att->atttypid || atttypmod != att->atttypmod) elog(ERROR, "attribute \"%s\" of relation \"%s\" does not match parent's type", attname, RelationGetRelationName(newrelation)); if (attcollation != att->attcollation) elog(ERROR, "attribute \"%s\" of relation \"%s\" does not match parent's collation", attname, RelationGetRelationName(newrelation)); vars = lappend(vars, makeVar(newvarno, (AttrNumber) (new_attno + 1), atttypid, atttypmod, attcollation, 0)); } *translated_vars = vars; } /* * translate_col_privs * Translate a bitmapset representing per-column privileges from the * parent rel's attribute numbering to the child's. * * The only surprise here is that we don't translate a parent whole-row * reference into a child whole-row reference. That would mean requiring * permissions on all child columns, which is overly strict, since the * query is really only going to reference the inherited columns. Instead * we set the per-column bits for all inherited columns. */ static Bitmapset * translate_col_privs(const Bitmapset *parent_privs, List *translated_vars) { Bitmapset *child_privs = NULL; bool whole_row; int attno; ListCell *lc; /* System attributes have the same numbers in all tables */ for (attno = FirstLowInvalidHeapAttributeNumber + 1; attno < 0; attno++) { if (bms_is_member(attno - FirstLowInvalidHeapAttributeNumber, parent_privs)) child_privs = bms_add_member(child_privs, attno - FirstLowInvalidHeapAttributeNumber); } /* Check if parent has whole-row reference */ whole_row = bms_is_member(InvalidAttrNumber - FirstLowInvalidHeapAttributeNumber, parent_privs); /* And now translate the regular user attributes, using the vars list */ attno = InvalidAttrNumber; foreach(lc, translated_vars) { Var *var = lfirst_node(Var, lc); attno++; if (var == NULL) /* ignore dropped columns */ continue; if (whole_row || bms_is_member(attno - FirstLowInvalidHeapAttributeNumber, parent_privs)) child_privs = bms_add_member(child_privs, var->varattno - FirstLowInvalidHeapAttributeNumber); } return child_privs; } /* * adjust_appendrel_attrs * Copy the specified query or expression and translate Vars referring to a * parent rel to refer to the corresponding child rel instead. We also * update rtindexes appearing outside Vars, such as resultRelation and * jointree relids. * * Note: this is only applied after conversion of sublinks to subplans, * so we don't need to cope with recursion into sub-queries. * * Note: this is not hugely different from what pullup_replace_vars() does; * maybe we should try to fold the two routines together. */ Node * adjust_appendrel_attrs(PlannerInfo *root, Node *node, int nappinfos, AppendRelInfo **appinfos) { Node *result; adjust_appendrel_attrs_context context; context.root = root; context.nappinfos = nappinfos; context.appinfos = appinfos; /* If there's nothing to adjust, don't call this function. */ Assert(nappinfos >= 1 && appinfos != NULL); /* * Must be prepared to start with a Query or a bare expression tree. */ if (node && IsA(node, Query)) { Query *newnode; int cnt; newnode = query_tree_mutator((Query *) node, adjust_appendrel_attrs_mutator, (void *) &context, QTW_IGNORE_RC_SUBQUERIES); for (cnt = 0; cnt < nappinfos; cnt++) { AppendRelInfo *appinfo = appinfos[cnt]; if (newnode->resultRelation == appinfo->parent_relid) { newnode->resultRelation = appinfo->child_relid; /* Fix tlist resnos too, if it's inherited UPDATE */ if (newnode->commandType == CMD_UPDATE) newnode->targetList = adjust_inherited_tlist(newnode->targetList, appinfo); break; } } result = (Node *) newnode; } else result = adjust_appendrel_attrs_mutator(node, &context); return result; } static Node * adjust_appendrel_attrs_mutator(Node *node, adjust_appendrel_attrs_context *context) { AppendRelInfo **appinfos = context->appinfos; int nappinfos = context->nappinfos; int cnt; if (node == NULL) return NULL; if (IsA(node, Var)) { Var *var = (Var *) copyObject(node); AppendRelInfo *appinfo = NULL; for (cnt = 0; cnt < nappinfos; cnt++) { if (var->varno == appinfos[cnt]->parent_relid) { appinfo = appinfos[cnt]; break; } } if (var->varlevelsup == 0 && appinfo) { var->varno = appinfo->child_relid; var->varnoold = appinfo->child_relid; if (var->varattno > 0) { Node *newnode; if (var->varattno > list_length(appinfo->translated_vars)) elog(ERROR, "attribute %d of relation \"%s\" does not exist", var->varattno, get_rel_name(appinfo->parent_reloid)); newnode = copyObject(list_nth(appinfo->translated_vars, var->varattno - 1)); if (newnode == NULL) elog(ERROR, "attribute %d of relation \"%s\" does not exist", var->varattno, get_rel_name(appinfo->parent_reloid)); return newnode; } else if (var->varattno == 0) { /* * Whole-row Var: if we are dealing with named rowtypes, we * can use a whole-row Var for the child table plus a coercion * step to convert the tuple layout to the parent's rowtype. * Otherwise we have to generate a RowExpr. */ if (OidIsValid(appinfo->child_reltype)) { Assert(var->vartype == appinfo->parent_reltype); if (appinfo->parent_reltype != appinfo->child_reltype) { ConvertRowtypeExpr *r = makeNode(ConvertRowtypeExpr); r->arg = (Expr *) var; r->resulttype = appinfo->parent_reltype; r->convertformat = COERCE_IMPLICIT_CAST; r->location = -1; /* Make sure the Var node has the right type ID, too */ var->vartype = appinfo->child_reltype; return (Node *) r; } } else { /* * Build a RowExpr containing the translated variables. * * In practice var->vartype will always be RECORDOID here, * so we need to come up with some suitable column names. * We use the parent RTE's column names. * * Note: we can't get here for inheritance cases, so there * is no need to worry that translated_vars might contain * some dummy NULLs. */ RowExpr *rowexpr; List *fields; RangeTblEntry *rte; rte = rt_fetch(appinfo->parent_relid, context->root->parse->rtable); fields = copyObject(appinfo->translated_vars); rowexpr = makeNode(RowExpr); rowexpr->args = fields; rowexpr->row_typeid = var->vartype; rowexpr->row_format = COERCE_IMPLICIT_CAST; rowexpr->colnames = copyObject(rte->eref->colnames); rowexpr->location = -1; return (Node *) rowexpr; } } /* system attributes don't need any other translation */ } return (Node *) var; } if (IsA(node, CurrentOfExpr)) { CurrentOfExpr *cexpr = (CurrentOfExpr *) copyObject(node); for (cnt = 0; cnt < nappinfos; cnt++) { AppendRelInfo *appinfo = appinfos[cnt]; if (cexpr->cvarno == appinfo->parent_relid) { cexpr->cvarno = appinfo->child_relid; break; } } return (Node *) cexpr; } if (IsA(node, RangeTblRef)) { RangeTblRef *rtr = (RangeTblRef *) copyObject(node); for (cnt = 0; cnt < nappinfos; cnt++) { AppendRelInfo *appinfo = appinfos[cnt]; if (rtr->rtindex == appinfo->parent_relid) { rtr->rtindex = appinfo->child_relid; break; } } return (Node *) rtr; } if (IsA(node, JoinExpr)) { /* Copy the JoinExpr node with correct mutation of subnodes */ JoinExpr *j; AppendRelInfo *appinfo; j = (JoinExpr *) expression_tree_mutator(node, adjust_appendrel_attrs_mutator, (void *) context); /* now fix JoinExpr's rtindex (probably never happens) */ for (cnt = 0; cnt < nappinfos; cnt++) { appinfo = appinfos[cnt]; if (j->rtindex == appinfo->parent_relid) { j->rtindex = appinfo->child_relid; break; } } return (Node *) j; } if (IsA(node, PlaceHolderVar)) { /* Copy the PlaceHolderVar node with correct mutation of subnodes */ PlaceHolderVar *phv; phv = (PlaceHolderVar *) expression_tree_mutator(node, adjust_appendrel_attrs_mutator, (void *) context); /* now fix PlaceHolderVar's relid sets */ if (phv->phlevelsup == 0) phv->phrels = adjust_child_relids(phv->phrels, context->nappinfos, context->appinfos); return (Node *) phv; } /* Shouldn't need to handle planner auxiliary nodes here */ Assert(!IsA(node, SpecialJoinInfo)); Assert(!IsA(node, AppendRelInfo)); Assert(!IsA(node, PlaceHolderInfo)); Assert(!IsA(node, MinMaxAggInfo)); /* * We have to process RestrictInfo nodes specially. (Note: although * set_append_rel_pathlist will hide RestrictInfos in the parent's * baserestrictinfo list from us, it doesn't hide those in joininfo.) */ if (IsA(node, RestrictInfo)) { RestrictInfo *oldinfo = (RestrictInfo *) node; RestrictInfo *newinfo = makeNode(RestrictInfo); /* Copy all flat-copiable fields */ memcpy(newinfo, oldinfo, sizeof(RestrictInfo)); /* Recursively fix the clause itself */ newinfo->clause = (Expr *) adjust_appendrel_attrs_mutator((Node *) oldinfo->clause, context); /* and the modified version, if an OR clause */ newinfo->orclause = (Expr *) adjust_appendrel_attrs_mutator((Node *) oldinfo->orclause, context); /* adjust relid sets too */ newinfo->clause_relids = adjust_child_relids(oldinfo->clause_relids, context->nappinfos, context->appinfos); newinfo->required_relids = adjust_child_relids(oldinfo->required_relids, context->nappinfos, context->appinfos); newinfo->outer_relids = adjust_child_relids(oldinfo->outer_relids, context->nappinfos, context->appinfos); newinfo->nullable_relids = adjust_child_relids(oldinfo->nullable_relids, context->nappinfos, context->appinfos); newinfo->left_relids = adjust_child_relids(oldinfo->left_relids, context->nappinfos, context->appinfos); newinfo->right_relids = adjust_child_relids(oldinfo->right_relids, context->nappinfos, context->appinfos); /* * Reset cached derivative fields, since these might need to have * different values when considering the child relation. Note we * don't reset left_ec/right_ec: each child variable is implicitly * equivalent to its parent, so still a member of the same EC if any. */ newinfo->eval_cost.startup = -1; newinfo->norm_selec = -1; newinfo->outer_selec = -1; newinfo->left_em = NULL; newinfo->right_em = NULL; newinfo->scansel_cache = NIL; newinfo->left_bucketsize = -1; newinfo->right_bucketsize = -1; newinfo->left_mcvfreq = -1; newinfo->right_mcvfreq = -1; return (Node *) newinfo; } /* * NOTE: we do not need to recurse into sublinks, because they should * already have been converted to subplans before we see them. */ Assert(!IsA(node, SubLink)); Assert(!IsA(node, Query)); return expression_tree_mutator(node, adjust_appendrel_attrs_mutator, (void *) context); } /* * Substitute child relids for parent relids in a Relid set. The array of * appinfos specifies the substitutions to be performed. */ static Relids adjust_child_relids(Relids relids, int nappinfos, AppendRelInfo **appinfos) { Bitmapset *result = NULL; int cnt; for (cnt = 0; cnt < nappinfos; cnt++) { AppendRelInfo *appinfo = appinfos[cnt]; /* Remove parent, add child */ if (bms_is_member(appinfo->parent_relid, relids)) { /* Make a copy if we are changing the set. */ if (!result) result = bms_copy(relids); result = bms_del_member(result, appinfo->parent_relid); result = bms_add_member(result, appinfo->child_relid); } } /* If we made any changes, return the modified copy. */ if (result) return result; /* Otherwise, return the original set without modification. */ return relids; } /* * Adjust the targetlist entries of an inherited UPDATE operation * * The expressions have already been fixed, but we have to make sure that * the target resnos match the child table (they may not, in the case of * a column that was added after-the-fact by ALTER TABLE). In some cases * this can force us to re-order the tlist to preserve resno ordering. * (We do all this work in special cases so that preptlist.c is fast for * the typical case.) * * The given tlist has already been through expression_tree_mutator; * therefore the TargetEntry nodes are fresh copies that it's okay to * scribble on. * * Note that this is not needed for INSERT because INSERT isn't inheritable. */ static List * adjust_inherited_tlist(List *tlist, AppendRelInfo *context) { bool changed_it = false; ListCell *tl; List *new_tlist; bool more; int attrno; /* This should only happen for an inheritance case, not UNION ALL */ Assert(OidIsValid(context->parent_reloid)); /* Scan tlist and update resnos to match attnums of child rel */ foreach(tl, tlist) { TargetEntry *tle = (TargetEntry *) lfirst(tl); Var *childvar; if (tle->resjunk) continue; /* ignore junk items */ /* Look up the translation of this column: it must be a Var */ if (tle->resno <= 0 || tle->resno > list_length(context->translated_vars)) elog(ERROR, "attribute %d of relation \"%s\" does not exist", tle->resno, get_rel_name(context->parent_reloid)); childvar = (Var *) list_nth(context->translated_vars, tle->resno - 1); if (childvar == NULL || !IsA(childvar, Var)) elog(ERROR, "attribute %d of relation \"%s\" does not exist", tle->resno, get_rel_name(context->parent_reloid)); if (tle->resno != childvar->varattno) { tle->resno = childvar->varattno; changed_it = true; } } /* * If we changed anything, re-sort the tlist by resno, and make sure * resjunk entries have resnos above the last real resno. The sort * algorithm is a bit stupid, but for such a seldom-taken path, small is * probably better than fast. */ if (!changed_it) return tlist; new_tlist = NIL; more = true; for (attrno = 1; more; attrno++) { more = false; foreach(tl, tlist) { TargetEntry *tle = (TargetEntry *) lfirst(tl); if (tle->resjunk) continue; /* ignore junk items */ if (tle->resno == attrno) new_tlist = lappend(new_tlist, tle); else if (tle->resno > attrno) more = true; } } foreach(tl, tlist) { TargetEntry *tle = (TargetEntry *) lfirst(tl); if (!tle->resjunk) continue; /* here, ignore non-junk items */ tle->resno = attrno; new_tlist = lappend(new_tlist, tle); attrno++; } return new_tlist; } /* * adjust_appendrel_attrs_multilevel * Apply Var translations from a toplevel appendrel parent down to a child. * * In some cases we need to translate expressions referencing a parent relation * to reference an appendrel child that's multiple levels removed from it. */ Node * adjust_appendrel_attrs_multilevel(PlannerInfo *root, Node *node, Relids child_relids, Relids top_parent_relids) { AppendRelInfo **appinfos; Bitmapset *parent_relids = NULL; int nappinfos; int cnt; Assert(bms_num_members(child_relids) == bms_num_members(top_parent_relids)); appinfos = find_appinfos_by_relids(root, child_relids, &nappinfos); /* Construct relids set for the immediate parent of given child. */ for (cnt = 0; cnt < nappinfos; cnt++) { AppendRelInfo *appinfo = appinfos[cnt]; parent_relids = bms_add_member(parent_relids, appinfo->parent_relid); } /* Recurse if immediate parent is not the top parent. */ if (!bms_equal(parent_relids, top_parent_relids)) node = adjust_appendrel_attrs_multilevel(root, node, parent_relids, top_parent_relids); /* Now translate for this child */ node = adjust_appendrel_attrs(root, node, nappinfos, appinfos); pfree(appinfos); return node; } /* * find_appinfos_by_relids * Find AppendRelInfo structures for all relations specified by relids. * * The AppendRelInfos are returned in an array, which can be pfree'd by the * caller. *nappinfos is set to the the number of entries in the array. */ AppendRelInfo ** find_appinfos_by_relids(PlannerInfo *root, Relids relids, int *nappinfos) { ListCell *lc; AppendRelInfo **appinfos; int cnt = 0; *nappinfos = bms_num_members(relids); appinfos = (AppendRelInfo **) palloc(sizeof(AppendRelInfo *) * *nappinfos); foreach(lc, root->append_rel_list) { AppendRelInfo *appinfo = lfirst(lc); if (bms_is_member(appinfo->child_relid, relids)) { appinfos[cnt] = appinfo; cnt++; /* Stop when we have gathered all the AppendRelInfos. */ if (cnt == *nappinfos) return appinfos; } } /* Should have found the entries ... */ elog(ERROR, "did not find all requested child rels in append_rel_list"); return NULL; /* not reached */ }