/*------------------------------------------------------------------------- * * parse_node.c-- * various routines that make nodes for query plans * * Copyright (c) 1994, Regents of the University of California * * * IDENTIFICATION * $Header: /cvsroot/pgsql/src/backend/parser/parse_node.c,v 1.12 1998/02/10 16:03:39 momjian Exp $ * *------------------------------------------------------------------------- */ #include #include #include "postgres.h" #include "access/heapam.h" #include "catalog/pg_operator.h" #include "catalog/pg_type.h" #include "fmgr.h" #include "nodes/makefuncs.h" #include "parser/parse_expr.h" #include "parser/parse_node.h" #include "parser/parse_oper.h" #include "parser/parse_relation.h" #include "parser/parse_type.h" #include "utils/builtins.h" #include "utils/syscache.h" #include "utils/lsyscache.h" static void disallow_setop(char *op, Type optype, Node *operand); static Node *make_operand(char *opname, Node *tree, Oid orig_typeId, Oid true_typeId); /* * make_parsestate() -- * allocate and initialize a new ParseState. * the CALLERS is responsible for freeing the ParseState* returned * */ ParseState * make_parsestate(ParseState *parentParseState) { ParseState *pstate; pstate = palloc(sizeof(ParseState)); MemSet(pstate, 0, sizeof(ParseState)); pstate->p_last_resno = 1; pstate->parentParseState = parentParseState; return (pstate); } static Node * make_operand(char *opname, Node *tree, Oid orig_typeId, Oid true_typeId) { Node *result; Type true_type; Datum val; Oid infunc; if (tree != NULL) { result = tree; true_type = typeidType(true_typeId); disallow_setop(opname, true_type, result); if (true_typeId != orig_typeId) { /* must coerce */ Const *con = (Const *) result; Assert(nodeTag(result) == T_Const); val = (Datum) textout((struct varlena *) con->constvalue); infunc = typeidRetinfunc(true_typeId); con = makeNode(Const); con->consttype = true_typeId; con->constlen = typeLen(true_type); con->constvalue = (Datum) fmgr(infunc, val, typeidTypElem(true_typeId), -1 /* for varchar() type */ ); con->constisnull = false; con->constbyval = true; con->constisset = false; result = (Node *) con; } } else { Const *con = makeNode(Const); con->consttype = true_typeId; con->constlen = 0; con->constvalue = (Datum) (struct varlena *) NULL; con->constisnull = true; con->constbyval = true; con->constisset = false; result = (Node *) con; } return result; } static void disallow_setop(char *op, Type optype, Node *operand) { if (operand == NULL) return; if (nodeTag(operand) == T_Iter) { elog(NOTICE, "An operand to the '%s' operator returns a set of %s,", op, typeTypeName(optype)); elog(ERROR, "but '%s' takes single values, not sets.", op); } } Expr * make_op(char *opname, Node *ltree, Node *rtree) { Oid ltypeId, rtypeId; Operator temp; OperatorTupleForm opform; Oper *newop; Node *left, *right; Expr *result; if (rtree == NULL) { /* right operator */ ltypeId = (ltree == NULL) ? UNKNOWNOID : exprType(ltree); temp = right_oper(opname, ltypeId); opform = (OperatorTupleForm) GETSTRUCT(temp); left = make_operand(opname, ltree, ltypeId, opform->oprleft); right = NULL; } else if (ltree == NULL) { /* left operator */ rtypeId = (rtree == NULL) ? UNKNOWNOID : exprType(rtree); temp = left_oper(opname, rtypeId); opform = (OperatorTupleForm) GETSTRUCT(temp); right = make_operand(opname, rtree, rtypeId, opform->oprright); left = NULL; } else { char *outstr; Oid infunc, outfunc; Type newtype; #define CONVERTABLE_TYPE(t) ( (t) == INT2OID || \ (t) == INT4OID || \ (t) == OIDOID || \ (t) == FLOAT4OID || \ (t) == FLOAT8OID || \ (t) == CASHOID) /* binary operator */ ltypeId = (ltree == NULL) ? UNKNOWNOID : exprType(ltree); rtypeId = (rtree == NULL) ? UNKNOWNOID : exprType(rtree); /* * convert constant when using a const of a numeric type and a * non-const of another numeric type */ if (CONVERTABLE_TYPE(ltypeId) && nodeTag(ltree) != T_Const && CONVERTABLE_TYPE(rtypeId) && nodeTag(rtree) == T_Const && !((Const *) rtree)->constiscast) { outfunc = typeidRetoutfunc(rtypeId); infunc = typeidRetinfunc(ltypeId); outstr = (char *) fmgr(outfunc, ((Const *) rtree)->constvalue); ((Const *) rtree)->constvalue = (Datum) fmgr(infunc, outstr); pfree(outstr); ((Const *) rtree)->consttype = rtypeId = ltypeId; newtype = typeidType(rtypeId); ((Const *) rtree)->constlen = typeLen(newtype); ((Const *) rtree)->constbyval = typeByVal(newtype); } if (CONVERTABLE_TYPE(rtypeId) && nodeTag(rtree) != T_Const && CONVERTABLE_TYPE(ltypeId) && nodeTag(ltree) == T_Const && !((Const *) ltree)->constiscast) { outfunc = typeidRetoutfunc(ltypeId); infunc = typeidRetinfunc(rtypeId); outstr = (char *) fmgr(outfunc, ((Const *) ltree)->constvalue); ((Const *) ltree)->constvalue = (Datum) fmgr(infunc, outstr); pfree(outstr); ((Const *) ltree)->consttype = ltypeId = rtypeId; newtype = typeidType(ltypeId); ((Const *) ltree)->constlen = typeLen(newtype); ((Const *) ltree)->constbyval = typeByVal(newtype); } temp = oper(opname, ltypeId, rtypeId, false); opform = (OperatorTupleForm) GETSTRUCT(temp); left = make_operand(opname, ltree, ltypeId, opform->oprleft); right = make_operand(opname, rtree, rtypeId, opform->oprright); } newop = makeOper(oprid(temp), /* opno */ InvalidOid,/* opid */ opform->oprresult, /* operator result type */ 0, NULL); result = makeNode(Expr); result->typeOid = opform->oprresult; result->opType = OP_EXPR; result->oper = (Node *) newop; if (!left) result->args = lcons(right, NIL); else if (!right) result->args = lcons(left, NIL); else result->args = lcons(left, lcons(right, NIL)); return result; } Var * make_var(ParseState *pstate, Oid relid, char *refname, char *attrname) { Var *varnode; int vnum, attid; Oid vartypeid; int16 type_mod; int sublevels_up; vnum = refnameRangeTablePosn(pstate, refname, &sublevels_up); attid = get_attnum(relid, attrname); if (attid == InvalidAttrNumber) elog(ERROR, "Relation %s does not have attribute %s", refname, attrname); vartypeid = get_atttype(relid, attid); type_mod = get_atttypmod(relid, attid); varnode = makeVar(vnum, attid, vartypeid, type_mod, sublevels_up, vnum, attid); return varnode; } /* * make_array_ref() -- Make an array reference node. * * Array references can hang off of arbitrary nested dot (or * function invocation) expressions. This routine takes a * tree generated by ParseFunc() and an array index and * generates a new array reference tree. We do some simple * typechecking to be sure the dereference is valid in the * type system, but we don't do any bounds checking here. * * indirection is a list of A_Indices */ ArrayRef * make_array_ref(Node *expr, List *indirection) { Oid typearray; HeapTuple type_tuple; TypeTupleForm type_struct_array, type_struct_element; ArrayRef *aref; Oid reftype; List *upperIndexpr = NIL; List *lowerIndexpr = NIL; typearray = exprType(expr); type_tuple = SearchSysCacheTuple(TYPOID, ObjectIdGetDatum(typearray), 0, 0, 0); if (!HeapTupleIsValid(type_tuple)) elog(ERROR, "make_array_ref: Cache lookup failed for type %d\n", typearray); /* get the array type struct from the type tuple */ type_struct_array = (TypeTupleForm) GETSTRUCT(type_tuple); if (type_struct_array->typelem == InvalidOid) elog(ERROR, "make_array_ref: type %s is not an array", (Name) &(type_struct_array->typname.data[0])); /* get the type tuple for the element type */ type_tuple = SearchSysCacheTuple(TYPOID, ObjectIdGetDatum(type_struct_array->typelem), 0, 0, 0); if (!HeapTupleIsValid(type_tuple)) elog(ERROR, "make_array_ref: Cache lookup failed for type %d\n", typearray); type_struct_element = (TypeTupleForm) GETSTRUCT(type_tuple); while (indirection != NIL) { A_Indices *ind = lfirst(indirection); if (ind->lidx) /* * XXX assumes all lower indices non null in this case */ lowerIndexpr = lappend(lowerIndexpr, ind->lidx); upperIndexpr = lappend(upperIndexpr, ind->uidx); indirection = lnext(indirection); } aref = makeNode(ArrayRef); aref->refattrlength = type_struct_array->typlen; aref->refelemlength = type_struct_element->typlen; aref->refelemtype = type_struct_array->typelem; aref->refelembyval = type_struct_element->typbyval; aref->refupperindexpr = upperIndexpr; aref->reflowerindexpr = lowerIndexpr; aref->refexpr = expr; aref->refassgnexpr = NULL; if (lowerIndexpr == NIL) /* accessing a single array element */ reftype = aref->refelemtype; else /* request to clip a part of the array, the result is another array */ reftype = typearray; /* * we change it to reflect the true type; since the original * refelemtype doesn't seem to get used anywhere. - ay 10/94 */ aref->refelemtype = reftype; return aref; } ArrayRef * make_array_set(Expr *target_expr, List *upperIndexpr, List *lowerIndexpr, Expr *expr) { Oid typearray; HeapTuple type_tuple; TypeTupleForm type_struct_array; TypeTupleForm type_struct_element; ArrayRef *aref; Oid reftype; typearray = exprType((Node *) target_expr); type_tuple = SearchSysCacheTuple(TYPOID, ObjectIdGetDatum(typearray), 0, 0, 0); if (!HeapTupleIsValid(type_tuple)) elog(ERROR, "make_array_ref: Cache lookup failed for type %d\n", typearray); /* get the array type struct from the type tuple */ type_struct_array = (TypeTupleForm) GETSTRUCT(type_tuple); if (type_struct_array->typelem == InvalidOid) elog(ERROR, "make_array_ref: type %s is not an array", (Name) &(type_struct_array->typname.data[0])); /* get the type tuple for the element type */ type_tuple = SearchSysCacheTuple(TYPOID, ObjectIdGetDatum(type_struct_array->typelem), 0, 0, 0); if (!HeapTupleIsValid(type_tuple)) elog(ERROR, "make_array_ref: Cache lookup failed for type %d\n", typearray); type_struct_element = (TypeTupleForm) GETSTRUCT(type_tuple); aref = makeNode(ArrayRef); aref->refattrlength = type_struct_array->typlen; aref->refelemlength = type_struct_element->typlen; aref->refelemtype = type_struct_array->typelem; aref->refelembyval = type_struct_element->typbyval; aref->refupperindexpr = upperIndexpr; aref->reflowerindexpr = lowerIndexpr; aref->refexpr = (Node *) target_expr; aref->refassgnexpr = (Node *) expr; if (lowerIndexpr == NIL) /* accessing a single array element */ reftype = aref->refelemtype; else /* request to set a part of the array, by another array */ reftype = typearray; aref->refelemtype = reftype; return aref; } /* * * make_const - * * - takes a lispvalue, (as returned to the yacc routine by the lexer) * extracts the type, and makes the appropriate type constant * by invoking the (c-callable) lisp routine c-make-const * via the lisp_call() mechanism * * eventually, produces a "const" lisp-struct as per nodedefs.cl */ Const * make_const(Value *value) { Type tp; Datum val; Const *con; switch (nodeTag(value)) { case T_Integer: tp = typeidType(INT4OID); val = Int32GetDatum(intVal(value)); break; case T_Float: { float64 dummy; tp = typeidType(FLOAT8OID); dummy = (float64) palloc(sizeof(float64data)); *dummy = floatVal(value); val = Float64GetDatum(dummy); } break; case T_String: tp = typeidType(UNKNOWNOID); /* unknown for now, will be type * coerced */ val = PointerGetDatum(textin(strVal(value))); break; case T_Null: default: { if (nodeTag(value) != T_Null) elog(NOTICE, "unknown type : %d\n", nodeTag(value)); /* null const */ con = makeConst(0, 0, (Datum) NULL, true, false, false, false); return con; } } con = makeConst(typeTypeId(tp), typeLen(tp), val, false, typeByVal(tp), false, /* not a set */ false); return (con); }