Also apply the changes suggested by running
perl ppport.h --compat-version=5.8.0
And remove some no-longer-required NEED_foo declarations.
Dagfinn Ilmari Mannsåker
Back-patch of commit 05798c9f7 into all supported branches.
At the time we thought this update was mostly cosmetic, but the
lack of it has caused trouble, while the patch itself hasn't.
Discussion: https://postgr.es/m/87y278s6iq.fsf@wibble.ilmari.org
Discussion: https://postgr.es/m/20220131015130.shn6wr2fzuymerf6@alap3.anarazel.de
ppport.h was only updated in 05798c9f7f0 (master). Unfortunately my commit
c89f409749c uses PERL_VERSION_LT which came in with that update. Breaking most
buildfarm animals.
I should have noticed that...
We might want to backpatch the ppport update instead, but for now lets get the
buildfarm green again.
Discussion: https://postgr.es/m/20220131015130.shn6wr2fzuymerf6@alap3.anarazel.de
Backpatch: 10-14, master doesn't need it
For older versions we need our own copy of perl's setlocale(), because it was
not exposed (why we need the setlocale in the first place is explained in
plperl_init_interp) . The copy stopped working in 5.28, as some of the used
macros are not public anymore. But Perl_setlocale is available in 5.28, so
use that.
Author: Victor Wagner <vitus@wagner.pp.ru>
Reviewed-By: Dagfinn Ilmari Mannsåker <ilmari@ilmari.org>
Discussion: https://postgr.es/m/20200501134711.08750c5f@antares.wagner.home
Backpatch: all versions
A long time ago, it was necessary to declare datatype I/O functions,
triggers, and language handler support functions in a very type-unsafe
way involving a single pseudo-type "opaque". We got rid of those
conventions in 7.3, but there was still support in various places to
automatically convert such functions to the modern declaration style,
to be able to transparently re-load dumps from pre-7.3 servers.
It seems unnecessary to continue to support that anymore, so take out
the hacks; whereupon the "opaque" pseudo-type itself is no longer
needed and can be dropped.
This is part of a group of patches removing various server-side kluges
for transparently upgrading pre-8.0 dump files. Since we've had few
complaints about dropping pg_dump's support for dumping from pre-8.0
servers (commit 64f3524e2), it seems okay to now remove these kluges.
Discussion: https://postgr.es/m/4110.1583255415@sss.pgh.pa.us
The backend was using strings to represent command tags and doing string
comparisons in multiple places, but that's slow and unhelpful. Create a
new command list with a supporting structure to use instead; this is
stored in a tag-list-file that can be tailored to specific purposes with
a caller-definable C macro, similar to what we do for WAL resource
managers. The first first such uses are a new CommandTag enum and a
CommandTagBehavior struct.
Replace numerous occurrences of char *completionTag with a
QueryCompletion struct so that the code no longer stores information
about completed queries in a cstring. Only at the last moment, in
EndCommand(), does this get converted to a string.
EventTriggerCacheItem no longer holds an array of palloc’d tag strings
in sorted order, but rather just a Bitmapset over the CommandTags.
Author: Mark Dilger, with unsolicited help from Álvaro Herrera
Reviewed-by: John Naylor, Tom Lane
Discussion: https://postgr.es/m/981A9DB4-3F0C-4DA5-88AD-CB9CFF4D6CAD@enterprisedb.com
We used to strategically place newlines after some function call left
parentheses to make pgindent move the argument list a few chars to the
left, so that the whole line would fit under 80 chars. However,
pgindent no longer does that, so the newlines just made the code
vertically longer for no reason. Remove those newlines, and reflow some
of those lines for some extra naturality.
Reviewed-by: Michael Paquier, Tom Lane
Discussion: https://postgr.es/m/20200129200401.GA6303@alvherre.pgsql
This gives an alternative way of catching exceptions, for the common
case where the cleanup code is the same in the error and non-error
cases. So instead of
PG_TRY();
{
... code that might throw ereport(ERROR) ...
}
PG_CATCH();
{
cleanup();
PG_RE_THROW();
}
PG_END_TRY();
cleanup();
one can write
PG_TRY();
{
... code that might throw ereport(ERROR) ...
}
PG_FINALLY();
{
cleanup();
}
PG_END_TRY();
Discussion: https://www.postgresql.org/message-id/flat/95a822c3-728b-af0e-d7e5-71890507ae0c%402ndquadrant.com
Perl likes to redefine the _() macro:
#ifdef CAN_PROTOTYPE
#define _(args) args
#else ...
There was lots not to like about the way we dealt with this before:
1. Instead of taking care of the conflict centrally in plperl.h, we
expected every one of its ever-growing number of includers to do so.
This is duplicative and error-prone in itself, plus it means that
plperl.h fails to meet the expectation of being compilable standalone,
resulting in macro-redefinition warnings in cpluspluscheck.
2. We left _() with its Perl definition, meaning that if someone tried
to use it in any Perl-related extension, it would silently fail to
provide run-time translation. I don't see any live bugs of this ilk,
but it's clearly a hard-to-notice bug waiting to happen.
So fix that by centralizing the cleanup logic, making it match what
we're already doing for other macro conflicts with Perl. Since we only
expect plperl.h to be included by extensions not core code, we should
redefine _() as dgettext() not gettext().
HoldPinnedPortals() did things in the wrong order: it must not mark
a portal autoHeld until it's been successfully held. Otherwise,
a failure while persisting the portal results in a server crash
because we think the portal is in a good state when it's not.
Also add a check that portal->status is READY before attempting to
hold a pinned portal. We have such a check before the only other
use of HoldPortal(), so it seems unwise not to check it here.
Lastly, rethink the responsibility for where to call HoldPinnedPortals.
The comment for it imagined that it was optional for any individual PL
to call it or not, but that cannot be the case: if some outer level of
procedure has a pinned portal, failing to persist it when an inner
procedure commits is going to be trouble. Let's have SPI do it instead
of the individual PLs. That's not a complete solution, since in theory
a PL might not be using SPI to perform commit/rollback, but such a PL
is going to have to be aware of lots of related requirements anyway.
(This change doesn't cause an API break for any external PLs that might
be calling HoldPinnedPortals per the old regime, because calling it
twice during a commit or rollback sequence won't hurt.)
Per bug #15703 from Julian Schauder. Back-patch to v11 where this code
came in.
Discussion: https://postgr.es/m/15703-c12c5bc0ea34ba26@postgresql.org
This is an SQL-standard feature that allows creating columns that are
computed from expressions rather than assigned, similar to a view or
materialized view but on a column basis.
This implements one kind of generated column: stored (computed on
write). Another kind, virtual (computed on read), is planned for the
future, and some room is left for it.
Reviewed-by: Michael Paquier <michael@paquier.xyz>
Reviewed-by: Pavel Stehule <pavel.stehule@gmail.com>
Discussion: https://www.postgresql.org/message-id/flat/b151f851-4019-bdb1-699e-ebab07d2f40a@2ndquadrant.com
Before this change FunctionCallInfoData, the struct arguments etc for
V1 function calls are stored in, always had space for
FUNC_MAX_ARGS/100 arguments, storing datums and their nullness in two
arrays. For nearly every function call 100 arguments is far more than
needed, therefore wasting memory. Arg and argnull being two separate
arrays also guarantees that to access a single argument, two
cachelines have to be touched.
Change the layout so there's a single variable-length array with pairs
of value / isnull. That drastically reduces memory consumption for
most function calls (on x86-64 a two argument function now uses
64bytes, previously 936 bytes), and makes it very likely that argument
value and its nullness are on the same cacheline.
Arguments are stored in a new NullableDatum struct, which, due to
padding, needs more memory per argument than before. But as usually
far fewer arguments are stored, and individual arguments are cheaper
to access, that's still a clear win. It's likely that there's other
places where conversion to NullableDatum arrays would make sense,
e.g. TupleTableSlots, but that's for another commit.
Because the function call information is now variable-length
allocations have to take the number of arguments into account. For
heap allocations that can be done with SizeForFunctionCallInfoData(),
for on-stack allocations there's a new LOCAL_FCINFO(name, nargs) macro
that helps to allocate an appropriately sized and aligned variable.
Some places with stack allocation function call information don't know
the number of arguments at compile time, and currently variably sized
stack allocations aren't allowed in postgres. Therefore allow for
FUNC_MAX_ARGS space in these cases. They're not that common, so for
now that seems acceptable.
Because of the need to allocate FunctionCallInfo of the appropriate
size, older extensions may need to update their code. To avoid subtle
breakages, the FunctionCallInfoData struct has been renamed to
FunctionCallInfoBaseData. Most code only references FunctionCallInfo,
so that shouldn't cause much collateral damage.
This change is also a prerequisite for more efficient expression JIT
compilation (by allocating the function call information on the stack,
allowing LLVM to optimize it away); previously the size of the call
information caused problems inside LLVM's optimizer.
Author: Andres Freund
Reviewed-By: Tom Lane
Discussion: https://postgr.es/m/20180605172952.x34m5uz6ju6enaem@alap3.anarazel.de
Previously tables declared WITH OIDS, including a significant fraction
of the catalog tables, stored the oid column not as a normal column,
but as part of the tuple header.
This special column was not shown by default, which was somewhat odd,
as it's often (consider e.g. pg_class.oid) one of the more important
parts of a row. Neither pg_dump nor COPY included the contents of the
oid column by default.
The fact that the oid column was not an ordinary column necessitated a
significant amount of special case code to support oid columns. That
already was painful for the existing, but upcoming work aiming to make
table storage pluggable, would have required expanding and duplicating
that "specialness" significantly.
WITH OIDS has been deprecated since 2005 (commit ff02d0a05280e0).
Remove it.
Removing includes:
- CREATE TABLE and ALTER TABLE syntax for declaring the table to be
WITH OIDS has been removed (WITH (oids[ = true]) will error out)
- pg_dump does not support dumping tables declared WITH OIDS and will
issue a warning when dumping one (and ignore the oid column).
- restoring an pg_dump archive with pg_restore will warn when
restoring a table with oid contents (and ignore the oid column)
- COPY will refuse to load binary dump that includes oids.
- pg_upgrade will error out when encountering tables declared WITH
OIDS, they have to be altered to remove the oid column first.
- Functionality to access the oid of the last inserted row (like
plpgsql's RESULT_OID, spi's SPI_lastoid, ...) has been removed.
The syntax for declaring a table WITHOUT OIDS (or WITH (oids = false)
for CREATE TABLE) is still supported. While that requires a bit of
support code, it seems unnecessary to break applications / dumps that
do not use oids, and are explicit about not using them.
The biggest user of WITH OID columns was postgres' catalog. This
commit changes all 'magic' oid columns to be columns that are normally
declared and stored. To reduce unnecessary query breakage all the
newly added columns are still named 'oid', even if a table's column
naming scheme would indicate 'reloid' or such. This obviously
requires adapting a lot code, mostly replacing oid access via
HeapTupleGetOid() with access to the underlying Form_pg_*->oid column.
The bootstrap process now assigns oids for all oid columns in
genbki.pl that do not have an explicit value (starting at the largest
oid previously used), only oids assigned later by oids will be above
FirstBootstrapObjectId. As the oid column now is a normal column the
special bootstrap syntax for oids has been removed.
Oids are not automatically assigned during insertion anymore, all
backend code explicitly assigns oids with GetNewOidWithIndex(). For
the rare case that insertions into the catalog via SQL are called for
the new pg_nextoid() function can be used (which only works on catalog
tables).
The fact that oid columns on system tables are now normal columns
means that they will be included in the set of columns expanded
by * (i.e. SELECT * FROM pg_class will now include the table's oid,
previously it did not). It'd not technically be hard to hide oid
column by default, but that'd mean confusing behavior would either
have to be carried forward forever, or it'd cause breakage down the
line.
While it's not unlikely that further adjustments are needed, the
scope/invasiveness of the patch makes it worthwhile to get merge this
now. It's painful to maintain externally, too complicated to commit
after the code code freeze, and a dependency of a number of other
patches.
Catversion bump, for obvious reasons.
Author: Andres Freund, with contributions by John Naylor
Discussion: https://postgr.es/m/20180930034810.ywp2c7awz7opzcfr@alap3.anarazel.de
There seems little reason for the policy of throwing error if we
find a ref to something other than a hash or array. Recursively
look through the ref, instead. This makes the behavior in non-transform
cases comparable to what was already instantiated for jsonb_plperl.
Note that because we invoke any available transform function before
considering the ref case, it's up to each transform function whether
it wants to play along with this behavior or do something different.
Because the previous behavior was just to throw a useless error,
this seems unlikely to create any compatibility issues. Still, given
the lack of field complaints so far, seems best not to back-patch.
Discussion: https://postgr.es/m/28336.1528393969@sss.pgh.pa.us
Traditionally, include/catalog/pg_foo.h contains extern declarations
for functions in backend/catalog/pg_foo.c, in addition to its function
as the authoritative definition of the pg_foo catalog's rowtype.
In some cases, we'd been forced to split out those extern declarations
into separate pg_foo_fn.h headers so that the catalog definitions
could be #include'd by frontend code. That problem is gone as of
commit 9c0a0de4c, so let's undo the splits to make things less
confusing.
Discussion: https://postgr.es/m/23690.1523031777@sss.pgh.pa.us
Previously, committing or aborting inside a cursor loop was prohibited
because that would close and remove the cursor. To allow that,
automatically convert such cursors to holdable cursors so they survive
commits or rollbacks. Portals now have a new state "auto-held", which
means they have been converted automatically from pinned. An auto-held
portal is kept on transaction commit or rollback, but is still removed
when returning to the main loop on error.
This supports all languages that have cursor loop constructs: PL/pgSQL,
PL/Python, PL/Perl.
Reviewed-by: Ildus Kurbangaliev <i.kurbangaliev@postgrespro.ru>
Originally, we treated memory context names as potentially variable in
all cases, and therefore always copied them into the context header.
Commit 9fa6f00b1 rethought this a little bit and invented a distinction
between fixed and variable names, skipping the copy step for the former.
But we can make things both simpler and more useful by instead allowing
there to be two parts to a context's identification, a fixed "name" and
an optional, variable "ident". The name supplied in the context create
call is now required to be a compile-time-constant string in all cases,
as it is never copied but just pointed to. The "ident" string, if
wanted, is supplied later. This is needed because typically we want
the ident to be stored inside the context so that it's cleaned up
automatically on context deletion; that means it has to be copied into
the context before we can set the pointer.
The cost of this approach is basically just an additional pointer field
in struct MemoryContextData, which isn't much overhead, and is bought
back entirely in the AllocSet case by not needing a headerSize field
anymore, since we no longer have to cope with variable header length.
In addition, we can simplify the internal interfaces for memory context
creation still further, saving a few cycles there. And it's no longer
true that a custom identifier disqualifies a context from participating
in aset.c's freelist scheme, so possibly there's some win on that end.
All the places that were using non-compile-time-constant context names
are adjusted to put the variable info into the "ident" instead. This
allows more effective identification of those contexts in many cases;
for example, subsidary contexts of relcache entries are now identified
by both type (e.g. "index info") and relname, where before you got only
one or the other. Contexts associated with PL function cache entries
are now identified more fully and uniformly, too.
I also arranged for plancache contexts to use the query source string
as their identifier. This is basically free for CachedPlanSources, as
they contained a copy of that string already. We pay an extra pstrdup
to do it for CachedPlans. That could perhaps be avoided, but it would
make things more fragile (since the CachedPlanSource is sometimes
destroyed first). I suspect future improvements in error reporting will
require CachedPlans to have a copy of that string anyway, so it's not
clear that it's worth moving mountains to avoid it now.
This also changes the APIs for context statistics routines so that the
context-specific routines no longer assume that output goes straight
to stderr, nor do they know all details of the output format. This
is useful immediately to reduce code duplication, and it also allows
for external code to do something with stats output that's different
from printing to stderr.
The reason for pushing this now rather than waiting for v12 is that
it rethinks some of the API changes made by commit 9fa6f00b1. Seems
better for extension authors to endure just one round of API changes
not two.
Discussion: https://postgr.es/m/CAB=Je-FdtmFZ9y9REHD7VsSrnCkiBhsA4mdsLKSPauwXtQBeNA@mail.gmail.com
The new column distinguishes normal functions, procedures, aggregates,
and window functions. This replaces the existing columns proisagg and
proiswindow, and replaces the convention that procedures are indicated
by prorettype == 0. Also change prorettype to be VOIDOID for procedures.
Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us>
Reviewed-by: Michael Paquier <michael@paquier.xyz>
In each of the supplied procedural languages (PL/pgSQL, PL/Perl,
PL/Python, PL/Tcl), add language-specific commit and rollback
functions/commands to control transactions in procedures in that
language. Add similar underlying functions to SPI. Some additional
cleanup so that transaction commit or abort doesn't blow away data
structures still used by the procedure call. Add execution context
tracking to CALL and DO statements so that transaction control commands
can only be issued in top-level procedure and block calls, not function
calls or other procedure or block calls.
- SPI
Add a new function SPI_connect_ext() that is like SPI_connect() but
allows passing option flags. The only option flag right now is
SPI_OPT_NONATOMIC. A nonatomic SPI connection can execute transaction
control commands, otherwise it's not allowed. This is meant to be
passed down from CALL and DO statements which themselves know in which
context they are called. A nonatomic SPI connection uses different
memory management. A normal SPI connection allocates its memory in
TopTransactionContext. For nonatomic connections we use PortalContext
instead. As the comment in SPI_connect_ext() (previously SPI_connect())
indicates, one could potentially use PortalContext in all cases, but it
seems safest to leave the existing uses alone, because this stuff is
complicated enough already.
SPI also gets new functions SPI_start_transaction(), SPI_commit(), and
SPI_rollback(), which can be used by PLs to implement their transaction
control logic.
- portalmem.c
Some adjustments were made in the code that cleans up portals at
transaction abort. The portal code could already handle a command
*committing* a transaction and continuing (e.g., VACUUM), but it was not
quite prepared for a command *aborting* a transaction and continuing.
In AtAbort_Portals(), remove the code that marks an active portal as
failed. As the comment there already predicted, this doesn't work if
the running command wants to keep running after transaction abort. And
it's actually not necessary, because pquery.c is careful to run all
portal code in a PG_TRY block and explicitly runs MarkPortalFailed() if
there is an exception. So the code in AtAbort_Portals() is never used
anyway.
In AtAbort_Portals() and AtCleanup_Portals(), we need to be careful not
to clean up active portals too much. This mirrors similar code in
PreCommit_Portals().
- PL/Perl
Gets new functions spi_commit() and spi_rollback()
- PL/pgSQL
Gets new commands COMMIT and ROLLBACK.
Update the PL/SQL porting example in the documentation to reflect that
transactions are now possible in procedures.
- PL/Python
Gets new functions plpy.commit and plpy.rollback.
- PL/Tcl
Gets new commands commit and rollback.
Reviewed-by: Andrew Dunstan <andrew.dunstan@2ndquadrant.com>
PL/pgSQL "pins" internally generated portals so that user code cannot
close them by guessing their names. Add this functionality to PL/Perl
and PL/Python as well, preventing users from manually closing cursors
created by spi_query and plpy.cursor, respectively. (PL/Tcl does not
currently offer any cursor functionality.)
This patch makes a number of interrelated changes to reduce the overhead
involved in creating/deleting memory contexts. The key ideas are:
* Include the AllocSetContext header of an aset.c context in its first
malloc request, rather than allocating it separately in TopMemoryContext.
This means that we now always create an initial or "keeper" block in an
aset, even if it never receives any allocation requests.
* Create freelists in which we can save and recycle recently-destroyed
asets (this idea is due to Robert Haas).
* In the common case where the name of a context is a constant string,
just store a pointer to it in the context header, rather than copying
the string.
The first change eliminates a palloc/pfree cycle per context, and
also avoids bloat in TopMemoryContext, at the price that creating
a context now involves a malloc/free cycle even if the context never
receives any allocations. That would be a loser for some common
usage patterns, but recycling short-lived contexts via the freelist
eliminates that pain.
Avoiding copying constant strings not only saves strlen() and strcpy()
overhead, but is an essential part of the freelist optimization because
it makes the context header size constant. Currently we make no
attempt to use the freelist for contexts with non-constant names.
(Perhaps someday we'll need to think harder about that, but in current
usage, most contexts with custom names are long-lived anyway.)
The freelist management in this initial commit is pretty simplistic,
and we might want to refine it later --- but in common workloads that
will never matter because the freelists will never get full anyway.
To create a context with a non-constant name, one is now required to
call AllocSetContextCreateExtended and specify the MEMCONTEXT_COPY_NAME
option. AllocSetContextCreate becomes a wrapper macro, and it includes
a test that will complain about non-string-literal context name
parameters on gcc and similar compilers.
An unfortunate side effect of making AllocSetContextCreate a macro is
that one is now *required* to use the size parameter abstraction macros
(ALLOCSET_DEFAULT_SIZES and friends) with it; the pre-9.6 habit of
writing out individual size parameters no longer works unless you
switch to AllocSetContextCreateExtended.
Internally to the memory-context-related modules, the context creation
APIs are simplified, removing the rather baroque original design whereby
a context-type module called mcxt.c which then called back into the
context-type module. That saved a bit of code duplication, but not much,
and it prevented context-type modules from exercising control over the
allocation of context headers.
In passing, I converted the test-and-elog validation of aset size
parameters into Asserts to save a few more cycles. The original thought
was that callers might compute size parameters on the fly, but in practice
nobody does that, so it's useless to expend cycles on checking those
numbers in production builds.
Also, mark the memory context method-pointer structs "const",
just for cleanliness.
Discussion: https://postgr.es/m/2264.1512870796@sss.pgh.pa.us
This adds a new object type "procedure" that is similar to a function
but does not have a return type and is invoked by the new CALL statement
instead of SELECT or similar. This implementation is aligned with the
SQL standard and compatible with or similar to other SQL implementations.
This commit adds new commands CALL, CREATE/ALTER/DROP PROCEDURE, as well
as ALTER/DROP ROUTINE that can refer to either a function or a
procedure (or an aggregate function, as an extension to SQL). There is
also support for procedures in various utility commands such as COMMENT
and GRANT, as well as support in pg_dump and psql. Support for defining
procedures is available in all the languages supplied by the core
distribution.
While this commit is mainly syntax sugar around existing functionality,
future features will rely on having procedures as a separate object
type.
Reviewed-by: Andrew Dunstan <andrew.dunstan@2ndquadrant.com>
In passing, don't insist on rsi->expectedDesc being set unless we
actually need it; this allows succeeding in a couple of cases where
PL/Perl functions returning setof composite would have failed before,
and makes the error message more apropos in other cases.
Discussion: https://postgr.es/m/4206.1499798337@sss.pgh.pa.us
This is a mechanical change in preparation for a later commit that
will change the layout of TupleDesc. Introducing a macro to abstract
the details of where attributes are stored will allow us to change
that in separate step and revise it in future.
Author: Thomas Munro, editorialized by Andres Freund
Reviewed-By: Andres Freund
Discussion: https://postgr.es/m/CAEepm=0ZtQ-SpsgCyzzYpsXS6e=kZWqk3g5Ygn3MDV7A8dabUA@mail.gmail.com
Coverity complained about this code's practice of using scalar variables
as single-element arrays. While that's really just nitpicking, it probably
is more readable to declare them as arrays, so let's do that. A more
important point is that the code was just blithely assuming that the
result tupledesc has exactly one column; if it doesn't, we'd likely get
a crash of some sort in tuplestore_putvalues. Since the tupledesc is
manufactured outside of plperl, that seems like an uncomfortably long
chain of assumptions. We can nail it down at little cost with a sanity
check earlier in the function.
In Perl builds that define PERL_IMPLICIT_SYS, XSUB.h defines macros
that replace a whole lot of basic libc functions with Perl functions.
We can't tolerate that in plperl.c; it breaks at least PG_TRY and
probably other stuff. The core idea of this patch is to include XSUB.h
only in the .xs files where it's really needed, and to move any code
broken by PERL_IMPLICIT_SYS out of the .xs files and into plperl.c.
The reason this hasn't been a problem before is that our build techniques
did not result in PERL_IMPLICIT_SYS appearing as a #define in PL/Perl,
even on some platforms where Perl thinks it is defined. That's about to
change in order to fix a nasty portability issue, so we need this work to
make the code safe for that.
Rather unaccountably, the Perl people chose XSUB.h as the place to provide
the versions of the aTHX/aTHX_ macros that are needed by code that's not
explicitly aware of the MULTIPLICITY API conventions. Hence, just removing
XSUB.h from plperl.c fails miserably. But we can work around that by
defining PERL_NO_GET_CONTEXT (which would make the relevant stanza of
XSUB.h a no-op anyway). As explained in perlguts.pod, that means we need
to add a "dTHX" macro call in every C function that calls a Perl API
function. In most of them we just add this at the top; but since the
macro fetches the current Perl interpreter pointer, more care is needed
in functions that switch the active interpreter. Lack of the macro is
easily recognized since it results in bleats about "my_perl" not being
defined.
(A nice side benefit of this is that it significantly reduces the number
of fetches of the current interpreter pointer. On my machine, plperl.so
gets more than 10% smaller, and there's probably some performance win too.
We could reduce the number of fetches still more by decorating the code
with pTHX_/aTHX_ macros to pass the interpreter pointer around, as
explained by perlguts.pod; but that's a task for another day.)
Formatting note: pgindent seems happy to treat "dTHX;" as a declaration
so long as it's the first thing after the left brace, as we'd already
observed with respect to the similar macro "dSP;". If you try to put
it later in a set of declarations, pgindent puts ugly extra space
around it.
Having removed XSUB.h from plperl.c, we need only move the support
functions for spi_return_next and util_elog (both of which use PG_TRY)
out of the .xs files and into plperl.c. This seems sufficient to
avoid the known problems caused by PERL_IMPLICIT_SYS, although we
could move more code if additional issues emerge.
This will need to be back-patched, but first let's see what the
buildfarm makes of it.
Patch by me, with some help from Ashutosh Sharma
Discussion: https://postgr.es/m/CANFyU97OVQ3+Mzfmt3MhuUm5NwPU=-FtbNH5Eb7nZL9ua8=rcA@mail.gmail.com
Don't move parenthesized lines to the left, even if that means they
flow past the right margin.
By default, BSD indent lines up statement continuation lines that are
within parentheses so that they start just to the right of the preceding
left parenthesis. However, traditionally, if that resulted in the
continuation line extending to the right of the desired right margin,
then indent would push it left just far enough to not overrun the margin,
if it could do so without making the continuation line start to the left of
the current statement indent. That makes for a weird mix of indentations
unless one has been completely rigid about never violating the 80-column
limit.
This behavior has been pretty universally panned by Postgres developers.
Hence, disable it with indent's new -lpl switch, so that parenthesized
lines are always lined up with the preceding left paren.
This patch is much less interesting than the first round of indent
changes, but also bulkier, so I thought it best to separate the effects.
Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org
Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
Change pg_bsd_indent to follow upstream rules for placement of comments
to the right of code, and remove pgindent hack that caused comments
following #endif to not obey the general rule.
Commit e3860ffa4dd0dad0dd9eea4be9cc1412373a8c89 wasn't actually using
the published version of pg_bsd_indent, but a hacked-up version that
tried to minimize the amount of movement of comments to the right of
code. The situation of interest is where such a comment has to be
moved to the right of its default placement at column 33 because there's
code there. BSD indent has always moved right in units of tab stops
in such cases --- but in the previous incarnation, indent was working
in 8-space tab stops, while now it knows we use 4-space tabs. So the
net result is that in about half the cases, such comments are placed
one tab stop left of before. This is better all around: it leaves
more room on the line for comment text, and it means that in such
cases the comment uniformly starts at the next 4-space tab stop after
the code, rather than sometimes one and sometimes two tabs after.
Also, ensure that comments following #endif are indented the same
as comments following other preprocessor commands such as #else.
That inconsistency turns out to have been self-inflicted damage
from a poorly-thought-through post-indent "fixup" in pgindent.
This patch is much less interesting than the first round of indent
changes, but also bulkier, so I thought it best to separate the effects.
Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org
Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
The new indent version includes numerous fixes thanks to Piotr Stefaniak.
The main changes visible in this commit are:
* Nicer formatting of function-pointer declarations.
* No longer unexpectedly removes spaces in expressions using casts,
sizeof, or offsetof.
* No longer wants to add a space in "struct structname *varname", as
well as some similar cases for const- or volatile-qualified pointers.
* Declarations using PG_USED_FOR_ASSERTS_ONLY are formatted more nicely.
* Fixes bug where comments following declarations were sometimes placed
with no space separating them from the code.
* Fixes some odd decisions for comments following case labels.
* Fixes some cases where comments following code were indented to less
than the expected column 33.
On the less good side, it now tends to put more whitespace around typedef
names that are not listed in typedefs.list. This might encourage us to
put more effort into typedef name collection; it's not really a bug in
indent itself.
There are more changes coming after this round, having to do with comment
indentation and alignment of lines appearing within parentheses. I wanted
to limit the size of the diffs to something that could be reviewed without
one's eyes completely glazing over, so it seemed better to split up the
changes as much as practical.
Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org
Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
Commit 59702716 added transition table support to PL/pgsql so that
SQL queries in trigger functions could access those transient
tables. In order to provide the same level of support for PL/perl,
PL/python and PL/tcl, refactor the relevant code into a new
function SPI_register_trigger_data. Call the new function in the
trigger handler of all four PLs, and document it as a public SPI
function so that authors of out-of-tree PLs can do the same.
Also get rid of a second QueryEnvironment object that was
maintained by PL/pgsql. That was previously used to deal with
cursors, but the same approach wasn't appropriate for PLs that are
less tangled up with core code. Instead, have SPI_cursor_open
install the connection's current QueryEnvironment, as already
happens for SPI_execute_plan.
While in the docs, remove the note that transition tables were only
supported in C and PL/pgSQL triggers, and correct some ommissions.
Thomas Munro with some work by Kevin Grittner (mostly docs)
c.h #includes a number of core libc header files, such as <stdio.h>.
There's no point in re-including these after having read postgres.h,
postgres_fe.h, or c.h; so remove code that did so.
While at it, also fix some places that were ignoring our standard pattern
of "include postgres[_fe].h, then system header files, then other Postgres
header files". While there's not any great magic in doing it that way
rather than system headers last, it's silly to have just a few files
deviating from the general pattern. (But I didn't attempt to enforce this
globally, only in files I was touching anyway.)
I'd be the first to say that this is mostly compulsive neatnik-ism,
but over time it might save enough compile cycles to be useful.
This appears to be necessary to fix a failure seen on buildfarm member
sittella. It shouldn't be necessary according to the letter of the C
standard, because we don't change the values of these variables within
the PG_TRY blocks; but somehow gcc 4.7.2 is dropping the ball.
Discussion: https://postgr.es/m/17555.1485179975@sss.pgh.pa.us
The idea behind SPI_push was to allow transitioning back into an
"unconnected" state when a SPI-using procedure calls unrelated code that
might or might not invoke SPI. That sounds good, but in practice the only
thing it does for us is to catch cases where a called SPI-using function
forgets to call SPI_connect --- which is a highly improbable failure mode,
since it would be exposed immediately by direct testing of said function.
As against that, we've had multiple bugs induced by forgetting to call
SPI_push/SPI_pop around code that might invoke SPI-using functions; these
are much harder to catch and indeed have gone undetected for years in some
cases. And we've had to band-aid around some problems of this ilk by
introducing conditional push/pop pairs in some places, which really kind
of defeats the purpose altogether; if we can't draw bright lines between
connected and unconnected code, what's the point?
Hence, get rid of SPI_push[_conditional], SPI_pop[_conditional], and the
underlying state variable _SPI_curid. It turns out SPI_restore_connection
can go away too, which is a nice side benefit since it was never more than
a kluge. Provide no-op macros for the deleted functions so as to avoid an
API break for external modules.
A side effect of this removal is that SPI_palloc and allied functions no
longer permit being called when unconnected; they'll throw an error
instead. The apparent usefulness of the previous behavior was a mirage
as well, because it was depended on by only a few places (which I fixed in
preceding commits), and it posed a risk of allocations being unexpectedly
long-lived if someone forgot a SPI_push call.
Discussion: <20808.1478481403@sss.pgh.pa.us>
There's basically no scenario where it's sensible for this to match
dropped columns, so put a test for dropped-ness into SPI_fnumber()
itself, and excise the test from the small number of callers that
were paying attention to the case. (Most weren't :-(.)
In passing, normalize tests at call sites: always reject attnum <= 0
if we're disallowing system columns. Previously there was a mixture
of "< 0" and "<= 0" tests. This makes no practical difference since
SPI_fnumber() never returns 0, but I'm feeling pedantic today.
Also, in the places that are actually live user-facing code and not
legacy cruft, distinguish "column not found" from "can't handle
system column".
Per discussion with Jim Nasby; thi supersedes his original patch
that just changed the behavior at one call site.
Discussion: <b2de8258-c4c0-1cb8-7b97-e8538e5c975c@BlueTreble.com>
The code here would need some change anyway given planned change in
SPI_modifytuple semantics, since this executes after we've exited the
SPI environment. But really it's better to just use heap_modify_tuple.
The code's actually shorter this way, and this avoids depending on some
rather indirect reasoning about why the temporary arrays can't be overrun.
(I think the old code is safe, as long as Perl hashes can't contain
duplicate keys; but with this way we don't need that assumption, only
the assumption that SPI_fnumber doesn't return an out-of-range attnum.)
While at it, normalize use of SPI_fnumber: make error messages distinguish
no-such-column from can't-set-system-column, and remove test for deleted
column which is going to migrate into SPI_fnumber.
Unlike PL/Tcl, PL/Perl at least made an attempt to clean up after itself
when a function gets redefined. But it was still using TopMemoryContext
for the fn_mcxt of argument/result I/O functions, resulting in the
potential for memory leaks depending on what those functions did, and the
retail alloc/free logic was pretty bulky as well. Fix things to use a
per-function memory context like the other PLs now do. Tweak a couple of
places where things were being done in a not-very-safe order (on the
principle that a memory leak is better than leaving global state
inconsistent after an error). Also make some minor cosmetic adjustments,
mostly in field names, to make the code look similar to the way PL/Tcl does
now wherever it's essentially the same logic.
Michael Paquier and Tom Lane
Discussion: <CAB7nPqSOyAsHC6jL24J1B+oK3p=yyNoFU0Vs_B6fd2kdd5g5WQ@mail.gmail.com>
I found that half a dozen (nearly 5%) of our AllocSetContextCreate calls
had typos in the context-sizing parameters. While none of these led to
especially significant problems, they did create minor inefficiencies,
and it's now clear that expecting people to copy-and-paste those calls
accurately is not a great idea. Let's reduce the risk of future errors
by introducing single macros that encapsulate the common use-cases.
Three such macros are enough to cover all but two special-purpose contexts;
those two calls can be left as-is, I think.
While this patch doesn't in itself improve matters for third-party
extensions, it doesn't break anything for them either, and they can
gradually adopt the simplified notation over time.
In passing, change TopMemoryContext to use the default allocation
parameters. Formerly it could only be extended 8K at a time. That was
probably reasonable when this code was written; but nowadays we create
many more contexts than we did then, so that it's not unusual to have a
couple hundred K in TopMemoryContext, even without considering various
dubious code that sticks other things there. There seems no good reason
not to let it use growing blocks like most other contexts.
Back-patch to 9.6, mostly because that's still close enough to HEAD that
it's easy to do so, and keeping the branches in sync can be expected to
avoid some future back-patching pain. The bugs fixed by these changes
don't seem to be significant enough to justify fixing them further back.
Discussion: <21072.1472321324@sss.pgh.pa.us>
Perl's integers are pointer-sized, so can hold more than INT_MAX on LP64
platforms, and come in both signed (IV) and unsigned (UV). Floating
point values (NV) may also be larger than double.
Since Perl 5.19.4 array indices are SSize_t instead of I32, so allow up
to SSize_t_max on those versions. The limit is not imposed just by
av_extend's argument type, but all the array handling code, so remove
the speculative comment.
Dagfinn Ilmari Mannsåker
This patch widens SPI_processed, EState's es_processed field, PortalData's
portalPos field, FuncCallContext's call_cntr and max_calls fields,
ExecutorRun's count argument, PortalRunFetch's result, and the max number
of rows in a SPITupleTable to uint64, and deals with (I hope) all the
ensuing fallout. Some of these values were declared uint32 before, and
others "long".
I also removed PortalData's posOverflow field, since that logic seems
pretty useless given that portalPos is now always 64 bits.
The user-visible results are that command tags for SELECT etc will
correctly report tuple counts larger than 4G, as will plpgsql's GET
GET DIAGNOSTICS ... ROW_COUNT command. Queries processing more tuples
than that are still not exactly the norm, but they're becoming more
common.
Most values associated with FETCH/MOVE distances, such as PortalRun's count
argument and the count argument of most SPI functions that have one, remain
declared as "long". It's not clear whether it would be worth promoting
those to int64; but it would definitely be a large dollop of additional
API churn on top of this, and it would only help 32-bit platforms which
seem relatively less likely to see any benefit.
Andreas Scherbaum, reviewed by Christian Ullrich, additional hacking by me
plperl_ref_from_pg_array() didn't consider the case that postgrs arrays
can have 0 dimensions (when they're empty) and accessed the first
dimension without a check. Fix that by special casing the empty array
case.
Author: Alex Hunsaker
Reported-By: Andres Freund / valgrind / buildfarm animal skink
Discussion: 20160308063240.usnzg6bsbjrne667@alap3.anarazel.de
Backpatch: 9.1-