types of unspecified parameters when submitted via extended query protocol.
This worked in 8.2 but I had broken it during plancache changes. DECLARE
CURSOR is now treated almost exactly like a plain SELECT through parse
analysis, rewrite, and planning; only just before sending to the executor
do we divert it away to ProcessUtility. This requires a special-case check
in a number of places, but practically all of them were already special-casing
SELECT INTO, so it's not too ugly. (Maybe it would be a good idea to merge
the two by treating IntoClause as a form of utility statement? Not going to
worry about that now, though.) That approach doesn't work for EXPLAIN,
however, so for that I punted and used a klugy solution of running parse
analysis an extra time if under extended query protocol.
access to the planner's cursor-related planning options, and provide new
FETCH/MOVE routines that allow access to the full power of those commands.
Small refactoring of planner(), pg_plan_query(), and pg_plan_queries()
APIs to make it convenient to pass the planning options down from SPI.
This is the core-code portion of Pavel Stehule's patch for scrollable
cursor support in plpgsql; I'll review and apply the plpgsql changes
separately.
parent query's EState. Now that there's a single flat rangetable for both
the main plan and subplans, there's no need anymore for a separate EState,
and removing it allows cleaning up some crufty code in nodeSubplan.c and
nodeSubqueryscan.c. Should be a tad faster too, although any difference
will probably be hard to measure. This is the last bit of subsidiary
mop-up work from changing to a flat rangetable.
useless substructure for its RangeTblEntry nodes. (I chose to keep using the
same struct node type and just zero out the link fields for unneeded info,
rather than making a separate ExecRangeTblEntry type --- it seemed too
fragile to have two different rangetable representations.)
Along the way, put subplans into a list in the toplevel PlannedStmt node,
and have SubPlan nodes refer to them by list index instead of direct pointers.
Vadim wanted to do that years ago, but I never understood what he was on about
until now. It makes things a *whole* lot more robust, because we can stop
worrying about duplicate processing of subplans during expression tree
traversals. That's been a constant source of bugs, and it's finally gone.
There are some consequent simplifications yet to be made, like not using
a separate EState for subplans in the executor, but I'll tackle that later.
storing mostly-redundant Query trees in prepared statements, portals, etc.
To replace Query, a new node type called PlannedStmt is inserted by the
planner at the top of a completed plan tree; this carries just the fields of
Query that are still needed at runtime. The statement lists kept in portals
etc. now consist of intermixed PlannedStmt and bare utility-statement nodes
--- no Query. This incidentally allows us to remove some fields from Query
and Plan nodes that shouldn't have been there in the first place.
Still to do: simplify the execution-time range table; at the moment the
range table passed to the executor still contains Query trees for subqueries.
initdb forced due to change of stored rules.
this code was last gone over, there wasn't really any alternative to
globals because we didn't have the PlannerInfo struct being passed all
through the planner code. Now that we do, we can restructure things
to avoid non-reentrancy. I'm fooling with this because otherwise I'd
have had to add another global variable for the planned compact
range table list.
representation of equivalence classes of variables. This is an extensive
rewrite, but it brings a number of benefits:
* planner no longer fails in the presence of "incomplete" operator families
that don't offer operators for every possible combination of datatypes.
* avoid generating and then discarding redundant equality clauses.
* remove bogus assumption that derived equalities always use operators
named "=".
* mergejoins can work with a variety of sort orders (e.g., descending) now,
instead of tying each mergejoinable operator to exactly one sort order.
* better recognition of redundant sort columns.
* can make use of equalities appearing underneath an outer join.
which comparison operators to use for plan nodes involving tuple comparison
(Agg, Group, Unique, SetOp). Formerly the executor looked up the default
equality operator for the datatype, which was really pretty shaky, since it's
possible that the data being fed to the node is sorted according to some
nondefault operator class that could have an incompatible idea of equality.
The planner knows what it has sorted by and therefore can provide the right
equality operator to use. Also, this change moves a couple of catalog lookups
out of the executor and into the planner, which should help startup time for
pre-planned queries by some small amount. Modify the planner to remove some
other cavalier assumptions about always being able to use the default
operators. Also add "nulls first/last" info to the Plan node for a mergejoin
--- neither the executor nor the planner can cope yet, but at least the API is
in place.
plpgsql support to come later. Along the way, convert execMain's
SELECT INTO support into a DestReceiver, in order to eliminate some ugly
special cases.
Jonah Harris and Tom Lane
list, when some of the child rels have been excluded by constraint
exclusion. This doesn't save a huge amount of time but it'll save some,
and it makes the EXPLAIN output look saner. We already did the
equivalent thing in set_append_rel_pathlist(), but not here.
(e.g. "INSERT ... VALUES (...), (...), ...") and elsewhere as allowed
by the spec. (e.g. similar to a FROM clause subselect). initdb required.
Joe Conway and Tom Lane.
eliminate unnecessary code, force initdb because stored rules change
(limit nodes are now supposed to be int8 not int4 expressions).
Update comments and error messages, which still all said 'integer'.
clauses containing no variables and no volatile functions. Such a clause
can be used as a one-time qual in a gating Result plan node, to suppress
plan execution entirely when it is false. Even when the clause is true,
putting it in a gating node wins by avoiding repeated evaluation of the
clause. In previous PG releases, query_planner() would do this for
pseudoconstant clauses appearing at the top level of the jointree, but
there was no ability to generate a gating Result deeper in the plan tree.
To fix it, get rid of the special case in query_planner(), and instead
process pseudoconstant clauses through the normal RestrictInfo qual
distribution mechanism. When a pseudoconstant clause is found attached to
a path node in create_plan(), pull it out and generate a gating Result at
that point. This requires special-casing pseudoconstants in selectivity
estimation and cost_qual_eval, but on the whole it's pretty clean.
It probably even makes the planner a bit faster than before for the normal
case of no pseudoconstants, since removing pull_constant_clauses saves one
useless traversal of the qual tree. Per gripe from Phil Frost.
thereby sharing code with the inheritance case. This puts the UNION-ALL-view
approach to partitioned tables on par with inheritance, so far as constraint
exclusion is concerned: it works either way. (Still need to update the docs
to say so.) The definition of "simple UNION ALL" is a little simpler than
I would like --- basically the union arms can only be SELECT * FROM foo
--- but it's good enough for partitioned-table cases.
inheritance trees on-the-fly, which pretty well constrained us to considering
only one way of planning inheritance, expand inheritance sets during the
planner prep phase, and build a side data structure that can be consulted
later to find which RTEs are members of which inheritance sets. As proof of
concept, use the data structure to plan joins against inheritance sets more
efficiently: we can now use indexes on the set members in inner-indexscan
joins. (The generated plans could be improved further, but it'll take some
executor changes.) This data structure will also support handling UNION ALL
subqueries in the same way as inheritance sets, but that aspect of it isn't
finished yet.
Per my recent proposal. I ended up basing the implementation on the
existing mechanism for enforcing valid join orders of IN joins --- the
rules for valid outer-join orders are somewhat similar.
comment line where output as too long, and update typedefs for /lib
directory. Also fix case where identifiers were used as variable names
in the backend, but as typedefs in ecpg (favor the backend for
indenting).
Backpatch to 8.1.X.
so that the latter estimates the number of groups that grouping will
produce. This is needed because it is primarily query_planner that
makes the decision between fast-start and fast-finish plans, and in the
original coding it was unable to make more than a crude rule-of-thumb
choice when the query involved grouping. This revision helps us make
saner choices for queries like SELECT ... GROUP BY ... LIMIT, as in a
recent example from Mark Kirkwood. Also move the responsibility for
canonicalizing sort_pathkeys and group_pathkeys into query_planner;
this information has to be available anyway to support the first change,
and doing it this way lets us get rid of compare_noncanonical_pathkeys
entirely.
or OFFSET clauses by using estimate_expression_value(). The main advantage
of this is that if the expression is a Param and we have a value for the
Param, we'll use that value rather than defaulting. Also, fix some
thinkos in the logic for combining LIMIT/OFFSET with an externally
supplied tuple fraction (this covers cases like EXISTS(...LIMIT...)).
And make sure the results of all this are shown by EXPLAIN. Per a
gripe from Merlin Moncure.
propagated inside an outer join. In particular, given
LEFT JOIN ON (A = B) WHERE A = constant, we cannot conclude that
B = constant at the top level (B might be null instead), but we
can nonetheless put a restriction B = constant into the quals for
B's relation, since no inner-side rows not meeting that condition
can contribute to the final result. Similarly, given
FULL JOIN USING (J) WHERE J = constant, we can't directly conclude
that either input J variable = constant, but it's OK to push such
quals into each input rel. Per recent gripe from Kim Bisgaard.
Along the way, remove 'valid_everywhere' flag from RestrictInfo,
as on closer analysis it was not being used for anything, and was
defined backwards anyway.
if the limit were directly applied to it. This does not actually
add a LIMIT plan node to the generated subqueries --- that would be
useless overhead --- but it does cause the planner to prefer fast-
start plans when the limit is small. After an idea from Phil Endecott.
a new PlannerInfo struct, which is passed around instead of the bare
Query in all the planning code. This commit is essentially just a
code-beautification exercise, but it does open the door to making
larger changes to the planner data structures without having to muck
with the widely-known Query struct.
would be evaluated only once anyway (ie, it's just a SELECT with no
FROM or an INSERT ... VALUES). The planner can't do it any faster than
the executor, so no point in an extra copying of the expression tree.
aren't doing anything useful (ie, neither selection nor projection).
Also, extend to SubqueryScan the hacks already in place to avoid
unnecessary ExecProject calls when the result would just be the same
tuple the subquery already delivered. This saves some overhead in
UNION and other set operations, as well as avoiding overhead for
unflatten-able subqueries. Per example from Sokolov Yura.
to eliminate unnecessary deadlocks. This commit adds SELECT ... FOR SHARE
paralleling SELECT ... FOR UPDATE. The implementation uses a new SLRU
data structure (managed much like pg_subtrans) to represent multiple-
transaction-ID sets. When more than one transaction is holding a shared
lock on a particular row, we create a MultiXactId representing that set
of transactions and store its ID in the row's XMAX. This scheme allows
an effectively unlimited number of row locks, just as we did before,
while not costing any extra overhead except when a shared lock actually
has to be shared. Still TODO: use the regular lock manager to control
the grant order when multiple backends are waiting for a row lock.
Alvaro Herrera and Tom Lane.
into indexscans on matching indexes. For the moment, it only handles
int4 and text datatypes; next step is to add a column to pg_aggregate
so that all MIN/MAX aggregates can be handled. Per my recent proposal.
decides whether to use hashed grouping instead of sort-plus-uniq
grouping. The function needs an annoyingly large number of parameters,
but this still seems like a win for legibility, since it removes over
a hundred lines from grouping_planner (which is still too big :-().
few palloc's. I also chose to eliminate the restype and restypmod fields
entirely, since they are redundant with information stored in the node's
contained expression; re-examining the expression at need seems simpler
and more reliable than trying to keep restype/restypmod up to date.
initdb forced due to change in contents of stored rules.
really ought to run before canonicalize_qual, because it can now produce
forms that canonicalize_qual knows how to improve (eg, NOT clauses).
Also, because eval_const_expressions already knows about flattening
nested ANDs and ORs into N-argument form, the initial flatten_andors
pass in canonicalize_qual is now completely redundant and can be
removed. This doesn't save a whole lot of code, but the time and
palloc traffic eliminated is a useful gain on large expression trees.
grouping_planner() to preprocess_targetlist(), according to a comment
in grouping_planner(). I think the refactoring makes sense, and moves
some extraneous details out of grouping_planner().
Formerly, if such a clause contained no aggregate functions we mistakenly
treated it as equivalent to WHERE. Per spec it must cause the query to
be treated as a grouped query of a single group, the same as appearance
of aggregate functions would do. Also, the HAVING filter must execute
after aggregate function computation even if it itself contains no
aggregate functions.
look at the actual aggregate transition datatypes and the actual overhead
needed by nodeAgg.c, instead of using pessimistic round numbers.
Per a discussion with Michael Tiemann.
Also performed an initial run through of upgrading our Copyright date to
extend to 2005 ... first run here was very simple ... change everything
where: grep 1996-2004 && the word 'Copyright' ... scanned through the
generated list with 'less' first, and after, to make sure that I only
picked up the right entries ...
from Sebastian Böck. The fix involves being more consistent about
when rangetable entries are copied or modified. Someday we really
need to fix this stuff to not scribble on its input data structures
in the first place...
until Bind is received, so that actual parameter values are visible to the
planner. Make use of the parameter values for estimation purposes (but
don't fold them into the actual plan). This buys back most of the
potential loss of plan quality that ensues from using out-of-line
parameters instead of putting literal values right into the query text.
This patch creates a notion of constant-folding expressions 'for
estimation purposes only', in which case we can be more aggressive than
the normal eval_const_expressions() logic can be. Right now the only
difference in behavior is inserting bound values for Params, but it will
be interesting to look at other possibilities. One that we've seen
come up repeatedly is reducing now() and related functions to current
values, so that queries like ... WHERE timestampcol > now() - '1 day'
have some chance of being planned effectively.
Oliver Jowett, with some kibitzing from Tom Lane.
In the past, we used a 'Lispy' linked list implementation: a "list" was
merely a pointer to the head node of the list. The problem with that
design is that it makes lappend() and length() linear time. This patch
fixes that problem (and others) by maintaining a count of the list
length and a pointer to the tail node along with each head node pointer.
A "list" is now a pointer to a structure containing some meta-data
about the list; the head and tail pointers in that structure refer
to ListCell structures that maintain the actual linked list of nodes.
The function names of the list API have also been changed to, I hope,
be more logically consistent. By default, the old function names are
still available; they will be disabled-by-default once the rest of
the tree has been updated to use the new API names.
Didier Moens. Bug is new in 7.4, and was caused by not updating everyplace
I should've when replacing locParam markers by allParam.
Add a regression test to catch related errors in future.