For no obvious reason, spi_printtup() was coded to enlarge the tuple
pointer table by just 256 slots at a time, rather than doubling the size at
each reallocation, as is our usual habit. For very large SPI results, this
makes for O(N^2) time spent in repalloc(), which of course soon comes to
dominate the runtime. Use the standard doubling approach instead.
This is a longstanding performance bug, so back-patch to all active
branches.
Neil Conway
Although I think on all modern machines floating division by zero
results in Infinity not SIGFPE, we still don't want infinities
running around in the planner's costing estimates; too much risk
of that leading to insane behavior.
grouping_planner() failed to consider the possibility that final_rel
might be known dummy and hence have zero rowcount. (I wonder if it
would be better to set a rows estimate of 1 for dummy relations?
But at least in the back branches, changing this convention seems
like a bad idea, so I'll leave that for another day.)
Make certain that get_variable_numdistinct() produces a nonzero result.
The case that can be shown to be broken is with stadistinct < 0.0 and
small ntuples; we did not prevent the result from rounding to zero.
For good luck I applied clamp_row_est() to all the nonconstant return
values.
In ExecChooseHashTableSize(), Assert that we compute positive nbuckets
and nbatch. I know of no reason to think this isn't the case, but it
seems like a good safety check.
Per reports from Piotr Stefaniak. Back-patch to all active branches.
ExecOpenScanRelation assumed that any relation listed in the ExecRowMark
list has been locked by InitPlan; but this is not true if the rel's
markType is ROW_MARK_COPY, which is possible if it's a foreign table.
In most (possibly all) cases, failure to acquire a lock here isn't really
problematic because the parser, planner, or plancache would have taken the
appropriate lock already. In principle though it might leave us vulnerable
to working with a relation that we hold no lock on, and in any case if the
executor isn't depending on previously-taken locks otherwise then it should
not do so for ROW_MARK_COPY relations.
Noted by Etsuro Fujita. Back-patch to all active versions, since the
inconsistency has been there a long time. (It's almost certainly
irrelevant in 9.0, since that predates foreign tables, but the code's
still wrong on its own terms.)
The ROW_MARK_COPY path in EvalPlanQualFetchRowMarks() was just setting
tableoid to InvalidOid, I think on the assumption that the referenced
RTE must be a subquery or other case without a meaningful OID. However,
foreign tables also use this code path, and they do have meaningful
table OIDs; so failure to set the tuple field can lead to user-visible
misbehavior. Fix that by fetching the appropriate OID from the range
table.
There's still an issue about whether CTID can ever have a meaningful
value in this case; at least with postgres_fdw foreign tables, it does.
But that is a different problem that seems to require a significantly
different patch --- it's debatable whether postgres_fdw really wants to
use this code path at all.
Simplified version of a patch by Etsuro Fujita, who also noted the
problem to begin with. The issue can be demonstrated in all versions
having FDWs, so back-patch to 9.1.
In commit bf7ca15875988a88e97302e012d7c4808bef3ea9 I introduced an
assumption that an RTE referenced by a whole-row Var must have a valid eref
field. This is false for RTEs constructed by DoCopy, and there are other
places taking similar shortcuts. Perhaps we should make all those places
go through addRangeTableEntryForRelation or its siblings instead of having
ad-hoc logic, but the most reliable fix seems to be to make the new code in
ExecEvalWholeRowVar cope if there's no eref. We can reasonably assume that
there's no need to insert column aliases if no aliases were provided.
Add a regression test case covering this, and also verifying that a sane
column name is in fact available in this situation.
Although the known case only crashes in 9.4 and HEAD, it seems prudent to
back-patch the code change to 9.2, since all the ingredients for a similar
failure exist in the variant patch applied to 9.3 and 9.2.
Per report from Jean-Pierre Pelletier.
While building error messages to return to the user,
BuildIndexValueDescription, ExecBuildSlotValueDescription and
ri_ReportViolation would happily include the entire key or entire row in
the result returned to the user, even if the user didn't have access to
view all of the columns being included.
Instead, include only those columns which the user is providing or which
the user has select rights on. If the user does not have any rights
to view the table or any of the columns involved then no detail is
provided and a NULL value is returned from BuildIndexValueDescription
and ExecBuildSlotValueDescription. Note that, for key cases, the user
must have access to all of the columns for the key to be shown; a
partial key will not be returned.
Back-patch all the way, as column-level privileges are now in all
supported versions.
This has been assigned CVE-2014-8161, but since the issue and the patch
have already been publicized on pgsql-hackers, there's no point in trying
to hide this commit.
Up to now, the "child" executor state trees generated for EvalPlanQual
rechecks have simply shared the ResultRelInfo arrays used for the original
execution tree. However, this leads to dangling-pointer problems, because
ExecInitModifyTable() is all too willing to scribble on some fields of the
ResultRelInfo(s) even when it's being run in one of those child trees.
This trashes those fields from the perspective of the parent tree, because
even if the generated subtree is logically identical to what was in use in
the parent, it's in a memory context that will go away when we're done
with the child state tree.
We do however want to share information in the direction from the parent
down to the children; in particular, fields such as es_instrument *must*
be shared or we'll lose the stats arising from execution of the children.
So the simplest fix is to make a copy of the parent's ResultRelInfo array,
but not copy any fields back at end of child execution.
Per report from Manuel Kniep. The added isolation test is based on his
example. In an unpatched memory-clobber-enabled build it will reliably
fail with "ctid is NULL" errors in all branches back to 9.1, as a
consequence of junkfilter->jf_junkAttNo being overwritten with $7f7f.
This test cannot be run as-is before that for lack of WITH syntax; but
I have no doubt that some variant of this problem can arise in older
branches, so apply the code change all the way back.
In READ COMMITTED mode, if a SELECT FOR UPDATE discovers it has to redo
WHERE-clause checking on rows that have been updated since the SELECT's
snapshot, it invokes EvalPlanQual processing to do that. If this first
occurs within a non-first child table of an inheritance tree, the previous
coding could accidentally re-return a matching row from an earlier,
already-scanned child table. (And, to add insult to injury, I think this
could make it miss returning a row that should have been returned, if the
updated row that this happens on should still have passed the WHERE qual.)
Per report from Kyotaro Horiguchi; the added isolation test is based on his
test case.
This has been broken for quite awhile, so back-patch to all supported
branches.
This only happens if a client issues a Parse message with an empty query
string, which is a bit odd; but since it is explicitly called out as legal
by our FE/BE protocol spec, we'd probably better continue to allow it.
Fix by adding tests everywhere that the raw_parse_tree field is passed to
functions that don't or shouldn't accept NULL. Also make it clear in the
relevant comments that NULL is an expected case.
This reverts commits a73c9dbab0165b3395dfe8a44a7dfd16166963c4 and
2e9650cbcff8c8fb0d9ef807c73a44f241822eee, which fixed specific crash
symptoms by hacking things at what now seems to be the wrong end, ie the
callee functions. Making the callees allow NULL is superficially more
robust, but it's not always true that there is a defensible thing for the
callee to do in such cases. The caller has more context and is better
able to decide what the empty-query case ought to do.
Per followup discussion of bug #11335. Back-patch to 9.2. The code
before that is sufficiently different that it would require development
of a separate patch, which doesn't seem worthwhile for what is believed
to be an essentially cosmetic change.
At one time it wasn't terribly important what column names were associated
with the fields of a composite Datum, but since the introduction of
operations like row_to_json(), it's important that looking up the rowtype
ID embedded in the Datum returns the column names that users would expect.
However, that doesn't work terribly well: you could get the column names
of the underlying table, or column aliases from any level of the query,
depending on minor details of the plan tree. You could even get totally
empty field names, which is disastrous for cases like row_to_json().
It seems unwise to change this behavior too much in stable branches,
however, since users might not have noticed that they weren't getting
the least-unintuitive choice of field names. Therefore, in the back
branches, only change the results when the child plan has returned an
actually-empty field name. (We assume that can't happen with a named
rowtype, so this also dodges the issue of possibly producing RECORD-typed
output from a Var with a named composite result type.) As in the sister
patch for HEAD, we can get a better name to use from the Var's
corresponding RTE. There is no need to touch the RowExpr code since it
was already using a copy of the RTE's alias list for RECORD cases.
Back-patch as far as 9.2. Before that we did not have row_to_json()
so there were no core functions potentially affected by bogus field
names. While 9.1 and earlier do have contrib's hstore(record) which
is also affected, those versions don't seem to produce empty field names
(at least not in the known problem cases), so we'll leave them alone.
ExecEvalWholeRowVar incorrectly supposed that it could "bless" the source
TupleTableSlot just once per query. But if the input is coming from an
Append (or, perhaps, other cases?) more than one slot might be returned
over the query run. This led to "record type has not been registered"
errors when a composite datum was extracted from a non-blessed slot.
This bug has been there a long time; I guess it escaped notice because when
dealing with subqueries the planner tends to expand whole-row Vars into
RowExprs, which don't have the same problem. It is possible to trigger
the problem in all active branches, though, as illustrated by the added
regression test.
ExecMakeTableFunctionResult evaluated the arguments for a function-in-FROM
in the query-lifespan memory context. This is insignificant in simple
cases where the function relation is scanned only once; but if the function
is in a sub-SELECT or is on the inside of a nested loop, any memory
consumed during argument evaluation can add up quickly. (The potential for
trouble here had been foreseen long ago, per existing comments; but we'd
not previously seen a complaint from the field about it.) To fix, create
an additional temporary context just for this purpose.
Per an example from MauMau. Back-patch to all active branches.
This was not changed in HEAD, but will be done later as part of a
pgindent run. Future pgindent runs will also do this.
Report by Tom Lane
Backpatch through all supported branches, but not HEAD
If we have an array of records stored on disk, the individual record fields
cannot contain out-of-line TOAST pointers: the tuptoaster.c mechanisms are
only prepared to deal with TOAST pointers appearing in top-level fields of
a stored row. The same applies for ranges over composite types, nested
composites, etc. However, the existing code only took care of expanding
sub-field TOAST pointers for the case of nested composites, not for other
structured types containing composites. For example, given a command such
as
UPDATE tab SET arraycol = ARRAY[(ROW(x,42)::mycompositetype] ...
where x is a direct reference to a field of an on-disk tuple, if that field
is long enough to be toasted out-of-line then the TOAST pointer would be
inserted as-is into the array column. If the source record for x is later
deleted, the array field value would become a dangling pointer, leading
to errors along the line of "missing chunk number 0 for toast value ..."
when the value is referenced. A reproducible test case for this was
provided by Jan Pecek, but it seems likely that some of the "missing chunk
number" reports we've heard in the past were caused by similar issues.
Code-wise, the problem is that PG_DETOAST_DATUM() is not adequate to
produce a self-contained Datum value if the Datum is of composite type.
Seen in this light, the problem is not just confined to arrays and ranges,
but could also affect some other places where detoasting is done in that
way, for example form_index_tuple().
I tried teaching the array code to apply toast_flatten_tuple_attribute()
along with PG_DETOAST_DATUM() when the array element type is composite,
but this was messy and imposed extra cache lookup costs whether or not any
TOAST pointers were present, indeed sometimes when the array element type
isn't even composite (since sometimes it takes a typcache lookup to find
that out). The idea of extending that approach to all the places that
currently use PG_DETOAST_DATUM() wasn't attractive at all.
This patch instead solves the problem by decreeing that composite Datum
values must not contain any out-of-line TOAST pointers in the first place;
that is, we expand out-of-line fields at the point of constructing a
composite Datum, not at the point where we're about to insert it into a
larger tuple. This rule is applied only to true composite Datums, not
to tuples that are being passed around the system as tuples, so it's not
as invasive as it might sound at first. With this approach, the amount
of code that has to be touched for a full solution is greatly reduced,
and added cache lookup costs are avoided except when there actually is
a TOAST pointer that needs to be inlined.
The main drawback of this approach is that we might sometimes dereference
a TOAST pointer that will never actually be used by the query, imposing a
rather large cost that wasn't there before. On the other side of the coin,
if the field value is used multiple times then we'll come out ahead by
avoiding repeat detoastings. Experimentation suggests that common SQL
coding patterns are unaffected either way, though. Applications that are
very negatively affected could be advised to modify their code to not fetch
columns they won't be using.
In future, we might consider reverting this solution in favor of detoasting
only at the point where data is about to be stored to disk, using some
method that can drill down into multiple levels of nested structured types.
That will require defining new APIs for structured types, though, so it
doesn't seem feasible as a back-patchable fix.
Note that this patch changes HeapTupleGetDatum() from a macro to a function
call; this means that any third-party code using that macro will not get
protection against creating TOAST-pointer-containing Datums until it's
recompiled. The same applies to any uses of PG_RETURN_HEAPTUPLEHEADER().
It seems likely that this is not a big problem in practice: most of the
tuple-returning functions in core and contrib produce outputs that could
not possibly be toasted anyway, and the same probably holds for third-party
extensions.
This bug has existed since TOAST was invented, so back-patch to all
supported branches.
We should allow this so that matviews can be referenced in UPDATE/DELETE
statements in READ COMMITTED isolation level. The requirement for that
is that a re-fetch by TID will see the same row version the query saw
earlier, which is true of matviews, so there's no reason for the
restriction. Per bug #9398.
Michael Paquier, after a suggestion by me
Given a composite-type parameter named x, "$1.*" worked fine, but "x.*"
not so much. This has been broken since named parameter references were
added in commit 9bff0780cf5be2193a5bad0d3df2dbe143085264, so patch back
to 9.2. Per bug #9085 from Hardy Falk.
In commit c1352052ef1d4eeb2eb1d822a207ddc2d106cb13, I implemented an
optimization that assumed that a function's argument expressions would
either always return a set (ie multiple rows), or always not. This is
wrong however: we allow CASE expressions in which some arms return a set
of some type and others just return a scalar of that type. There may be
other examples as well. To fix, replace the run-time test of whether an
argument returned a set with a static precheck (expression_returns_set).
This adds a little bit of query startup overhead, but it seems barely
measurable.
Per bug #8228 from David Johnston. This has been broken since 8.0,
so patch all supported branches.
ExecBuildSlotValueDescription() printed "null" for each dropped column in
a row being complained of by ExecConstraints(). This has some sanity in
terms of the underlying implementation, but is of course pretty surprising
to users. To fix, we must pass the target relation's descriptor to
ExecBuildSlotValueDescription(), because the slot descriptor it had been
using doesn't get labeled with attisdropped markers.
Per bug #8408 from Maxim Boguk. Back-patch to 9.2 where the feature of
printing row values in NOT NULL and CHECK constraint violation messages
was introduced.
Michael Paquier and Tom Lane
Historically, printtup() has assumed that it could prevent memory leakage
by pfree'ing the string result of each output function and manually
managing detoasting of toasted values. This amounts to assuming that
datatype output functions never leak any memory internally; an assumption
we've already decided to be bogus elsewhere, for example in COPY OUT.
range_out in particular is known to leak multiple kilobytes per call, as
noted in bug #8573 from Godfried Vanluffelen. While we could go in and fix
that leak, it wouldn't be very notationally convenient, and in any case
there have been and undoubtedly will again be other leaks in other output
functions. So what seems like the best solution is to run the output
functions in a temporary memory context that can be reset after each row,
as we're doing in COPY OUT. Some quick experimentation suggests this is
actually a tad faster than the retail pfree's anyway.
This patch fixes all the variants of printtup, except for debugtup()
which is used in standalone mode. It doesn't seem worth worrying
about query-lifespan leaks in standalone mode, and fixing that case
would be a bit tedious since debugtup() doesn't currently have any
startup or shutdown functions.
While at it, remove manual detoast management from several other
output-function call sites that had copied it from printtup(). This
doesn't make a lot of difference right now, but in view of recent
discussions about supporting "non-flattened" Datums, we're going to
want that code gone eventually anyway.
Back-patch to 9.2 where range_out was introduced. We might eventually
decide to back-patch this further, but in the absence of known major
leaks in older output functions, I'll refrain for now.
A subquery reference to a matview should be allowed by CREATE
MATERIALIZED VIEW WITH NO DATA, just like a direct reference is.
Per bug report from Laurent Sartran.
Backpatch to 9.3.
Failing to do so can cause queries to return wrong data, error out or crash.
This requires adding a new binaryheap_reset() method to binaryheap.c,
but that probably should have been there anyway.
Per bug #8410 from Terje Elde. Diagnosis and patch by Andres Freund.
plpgsql often just remembers SPI-result tuple tables in local variables,
and has no mechanism for freeing them if an ereport(ERROR) causes an escape
out of the execution function whose local variable it is. In the original
coding, that wasn't a problem because the tuple table would be cleaned up
when the function's SPI context went away during transaction abort.
However, once plpgsql grew the ability to trap exceptions, repeated
trapping of errors within a function could result in significant
intra-function-call memory leakage, as illustrated in bug #8279 from
Chad Wagner.
We could fix this locally in plpgsql with a bunch of PG_TRY/PG_CATCH
coding, but that would be tedious, probably slow, and prone to bugs of
omission; moreover it would do nothing for similar risks elsewhere.
What seems like a better plan is to make SPI itself responsible for
freeing tuple tables at subtransaction abort. This patch attacks the
problem that way, keeping a list of live tuple tables within each SPI
function context. Currently, such freeing is automatic for tuple tables
made within the failed subtransaction. We might later add a SPI call to
mark a tuple table as not to be freed this way, allowing callers to opt
out; but until someone exhibits a clear use-case for such behavior, it
doesn't seem worth bothering.
A very useful side-effect of this change is that SPI_freetuptable() can
now defend itself against bad calls, such as duplicate free requests;
this should make things more robust in many places. (In particular,
this reduces the risks involved if a third-party extension contains
now-redundant SPI_freetuptable() calls in error cleanup code.)
Even though the leakage problem is of long standing, it seems imprudent
to back-patch this into stable branches, since it does represent an API
semantics change for SPI users. We'll patch this in 9.3, but live with
the leakage in older branches.
Extend the FDW API (which we already changed for 9.3) so that an FDW can
report whether specific foreign tables are insertable/updatable/deletable.
The default assumption continues to be that they're updatable if the
relevant executor callback function is supplied by the FDW, but finer
granularity is now possible. As a test case, add an "updatable" option to
contrib/postgres_fdw.
This patch also fixes the information_schema views, which previously did
not think that foreign tables were ever updatable, and fixes
view_is_auto_updatable() so that a view on a foreign table can be
auto-updatable.
initdb forced due to changes in information_schema views and the functions
they rely on. This is a bit unfortunate to do post-beta1, but if we don't
change this now then we'll have another API break for FDWs when we do
change it.
Dean Rasheed, somewhat editorialized on by Tom Lane
In a construct like "select plain_function(set_returning_function(...))",
the plain function is applied to each output row of the SRF successively.
If some of the SRF outputs are NULL, and the plain function is strict,
you'd expect to get NULL results for such rows ... but what actually
happened was that such rows were omitted entirely from the result set.
This was due to confusion of this case with what should happen for nested
set-returning functions; a strict SRF is indeed supposed to yield an empty
set for null input. Per bug #8150 from Erwin Brandstetter.
Although this has been broken forever, we're not back-patching because
of the possibility that some apps out there expect the incorrect behavior.
This change should be listed as a possible incompatibility in the 9.3
release notes.
Choose a saner ordering of parameters (adding a new input param after
the output params seemed a bit random), update the function's header
comment to match reality (cmon folks, is this really that hard?),
get rid of useless and sloppily-defined distinction between
PROCESS_UTILITY_SUBCOMMAND and PROCESS_UTILITY_GENERATED.
Move checking for unscannable matviews into ExecOpenScanRelation, which is
a better place for it first because the open relation is already available
(saving a relcache lookup cycle), and second because this eliminates the
problem of telling the difference between rangetable entries that will or
will not be scanned by the query. In particular we can get rid of the
not-terribly-well-thought-out-or-implemented isResultRel field that the
initial matviews patch added to RangeTblEntry.
Also get rid of entirely unnecessary scannability check in the rewriter,
and a bogus decision about whether RefreshMatViewStmt requires a parse-time
snapshot.
catversion bump due to removal of a RangeTblEntry field, which changes
stored rules.
This was due to incomplete implementation of rowcount reporting
for RMV, which was due to initial waffling on whether it should
be provided. It seems unlikely to be a useful or universally
available number as more sophisticated techniques for maintaining
matviews are added, so remove the partial support rather than
completing it.
Per report of Jeevan Chalke, but with a different fix
In most cases, these were just references to the SQL standard in
general. In a few cases, a contrast was made between SQL92 and later
standards -- those have been kept unchanged.
If an FDW fails to take special measures with a CurrentOfExpr, we will
end up trying to execute it as an ordinary qual, which was being treated
as a purely internal failure condition. Provide a more user-oriented
error message for such cases.
The intent was that being populated would, long term, be just one
of the conditions which could affect whether a matview was
scannable; being populated should be necessary but not always
sufficient to scan the relation. Since only CREATE and REFRESH
currently determine the scannability, names and comments
accidentally conflated these concepts, leading to confusion.
Also add missing locking for the SQL function which allows a
test for scannability, and fix a modularity violatiion.
Per complaints from Tom Lane, although its not clear that these
will satisfy his concerns. Hopefully this will at least better
frame the discussion.
This patch adds the core-system infrastructure needed to support updates
on foreign tables, and extends contrib/postgres_fdw to allow updates
against remote Postgres servers. There's still a great deal of room for
improvement in optimization of remote updates, but at least there's basic
functionality there now.
KaiGai Kohei, reviewed by Alexander Korotkov and Laurenz Albe, and rather
heavily revised by Tom Lane.
This saves several catalog lookups per reference. It's not all that
exciting right now, because we'd managed to minimize the number of places
that need to fetch the data; but the upcoming writable-foreign-tables patch
needs this info in a lot more places.
A materialized view has a rule just like a view and a heap and
other physical properties like a table. The rule is only used to
populate the table, references in queries refer to the
materialized data.
This is a minimal implementation, but should still be useful in
many cases. Currently data is only populated "on demand" by the
CREATE MATERIALIZED VIEW and REFRESH MATERIALIZED VIEW statements.
It is expected that future releases will add incremental updates
with various timings, and that a more refined concept of defining
what is "fresh" data will be developed. At some point it may even
be possible to have queries use a materialized in place of
references to underlying tables, but that requires the other
above-mentioned features to be working first.
Much of the documentation work by Robert Haas.
Review by Noah Misch, Thom Brown, Robert Haas, Marko Tiikkaja
Security review by KaiGai Kohei, with a decision on how best to
implement sepgsql still pending.
fmgr_sql had been designed on the assumption that the FmgrInfo it's called
with has only query lifespan. This is demonstrably unsafe in connection
with range types, as shown in bug #7881 from Andrew Gierth. Fix things
so that we re-generate the function's cache data if the (sub)transaction
it was made in is no longer active.
Back-patch to 9.2. This might be needed further back, but it's not clear
whether the case can realistically arise without range types, so for now
I'll desist from back-patching further.
Commit af7914c6627bcf0b0ca614e9ce95d3f8056602bf, which added the TIMING
option to EXPLAIN, had an oversight: if the TIMING option is disabled
then control in InstrStartNode() goes through an elog(DEBUG2) call, which
typically does nothing but takes a noticeable amount of time to do it.
Tweak the logic to avoid that.
In HEAD, also change the elog(DEBUG2)'s in instrument.c to elog(ERROR).
It's not very clear why they weren't like that to begin with, but this
episode shows that not complaining more vociferously about misuse is
likely to do little except allow bugs to remain hidden.
While at it, adjust some code that was making possibly-dangerous
assumptions about flag bits being in the rightmost byte of the
instrument_options word.
Problem reported by Pavel Stehule (via Tomas Vondra).
exec_simple_check_plan and exec_eval_simple_expr attempted to call
GetCachedPlan directly. This meant that if an error was thrown during
planning, the resulting context traceback would not include the line
normally contributed by _SPI_error_callback. This is already inconsistent,
but just to be really odd, a re-execution of the very same expression
*would* show the additional context line, because we'd already have cached
the plan and marked the expression as non-simple.
The problem is easy to demonstrate in 9.2 and HEAD because planning of a
cached plan doesn't occur at all until GetCachedPlan is done. In earlier
versions, it could only be an issue if initial planning had succeeded, then
a replan was forced (already somewhat improbable for a simple expression),
and the replan attempt failed. Since the issue is mainly cosmetic in older
branches anyway, it doesn't seem worth the risk of trying to fix it there.
It is worth fixing in 9.2 since the instability of the context printout can
affect the results of GET STACKED DIAGNOSTICS, as per a recent discussion
on pgsql-novice.
To fix, introduce a SPI function that wraps GetCachedPlan while installing
the correct callback function. Use this instead of calling GetCachedPlan
directly from plpgsql.
Also introduce a wrapper function for extracting a SPI plan's
CachedPlanSource list. This lets us stop including spi_priv.h in
pl_exec.c, which was never a very good idea from a modularity standpoint.
In passing, fix a similar inconsistency that could occur in SPI_cursor_open,
which was also calling GetCachedPlan without setting up a context callback.
This patch addresses the problem that applications currently have to
extract object names from possibly-localized textual error messages,
if they want to know for example which index caused a UNIQUE_VIOLATION
failure. It adds new error message fields to the wire protocol, which
can carry the name of a table, table column, data type, or constraint
associated with the error. (Since the protocol spec has always instructed
clients to ignore unrecognized field types, this should not create any
compatibility problem.)
Support for providing these new fields has been added to just a limited set
of error reports (mainly, those in the "integrity constraint violation"
SQLSTATE class), but we will doubtless add them to more calls in future.
Pavel Stehule, reviewed and extensively revised by Peter Geoghegan, with
additional hacking by Tom Lane.
Since 9.0, the count parameter has only limited the number of tuples
actually returned by the executor. It doesn't affect the behavior of
INSERT/UPDATE/DELETE unless RETURNING is specified, because without
RETURNING, the ModifyTable plan node doesn't return control to execMain.c
for each tuple. And we only check the limit at the top level.
While this behavioral change was unintentional at the time, discussion of
bug #6572 led us to the conclusion that we prefer the new behavior anyway,
and so we should just adjust the docs to match rather than change the code.
Accordingly, do that. Back-patch as far as 9.0 so that the docs match the
code in each branch.
This patch introduces two additional lock modes for tuples: "SELECT FOR
KEY SHARE" and "SELECT FOR NO KEY UPDATE". These don't block each
other, in contrast with already existing "SELECT FOR SHARE" and "SELECT
FOR UPDATE". UPDATE commands that do not modify the values stored in
the columns that are part of the key of the tuple now grab a SELECT FOR
NO KEY UPDATE lock on the tuple, allowing them to proceed concurrently
with tuple locks of the FOR KEY SHARE variety.
Foreign key triggers now use FOR KEY SHARE instead of FOR SHARE; this
means the concurrency improvement applies to them, which is the whole
point of this patch.
The added tuple lock semantics require some rejiggering of the multixact
module, so that the locking level that each transaction is holding can
be stored alongside its Xid. Also, multixacts now need to persist
across server restarts and crashes, because they can now represent not
only tuple locks, but also tuple updates. This means we need more
careful tracking of lifetime of pg_multixact SLRU files; since they now
persist longer, we require more infrastructure to figure out when they
can be removed. pg_upgrade also needs to be careful to copy
pg_multixact files over from the old server to the new, or at least part
of multixact.c state, depending on the versions of the old and new
servers.
Tuple time qualification rules (HeapTupleSatisfies routines) need to be
careful not to consider tuples with the "is multi" infomask bit set as
being only locked; they might need to look up MultiXact values (i.e.
possibly do pg_multixact I/O) to find out the Xid that updated a tuple,
whereas they previously were assured to only use information readily
available from the tuple header. This is considered acceptable, because
the extra I/O would involve cases that would previously cause some
commands to block waiting for concurrent transactions to finish.
Another important change is the fact that locking tuples that have
previously been updated causes the future versions to be marked as
locked, too; this is essential for correctness of foreign key checks.
This causes additional WAL-logging, also (there was previously a single
WAL record for a locked tuple; now there are as many as updated copies
of the tuple there exist.)
With all this in place, contention related to tuples being checked by
foreign key rules should be much reduced.
As a bonus, the old behavior that a subtransaction grabbing a stronger
tuple lock than the parent (sub)transaction held on a given tuple and
later aborting caused the weaker lock to be lost, has been fixed.
Many new spec files were added for isolation tester framework, to ensure
overall behavior is sane. There's probably room for several more tests.
There were several reviewers of this patch; in particular, Noah Misch
and Andres Freund spent considerable time in it. Original idea for the
patch came from Simon Riggs, after a problem report by Joel Jacobson.
Most code is from me, with contributions from Marti Raudsepp, Alexander
Shulgin, Noah Misch and Andres Freund.
This patch was discussed in several pgsql-hackers threads; the most
important start at the following message-ids:
AANLkTimo9XVcEzfiBR-ut3KVNDkjm2Vxh+t8kAmWjPuv@mail.gmail.com1290721684-sup-3951@alvh.no-ip.org1294953201-sup-2099@alvh.no-ip.org1320343602-sup-2290@alvh.no-ip.org1339690386-sup-8927@alvh.no-ip.org4FE5FF020200002500048A3D@gw.wicourts.gov4FEAB90A0200002500048B7D@gw.wicourts.gov
SPI_execute() and related functions create a CachedPlan, execute it once,
and immediately discard it, so that the functionality offered by
plancache.c is of no value in this code path. And performance measurements
show that the extra data copying and invalidation checking done by
plancache.c slows down simple queries by 10% or more compared to 9.1.
However, enough of the SPI code is shared with functions that do need plan
caching that it seems impractical to bypass plancache.c altogether.
Instead, let's invent a variant version of cached plans that preserves
99% of the API but doesn't offer any of the actual functionality, nor the
overhead. This puts SPI_execute() performance back on par, or maybe even
slightly better, than it was before. This change should resolve recent
complaints of performance degradation from Dong Ye, Pavel Stehule, and
others.
By avoiding data copying, this change also reduces the amount of memory
needed to execute many-statement SPI_execute() strings, as for instance in
a recent complaint from Tomas Vondra.
An additional benefit of this change is that multi-statement SPI_execute()
query strings are now processed fully serially, that is we complete
execution of earlier statements before running parse analysis and planning
on following ones. This eliminates a long-standing POLA violation, in that
DDL that affects the behavior of a later statement will now behave as
expected.
Back-patch to 9.2, since this was a performance regression compared to 9.1.
(In 9.2, place the added struct fields so as to avoid changing the offsets
of existing fields.)
Heikki Linnakangas and Tom Lane
The dynahash code requires the number of buckets in a hash table to fit
in an int; but since we calculate the desired hash table size dynamically,
there are various scenarios where we might calculate too large a value.
The resulting overflow can lead to infinite loops, division-by-zero
crashes, etc. I (tgl) had previously installed some defenses against that
in commit 299d1716525c659f0e02840e31fbe4dea3, but that covered only one
call path. Moreover it worked by limiting the request size to work_mem,
but in a 64-bit machine it's possible to set work_mem high enough that the
problem appears anyway. So let's fix the problem at the root by installing
limits in the dynahash.c functions themselves.
Trouble report and patch by Jeff Davis.
This patch makes "simple" views automatically updatable, without the need
to create either INSTEAD OF triggers or INSTEAD rules. "Simple" views
are those classified as updatable according to SQL-92 rules. The rewriter
transforms INSERT/UPDATE/DELETE commands on such views directly into an
equivalent command on the underlying table, which will generally have
noticeably better performance than is possible with either triggers or
user-written rules. A view that has INSTEAD OF triggers or INSTEAD rules
continues to operate the same as before.
For the moment, security_barrier views are not considered simple.
Also, we do not support WITH CHECK OPTION. These features may be
added in future.
Dean Rasheed, reviewed by Amit Kapila
There are probably other places where this can be used, but for now,
this just makes MergeAppend use it, so that this code will have test
coverage. There is other work in the queue that will use this, as
well.
Abhijit Menon-Sen, reviewed by Andres Freund, Robert Haas, Álvaro
Herrera, Tom Lane, and others.
Commit 8cb53654dbdb4c386369eb988062d0bbb6de725e, which introduced DROP
INDEX CONCURRENTLY, managed to break CREATE INDEX CONCURRENTLY via a poor
choice of catalog state representation. The pg_index state for an index
that's reached the final pre-drop stage was the same as the state for an
index just created by CREATE INDEX CONCURRENTLY. This meant that the
(necessary) change to make RelationGetIndexList ignore about-to-die indexes
also made it ignore freshly-created indexes; which is catastrophic because
the latter do need to be considered in HOT-safety decisions. Failure to
do so leads to incorrect index entries and subsequently wrong results from
queries depending on the concurrently-created index.
To fix, add an additional boolean column "indislive" to pg_index, so that
the freshly-created and about-to-die states can be distinguished. (This
change obviously is only possible in HEAD. This patch will need to be
back-patched, but in 9.2 we'll use a kluge consisting of overloading the
formerly-impossible state of indisvalid = true and indisready = false.)
In addition, change CREATE/DROP INDEX CONCURRENTLY so that the pg_index
flag changes they make without exclusive lock on the index are made via
heap_inplace_update() rather than a normal transactional update. The
latter is not very safe because moving the pg_index tuple could result in
concurrent SnapshotNow scans finding it twice or not at all, thus possibly
resulting in index corruption. This is a pre-existing bug in CREATE INDEX
CONCURRENTLY, which was copied into the DROP code.
In addition, fix various places in the code that ought to check to make
sure that the indexes they are manipulating are valid and/or ready as
appropriate. These represent bugs that have existed since 8.2, since
a failed CREATE INDEX CONCURRENTLY could leave a corrupt or invalid
index behind, and we ought not try to do anything that might fail with
such an index.
Also fix RelationReloadIndexInfo to ensure it copies all the pg_index
columns that are allowed to change after initial creation. Previously we
could have been left with stale values of some fields in an index relcache
entry. It's not clear whether this actually had any user-visible
consequences, but it's at least a bug waiting to happen.
In addition, do some code and docs review for DROP INDEX CONCURRENTLY;
some cosmetic code cleanup but mostly addition and revision of comments.
This will need to be back-patched, but in a noticeably different form,
so I'm committing it to HEAD before working on the back-patch.
Problem reported by Amit Kapila, diagnosis by Pavan Deolassee,
fix by Tom Lane and Andres Freund.
This reverts commit d573e239f03506920938bf0be56c868d9c3416da, "Take fewer
snapshots". While that seemed like a good idea at the time, it caused
execution to use a snapshot that had been acquired before locking any of
the tables mentioned in the query. This created user-visible anomalies
that were not present in any prior release of Postgres, as reported by
Tomas Vondra. While this whole area could do with a redesign (since there
are related cases that have anomalies anyway), it doesn't seem likely that
any future patch would be reasonably back-patchable; and we don't want 9.2
to exhibit a behavior that's subtly unlike either past or future releases.
Hence, revert to prior code while we rethink the problem.