1
0
mirror of https://github.com/postgres/postgres.git synced 2025-09-02 04:21:28 +03:00
Commit Graph

1081 Commits

Author SHA1 Message Date
Tom Lane
b1738ff6ab Fix miscomputation of direct_lateral_relids for join relations.
If a PlaceHolderVar is to be evaluated at a join relation, but
its value is only needed there and not at higher levels, we neglected
to update the joinrel's direct_lateral_relids to include the PHV's
source rel.  This causes problems because join_is_legal() then won't
allow joining the joinrel to the PHV's source rel at all, leading
to "failed to build any N-way joins" planner failures.

Per report from Andreas Seltenreich.  Back-patch to 9.5
where the problem originated.

Discussion: https://postgr.es/m/87blfgqa4t.fsf@aurora.ydns.eu
2020-11-30 12:22:43 -05:00
Andrew Gierth
660b89928d Properly check index mark/restore in ExecSupportsMarkRestore.
Previously this code assumed that all IndexScan nodes supported
mark/restore, which is not true since it depends on optional index AM
support functions. This could lead to errors about missing support
functions in rare edge cases of mergejoins with no sort keys, where an
unordered non-btree index scan was placed on the inner path without a
protecting Materialize node. (Normally, the fact that merge join
requires ordered input would avoid this error.)

Backpatch all the way since this bug is ancient.

Per report from Eugen Konkov on irc.

Discussion: https://postgr.es/m/87o8jn50be.fsf@news-spur.riddles.org.uk
2020-11-24 21:58:32 +00:00
Heikki Linnakangas
0a2bc5d61e Move per-agg and per-trans duplicate finding to the planner.
This has the advantage that the cost estimates for aggregates can count
the number of calls to transition and final functions correctly.

Bump catalog version, because views can contain Aggrefs.

Reviewed-by: Andres Freund
Discussion: https://www.postgresql.org/message-id/b2e3536b-1dbc-8303-c97e-89cb0b4a9a48%40iki.fi
2020-11-24 10:45:00 +02:00
Tom Lane
8e1f37c07a Rethink the generation rule for fmgroids.h macros.
Traditionally, the names of fmgroids.h macros for pg_proc OIDs
have been constructed from the prosrc field.  But sometimes the
same C function underlies multiple pg_proc entries, forcing us
to make an arbitrary choice of which OID to reference; the other
entries are then not namable via fmgroids.h.  Moreover, we could
not have macros at all for pg_proc entries that aren't for
C-coded functions.

Instead, use the proname field, and append the proargtypes field
(replacing inter-argument spaces with underscores) if proname is
not unique.  Special-casing unique entries such as F_OIDEQ removes
the need to change a lot of code.  Indeed, I can only find two
places in the tree that need to be adjusted; while this changes
quite a few existing entries in fmgroids.h, few of them are
referenced from C code.

With this patch, all entries in pg_proc.dat have macros in fmgroids.h.

Discussion: https://postgr.es/m/472274.1604258384@sss.pgh.pa.us
2020-11-02 11:57:28 -05:00
Thomas Munro
257836a755 Track collation versions for indexes.
Record the current version of dependent collations in pg_depend when
creating or rebuilding an index.  When accessing the index later, warn
that the index may be corrupted if the current version doesn't match.

Thanks to Douglas Doole, Peter Eisentraut, Christoph Berg, Laurenz Albe,
Michael Paquier, Robert Haas, Tom Lane and others for very helpful
discussion.

Author: Thomas Munro <thomas.munro@gmail.com>
Author: Julien Rouhaud <rjuju123@gmail.com>
Reviewed-by: Peter Eisentraut <peter.eisentraut@2ndquadrant.com> (earlier versions)
Discussion: https://postgr.es/m/CAEepm%3D0uEQCpfq_%2BLYFBdArCe4Ot98t1aR4eYiYTe%3DyavQygiQ%40mail.gmail.com
2020-11-03 01:19:50 +13:00
David Rowley
a929e17e5a Allow run-time pruning on nested Append/MergeAppend nodes
Previously we only tagged on the required information to allow the
executor to perform run-time partition pruning for Append/MergeAppend
nodes belonging to base relations.  It was thought that nested
Append/MergeAppend nodes were just about always pulled up into the
top-level Append/MergeAppend and that making the run-time pruning info for
any sub Append/MergeAppend nodes was a waste of time.  However, that was
likely badly thought through.

Some examples of cases we're unable to pullup nested Append/MergeAppends
are: 1) Parallel Append nodes with a mix of parallel and non-parallel
paths into a Parallel Append.  2) When planning an ordered Append scan a
sub-partition which is unordered may require a nested MergeAppend path to
ensure sub-partitions don't mix up the order of tuples being fed into the
top-level Append.

Unfortunately, it was not just as simple as removing the lines in
createplan.c which were purposefully not building the run-time pruning
info for anything but RELOPT_BASEREL relations.  The code in
add_paths_to_append_rel() was far too sloppy about which partitioned_rels
it included for the Append/MergeAppend paths.  The original code there
would always assume accumulate_append_subpath() would pull each sub-Append
and sub-MergeAppend path into the top-level path.  While it does not
appear that there were any actual bugs caused by having the additional
partitioned table RT indexes recorded, what it did mean is that later in
planning, when we built the run-time pruning info that we wasted effort
and built PartitionedRelPruneInfos for partitioned tables that we had no
subpaths for the executor to run-time prune.

Here we tighten that up so that partitioned_rels only ever contains the RT
index for partitioned tables which actually have subpaths in the given
Append/MergeAppend.  We can now Assert that every PartitionedRelPruneInfo
has a non-empty present_parts.  That should allow us to catch any weird
corner cases that have been missed.

In passing, it seems there is no longer a good reason to have the
AppendPath and MergeAppendPath's partitioned_rel fields a List of IntList.
We can simply have a List of Relids instead.  This is more compact in
memory and faster to add new members to.  We still know which is the root
level partition as these always have a lower relid than their children.
Previously this field was used for more things, but run-time partition
pruning now remains the only user of it and it has no need for a List of
IntLists.

Here we also get rid of the RelOptInfo partitioned_child_rels field. This
is what was previously used to (sometimes incorrectly) set the
Append/MergeAppend path's partitioned_rels field.  That was the only usage
of that field, so we can happily just remove it.

I also couldn't resist changing some nearby code to make use of the newly
added for_each_from macro so we can skip the first element in the list
without checking if the current item was the first one on each
iteration.

A bug report from Andreas Kretschmer prompted all this work, however,
after some consideration, I'm not personally classing this as a bug fix.
So no backpatch.  In Andreas' test case, it just wasn't that clear that
there was a nested Append since the top-level Append just had a single
sub-path which was pulled up a level, per 8edd0e794.

Author: David Rowley
Reviewed-by: Amit Langote
Discussion: https://postgr.es/m/flat/CAApHDvqSchs%2BubdybcfFaSPB%2B%2BEA7kqMaoqajtP0GtZvzOOR3g%40mail.gmail.com
2020-11-02 13:46:56 +13:00
Tom Lane
ad1c36b070 Fix foreign-key selectivity estimation in the presence of constants.
get_foreign_key_join_selectivity() looks for join clauses that equate
the two sides of the FK constraint.  However, if we have a query like
"WHERE fktab.a = pktab.a and fktab.a = 1", it won't find any such join
clause, because equivclass.c replaces the given clauses with "fktab.a
= 1 and pktab.a = 1", which can be enforced at the scan level, leaving
nothing to be done for column "a" at the join level.

We can fix that expectation without much trouble, but then a new problem
arises: applying the foreign-key-based selectivity rule produces a
rowcount underestimate, because we're effectively double-counting the
selectivity of the "fktab.a = 1" clause.  So we have to cancel that
selectivity out of the estimate.

To fix, refactor process_implied_equality() so that it can pass back the
new RestrictInfo to its callers in equivclass.c, allowing the generated
"fktab.a = 1" clause to be saved in the EquivalenceClass's ec_derives
list.  Then it's not much trouble to dig out the relevant RestrictInfo
when we need to adjust an FK selectivity estimate.  (While at it, we
can also remove the expensive use of initialize_mergeclause_eclasses()
to set up the new RestrictInfo's left_ec and right_ec pointers.
The equivclass.c code can set those basically for free.)

This seems like clearly a bug fix, but I'm hesitant to back-patch it,
first because there's some API/ABI risk for extensions and second because
we're usually loath to destabilize plan choices in stable branches.

Per report from Sigrid Ehrenreich.

Discussion: https://postgr.es/m/1019549.1603770457@sss.pgh.pa.us
Discussion: https://postgr.es/m/AM6PR02MB5287A0ADD936C1FA80973E72AB190@AM6PR02MB5287.eurprd02.prod.outlook.com
2020-10-28 11:15:47 -04:00
Tom Lane
c8ab970179 Fix list-munging bug that broke SQL function result coercions.
Since commit 913bbd88d, check_sql_fn_retval() can either insert type
coercion steps in-line in the Query that produces the SQL function's
results, or generate a new top-level Query to perform the coercions,
if modifying the Query's output in-place wouldn't be safe.  However,
it appears that the latter case has never actually worked, because
the code tried to inject the new Query back into the query list it was
passed ... which is not the list that will be used for later processing
when we execute the SQL function "normally" (without inlining it).
So we ended up with no coercion happening at run-time, leading to
wrong results or crashes depending on the datatypes involved.

While the regression tests look like they cover this area well enough,
through a huge bit of bad luck all the test cases that exercise the
separate-Query path were checking either inline-able cases (which
accidentally didn't have the bug) or cases that are no-ops at runtime
(e.g., varchar to text), so that the failure to perform the coercion
wasn't obvious.  The fact that the cases that don't work weren't
allowed at all before v13 probably contributed to not noticing the
problem sooner, too.

To fix, get rid of the separate "flat" list of Query nodes and instead
pass the real two-level list that is going to be used later.  I chose
to make the same change in check_sql_fn_statements(), although that has
no actual bug, just so that we don't need that data structure at all.

This is an API change, as evidenced by the adjustments needed to
callers outside functions.c.  That's a bit scary to be doing in a
released branch, but so far as I can tell from a quick search,
there are no outside callers of these functions (and they are
sufficiently specific to our semantics for SQL-language functions that
it's not apparent why any extension would need to call them).  In any
case, v13 already changed the API of check_sql_fn_retval() compared to
prior branches.

Per report from pinker.  Back-patch to v13 where this code came in.

Discussion: https://postgr.es/m/1603050466566-0.post@n3.nabble.com
2020-10-19 14:33:09 -04:00
Thomas Munro
f0f13a3a08 Fix estimates for ModifyTable paths without RETURNING.
In the past, we always estimated that a ModifyTable node would emit the
same number of rows as its subpaths.  Without a RETURNING clause, the
correct estimate is zero.  Fix, in preparation for a proposed parallel
write patch that is sensitive to that number.

A remaining problem is that for RETURNING queries, the estimated width
is based on subpath output rather than the RETURNING tlist.

Reviewed-by: Greg Nancarrow <gregn4422@gmail.com>
Discussion: https://postgr.es/m/CAJcOf-cXnB5cnMKqWEp2E2z7Mvcd04iLVmV%3DqpFJrR3AcrTS3g%40mail.gmail.com
2020-10-13 00:26:49 +13:00
Tom Lane
3d351d916b Redefine pg_class.reltuples to be -1 before the first VACUUM or ANALYZE.
Historically, we've considered the state with relpages and reltuples
both zero as indicating that we do not know the table's tuple density.
This is problematic because it's impossible to distinguish "never yet
vacuumed" from "vacuumed and seen to be empty".  In particular, a user
cannot use VACUUM or ANALYZE to override the planner's normal heuristic
that an empty table should not be believed to be empty because it is
probably about to get populated.  That heuristic is a good safety
measure, so I don't care to abandon it, but there should be a way to
override it if the table is indeed intended to stay empty.

Hence, represent the initial state of ignorance by setting reltuples
to -1 (relpages is still set to zero), and apply the minimum-ten-pages
heuristic only when reltuples is still -1.  If the table is empty,
VACUUM or ANALYZE (but not CREATE INDEX) will override that to
reltuples = relpages = 0, and then we'll plan on that basis.

This requires a bunch of fiddly little changes, but we can get rid of
some ugly kluges that were formerly needed to maintain the old definition.

One notable point is that FDWs' GetForeignRelSize methods will see
baserel->tuples = -1 when no ANALYZE has been done on the foreign table.
That seems like a net improvement, since those methods were formerly
also in the dark about what baserel->tuples = 0 really meant.  Still,
it is an API change.

I bumped catversion because code predating this change would get confused
by seeing reltuples = -1.

Discussion: https://postgr.es/m/F02298E0-6EF4-49A1-BCB6-C484794D9ACC@thebuild.com
2020-08-30 12:21:51 -04:00
Tom Lane
2072932407 Suppress unnecessary RelabelType nodes in yet more cases.
Commit a477bfc1d fixed eval_const_expressions() to ensure that it
didn't generate unnecessary RelabelType nodes, but I failed to notice
that some other places in the planner had the same issue.  Really
noplace in the planner should be using plain makeRelabelType(), for
fear of generating expressions that should be equal() to semantically
equivalent trees, but aren't.

An example is that because canonicalize_ec_expression() failed
to be careful about this, we could end up with an equivalence class
containing both a plain Const, and a Const-with-RelabelType
representing exactly the same value.  So far as I can tell this led to
no visible misbehavior, but we did waste a bunch of cycles generating
and evaluating "Const = Const-with-RelabelType" to prove such entries
are redundant.

Hence, move the support function added by a477bfc1d to where it can
be more generally useful, and use it in the places where planner code
previously used makeRelabelType.

Back-patch to v12, like the previous patch.  While I have no concrete
evidence of any real misbehavior here, it's certainly possible that
I overlooked a case where equivalent expressions that aren't equal()
could cause a user-visible problem.  In any case carrying extra
RelabelType nodes through planning to execution isn't very desirable.

Discussion: https://postgr.es/m/1311836.1597781384@sss.pgh.pa.us
2020-08-19 14:07:49 -04:00
Tom Lane
1e7629d2c9 Be more careful about the shape of hashable subplan clauses.
nodeSubplan.c expects that the testexpr for a hashable ANY SubPlan
has the form of one or more OpExprs whose LHS is an expression of the
outer query's, while the RHS is an expression over Params representing
output columns of the subquery.  However, the planner only went as far
as verifying that the clauses were all binary OpExprs.  This works
99.99% of the time, because the clauses have the right shape when
emitted by the parser --- but it's possible for function inlining to
break that, as reported by PegoraroF10.  To fix, teach the planner
to check that the LHS and RHS contain the right things, or more
accurately don't contain the wrong things.  Given that this has been
broken for years without anyone noticing, it seems sufficient to just
give up hashing when it happens, rather than go to the trouble of
commuting the clauses back again (which wouldn't necessarily work
anyway).

While poking at that, I also noticed that nodeSubplan.c had a baked-in
assumption that the number of hash clauses is identical to the number
of subquery output columns.  Again, that's fine as far as parser output
goes, but it's not hard to break it via function inlining.  There seems
little reason for that assumption though --- AFAICS, the only thing
it's buying us is not having to store the number of hash clauses
explicitly.  Adding code to the planner to reject such cases would take
more code than getting nodeSubplan.c to cope, so I fixed it that way.

This has been broken for as long as we've had hashable SubPlans,
so back-patch to all supported branches.

Discussion: https://postgr.es/m/1549209182255-0.post@n3.nabble.com
2020-08-14 22:14:03 -04:00
Peter Geoghegan
d6c08e29e7 Add hash_mem_multiplier GUC.
Add a GUC that acts as a multiplier on work_mem.  It gets applied when
sizing executor node hash tables that were previously size constrained
using work_mem alone.

The new GUC can be used to preferentially give hash-based nodes more
memory than the generic work_mem limit.  It is intended to enable admin
tuning of the executor's memory usage.  Overall system throughput and
system responsiveness can be improved by giving hash-based executor
nodes more memory (especially over sort-based alternatives, which are
often much less sensitive to being memory constrained).

The default value for hash_mem_multiplier is 1.0, which is also the
minimum valid value.  This means that hash-based nodes continue to apply
work_mem in the traditional way by default.

hash_mem_multiplier is generally useful.  However, it is being added now
due to concerns about hash aggregate performance stability for users
that upgrade to Postgres 13 (which added disk-based hash aggregation in
commit 1f39bce0).  While the old hash aggregate behavior risked
out-of-memory errors, it is nevertheless likely that many users actually
benefited.  Hash agg's previous indifference to work_mem during query
execution was not just faster; it also accidentally made aggregation
resilient to grouping estimate problems (at least in cases where this
didn't create destabilizing memory pressure).

hash_mem_multiplier can provide a certain kind of continuity with the
behavior of Postgres 12 hash aggregates in cases where the planner
incorrectly estimates that all groups (plus related allocations) will
fit in work_mem/hash_mem.  This seems necessary because hash-based
aggregation is usually much slower when only a small fraction of all
groups can fit.  Even when it isn't possible to totally avoid hash
aggregates that spill, giving hash aggregation more memory will reliably
improve performance (the same cannot be said for external sort
operations, which appear to be almost unaffected by memory availability
provided it's at least possible to get a single merge pass).

The PostgreSQL 13 release notes should advise users that increasing
hash_mem_multiplier can help with performance regressions associated
with hash aggregation.  That can be taken care of by a later commit.

Author: Peter Geoghegan
Reviewed-By: Álvaro Herrera, Jeff Davis
Discussion: https://postgr.es/m/20200625203629.7m6yvut7eqblgmfo@alap3.anarazel.de
Discussion: https://postgr.es/m/CAH2-WzmD%2Bi1pG6rc1%2BCjc4V6EaFJ_qSuKCCHVnH%3DoruqD-zqow%40mail.gmail.com
Backpatch: 13-, where disk-based hash aggregation was introduced.
2020-07-29 14:14:58 -07:00
Tom Lane
689696c711 Fix bitmap AND/OR scans on the inside of a nestloop partition-wise join.
reparameterize_path_by_child() failed to reparameterize BitmapAnd
and BitmapOr paths.  This matters only if such a path is chosen as
the inside of a nestloop partition-wise join, where we have to pass
in parameters from the outside of the nestloop.  If that did happen,
we generated a bad plan that would likely lead to crashes at execution.

This is not entirely reparameterize_path_by_child()'s fault though;
it's the victim of an ancient decision (my ancient decision, I think)
to not bother filling in param_info in BitmapAnd/Or path nodes.  That
caused the function to believe that such nodes and their children
contain no parameter references and so need not be processed.

In hindsight that decision looks pretty penny-wise and pound-foolish:
while it saves a few cycles during path node setup, we do commonly
need the information later.  In particular, by reversing the decision
and requiring valid param_info data in all nodes of a bitmap path
tree, we can get rid of indxpath.c's get_bitmap_tree_required_outer()
function, which computed the data on-demand.  It's not unlikely that
that nets out as a savings of cycles in many scenarios.  A couple
of other things in indxpath.c can be simplified as well.

While here, get rid of some cases in reparameterize_path_by_child()
that are visibly dead or useless, given that we only care about
reparameterizing paths that can be on the inside of a parameterized
nestloop.  This case reminds one of the maxim that untested code
probably does not work, so I'm unwilling to leave unreachable code
in this function.  (I did leave the T_Gather case in place even
though it's not reached in the regression tests.  It's not very
clear to me when the planner might prefer to put Gather below
rather than above a nestloop, but at least in principle the case
might be interesting.)

Per bug #16536, originally from Arne Roland but with a test case
by Andrew Gierth.  Back-patch to v11 where this code came in.

Discussion: https://postgr.es/m/16536-2213ee0b3aad41fd@postgresql.org
2020-07-14 18:56:56 -04:00
Andres Freund
e07633646a code: replace 'master' with 'leader' where appropriate.
Leader already is the more widely used terminology, but a few places
didn't get the message.

Author: Andres Freund
Reviewed-By: David Steele
Discussion: https://postgr.es/m/20200615182235.x7lch5n6kcjq4aue@alap3.anarazel.de
2020-07-08 12:58:32 -07:00
Tom Lane
fa27dd40d5 Run pgindent with new pg_bsd_indent version 2.1.1.
Thomas Munro fixed a longstanding annoyance in pg_bsd_indent, that
it would misformat lines containing IsA() macros on the assumption
that the IsA() call should be treated like a cast.  This improves
some other cases involving field/variable names that match typedefs,
too.  The only places that get worse are a couple of uses of the
OpenSSL macro STACK_OF(); we'll gladly take that trade-off.

Discussion: https://postgr.es/m/20200114221814.GA19630@alvherre.pgsql
2020-05-16 11:54:51 -04:00
Alvaro Herrera
17cc133f01 Dial back -Wimplicit-fallthrough to level 3
The additional pain from level 4 is excessive for the gain.

Also revert all the source annotation changes to their original
wordings, to avoid back-patching pain.

Discussion: https://postgr.es/m/31166.1589378554@sss.pgh.pa.us
2020-05-13 15:31:14 -04:00
Alvaro Herrera
3e9744465d Add -Wimplicit-fallthrough to CFLAGS and CXXFLAGS
Use it at level 4, a bit more restrictive than the default level, and
tweak our commanding comments to FALLTHROUGH.

(However, leave zic.c alone, since it's external code; to avoid the
warnings that would appear there, change CFLAGS for that file in the
Makefile.)

Author: Julien Rouhaud <rjuju123@gmail.com>
Author: Álvaro Herrera <alvherre@alvh.no-ip.org>
Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us>
Discussion: https://postgr.es/m/20200412081825.qyo5vwwco3fv4gdo@nol
Discussion: https://postgr.es/m/flat/E1fDenm-0000C8-IJ@gemulon.postgresql.org
2020-05-12 16:07:30 -04:00
Etsuro Fujita
2793bbe75e Remove unnecessary #include.
My oversight in commit c8434d64c.
2020-05-12 19:55:55 +09:00
Tom Lane
0da06d9faf Get rid of trailing semicolons in C macro definitions.
Writing a trailing semicolon in a macro is almost never the right thing,
because you almost always want to write a semicolon after each macro
call instead.  (Even if there was some reason to prefer not to, pgindent
would probably make a hash of code formatted that way; so within PG the
rule should basically be "don't do it".)  Thus, if we have a semi inside
the macro, the compiler sees "something;;".  Much of the time the extra
empty statement is harmless, but it could lead to mysterious syntax
errors at call sites.  In perhaps an overabundance of neatnik-ism, let's
run around and get rid of the excess semicolons whereever possible.

The only thing worse than a mysterious syntax error is a mysterious
syntax error that only happens in the back branches; therefore,
backpatch these changes where relevant, which is most of them because
most of these mistakes are old.  (The lack of reported problems shows
that this is largely a hypothetical issue, but still, it could bite
us in some future patch.)

John Naylor and Tom Lane

Discussion: https://postgr.es/m/CACPNZCs0qWTqJ2QUSGJ07B7uvAvzMb-KbG2q+oo+J3tsWN5cqw@mail.gmail.com
2020-05-01 17:28:00 -04:00
Tom Lane
981643dcdb Allow partitionwise join to handle nested FULL JOIN USING cases.
This case didn't work because columns merged by FULL JOIN USING are
represented in the parse tree by COALESCE expressions, and the logic
for recognizing a partitionable join failed to match upper-level join
clauses to such expressions.  To fix, synthesize suitable COALESCE
expressions and add them to the nullable_partexprs lists.  This is
pretty ugly and brute-force, but it gets the job done.  (I have
ambitions of rethinking the way outer-join output Vars are
represented, so maybe that will provide a cleaner solution someday.
For now, do this.)

Amit Langote, reviewed by Justin Pryzby, Richard Guo, and myself

Discussion: https://postgr.es/m/CA+HiwqG2WVUGmLJqtR0tPFhniO=H=9qQ+Z3L_ZC+Y3-EVQHFGg@mail.gmail.com
2020-04-07 22:12:14 -04:00
Etsuro Fujita
c8434d64ce Allow partitionwise joins in more cases.
Previously, the partitionwise join technique only allowed partitionwise
join when input partitioned tables had exactly the same partition
bounds.  This commit extends the technique to some cases when the tables
have different partition bounds, by using an advanced partition-matching
algorithm introduced by this commit.  For both the input partitioned
tables, the algorithm checks whether every partition of one input
partitioned table only matches one partition of the other input
partitioned table at most, and vice versa.  In such a case the join
between the tables can be broken down into joins between the matching
partitions, so the algorithm produces the pairs of the matching
partitions, plus the partition bounds for the join relation, to allow
partitionwise join for computing the join.  Currently, the algorithm
works for list-partitioned and range-partitioned tables, but not
hash-partitioned tables.  See comments in partition_bounds_merge().

Ashutosh Bapat and Etsuro Fujita, most of regression tests by Rajkumar
Raghuwanshi, some of the tests by Mark Dilger and Amul Sul, reviewed by
Dmitry Dolgov and Amul Sul, with additional review at various points by
Ashutosh Bapat, Mark Dilger, Robert Haas, Antonin Houska, Amit Langote,
Justin Pryzby, and Tomas Vondra

Discussion: https://postgr.es/m/CAFjFpRdjQvaUEV5DJX3TW6pU5eq54NCkadtxHX2JiJG_GvbrCA@mail.gmail.com
2020-04-08 10:25:00 +09:00
Alvaro Herrera
357889eb17 Support FETCH FIRST WITH TIES
WITH TIES is an option to the FETCH FIRST N ROWS clause (the SQL
standard's spelling of LIMIT), where you additionally get rows that
compare equal to the last of those N rows by the columns in the
mandatory ORDER BY clause.

There was a proposal by Andrew Gierth to implement this functionality in
a more powerful way that would yield more features, but the other patch
had not been finished at this time, so we decided to use this one for
now in the spirit of incremental development.

Author: Surafel Temesgen <surafel3000@gmail.com>
Reviewed-by: Álvaro Herrera <alvherre@alvh.no-ip.org>
Reviewed-by: Tomas Vondra <tomas.vondra@2ndquadrant.com>
Discussion: https://postgr.es/m/CALAY4q9ky7rD_A4vf=FVQvCGngm3LOes-ky0J6euMrg=_Se+ag@mail.gmail.com
Discussion: https://postgr.es/m/87o8wvz253.fsf@news-spur.riddles.org.uk
2020-04-07 16:22:13 -04:00
Tomas Vondra
d2d8a229bc Implement Incremental Sort
Incremental Sort is an optimized variant of multikey sort for cases when
the input is already sorted by a prefix of the requested sort keys. For
example when the relation is already sorted by (key1, key2) and we need
to sort it by (key1, key2, key3) we can simply split the input rows into
groups having equal values in (key1, key2), and only sort/compare the
remaining column key3.

This has a number of benefits:

- Reduced memory consumption, because only a single group (determined by
  values in the sorted prefix) needs to be kept in memory. This may also
  eliminate the need to spill to disk.

- Lower startup cost, because Incremental Sort produce results after each
  prefix group, which is beneficial for plans where startup cost matters
  (like for example queries with LIMIT clause).

We consider both Sort and Incremental Sort, and decide based on costing.

The implemented algorithm operates in two different modes:

- Fetching a minimum number of tuples without check of equality on the
  prefix keys, and sorting on all columns when safe.

- Fetching all tuples for a single prefix group and then sorting by
  comparing only the remaining (non-prefix) keys.

We always start in the first mode, and employ a heuristic to switch into
the second mode if we believe it's beneficial - the goal is to minimize
the number of unnecessary comparions while keeping memory consumption
below work_mem.

This is a very old patch series. The idea was originally proposed by
Alexander Korotkov back in 2013, and then revived in 2017. In 2018 the
patch was taken over by James Coleman, who wrote and rewrote most of the
current code.

There were many reviewers/contributors since 2013 - I've done my best to
pick the most active ones, and listed them in this commit message.

Author: James Coleman, Alexander Korotkov
Reviewed-by: Tomas Vondra, Andreas Karlsson, Marti Raudsepp, Peter Geoghegan, Robert Haas, Thomas Munro, Antonin Houska, Andres Freund, Alexander Kuzmenkov
Discussion: https://postgr.es/m/CAPpHfdscOX5an71nHd8WSUH6GNOCf=V7wgDaTXdDd9=goN-gfA@mail.gmail.com
Discussion: https://postgr.es/m/CAPpHfds1waRZ=NOmueYq0sx1ZSCnt+5QJvizT8ndT2=etZEeAQ@mail.gmail.com
2020-04-06 21:35:10 +02:00
Tom Lane
0568e7a2a4 Cosmetic improvements for code related to partitionwise join.
Move have_partkey_equi_join and match_expr_to_partition_keys to
relnode.c, since they're used only there.  Refactor
build_joinrel_partition_info to split out the code that fills the
joinrel's partition key lists; this doesn't have any non-cosmetic
impact, but it seems like a useful separation of concerns.
Improve assorted nearby comments.

Amit Langote, with a little further editorialization by me

Discussion: https://postgr.es/m/CA+HiwqG2WVUGmLJqtR0tPFhniO=H=9qQ+Z3L_ZC+Y3-EVQHFGg@mail.gmail.com
2020-04-03 17:00:35 -04:00
Alexander Korotkov
911e702077 Implement operator class parameters
PostgreSQL provides set of template index access methods, where opclasses have
much freedom in the semantics of indexing.  These index AMs are GiST, GIN,
SP-GiST and BRIN.  There opclasses define representation of keys, operations on
them and supported search strategies.  So, it's natural that opclasses may be
faced some tradeoffs, which require user-side decision.  This commit implements
opclass parameters allowing users to set some values, which tell opclass how to
index the particular dataset.

This commit doesn't introduce new storage in system catalog.  Instead it uses
pg_attribute.attoptions, which is used for table column storage options but
unused for index attributes.

In order to evade changing signature of each opclass support function, we
implement unified way to pass options to opclass support functions.  Options
are set to fn_expr as the constant bytea expression.  It's possible due to the
fact that opclass support functions are executed outside of expressions, so
fn_expr is unused for them.

This commit comes with some examples of opclass options usage.  We parametrize
signature length in GiST.  That applies to multiple opclasses: tsvector_ops,
gist__intbig_ops, gist_ltree_ops, gist__ltree_ops, gist_trgm_ops and
gist_hstore_ops.  Also we parametrize maximum number of integer ranges for
gist__int_ops.  However, the main future usage of this feature is expected
to be json, where users would be able to specify which way to index particular
json parts.

Catversion is bumped.

Discussion: https://postgr.es/m/d22c3a18-31c7-1879-fc11-4c1ce2f5e5af%40postgrespro.ru
Author: Nikita Glukhov, revised by me
Reviwed-by: Nikolay Shaplov, Robert Haas, Tom Lane, Tomas Vondra, Alvaro Herrera
2020-03-30 19:17:23 +03:00
Jeff Davis
1f39bce021 Disk-based Hash Aggregation.
While performing hash aggregation, track memory usage when adding new
groups to a hash table. If the memory usage exceeds work_mem, enter
"spill mode".

In spill mode, new groups are not created in the hash table(s), but
existing groups continue to be advanced if input tuples match. Tuples
that would cause a new group to be created are instead spilled to a
logical tape to be processed later.

The tuples are spilled in a partitioned fashion. When all tuples from
the outer plan are processed (either by advancing the group or
spilling the tuple), finalize and emit the groups from the hash
table. Then, create new batches of work from the spilled partitions,
and select one of the saved batches and process it (possibly spilling
recursively).

Author: Jeff Davis
Reviewed-by: Tomas Vondra, Adam Lee, Justin Pryzby, Taylor Vesely, Melanie Plageman
Discussion: https://postgr.es/m/507ac540ec7c20136364b5272acbcd4574aa76ef.camel@j-davis.com
2020-03-18 15:42:02 -07:00
Jeff Davis
c11cb17dc5 Save calculated transitionSpace in Agg node.
This will be useful in the upcoming Hash Aggregation work to improve
estimates for hash table sizing.

Discussion: https://postgr.es/m/37091115219dd522fd9ed67333ee8ed1b7e09443.camel%40j-davis.com
2020-02-27 11:20:56 -08:00
Tom Lane
a477bfc1df Suppress unnecessary RelabelType nodes in more cases.
eval_const_expressions sometimes produced RelabelType nodes that
were useless because they just relabeled an expression to the same
exposed type it already had.  This is worth avoiding because it can
cause two equivalent expressions to not be equal(), preventing
recognition of useful optimizations.  In the test case added here,
an unpatched planner fails to notice that the "sqli = constant" clause
renders a sort step unnecessary, because one code path produces an
extra RelabelType and another doesn't.

Fix by ensuring that eval_const_expressions_mutator's T_RelabelType
case will not add in an unnecessary RelabelType.  Also save some
code by sharing a subroutine with the effectively-equivalent cases
for CollateExpr and CoerceToDomain.  (CollateExpr had no bug, and
I think that the case couldn't arise with CoerceToDomain, but
it seems prudent to do the same check for all three cases.)

Back-patch to v12.  In principle this has been wrong all along,
but I haven't seen a case where it causes visible misbehavior
before v12, so refrain from changing stable branches unnecessarily.

Per investigation of a report from Eric Gillum.

Discussion: https://postgr.es/m/CAMmjdmvAZsUEskHYj=KT9sTukVVCiCSoe_PBKOXsncFeAUDPCQ@mail.gmail.com
2020-02-26 18:14:12 -05:00
Tom Lane
9ce77d75c5 Reconsider the representation of join alias Vars.
The core idea of this patch is to make the parser generate join alias
Vars (that is, ones with varno pointing to a JOIN RTE) only when the
alias Var is actually different from any raw join input, that is a type
coercion and/or COALESCE is necessary to generate the join output value.
Otherwise just generate varno/varattno pointing to the relevant join
input column.

In effect, this means that the planner's flatten_join_alias_vars()
transformation is already done in the parser, for all cases except
(a) columns that are merged by JOIN USING and are transformed in the
process, and (b) whole-row join Vars.  In principle that would allow
us to skip doing flatten_join_alias_vars() in many more queries than
we do now, but we don't have quite enough infrastructure to know that
we can do so --- in particular there's no cheap way to know whether
there are any whole-row join Vars.  I'm not sure if it's worth the
trouble to add a Query-level flag for that, and in any case it seems
like fit material for a separate patch.  But even without skipping the
work entirely, this should make flatten_join_alias_vars() faster,
particularly where there are nested joins that it previously had to
flatten recursively.

An essential part of this change is to replace Var nodes'
varnoold/varoattno fields with varnosyn/varattnosyn, which have
considerably more tightly-defined meanings than the old fields: when
they differ from varno/varattno, they identify the Var's position in
an aliased JOIN RTE, and the join alias is what ruleutils.c should
print for the Var.  This is necessary because the varno change
destroyed ruleutils.c's ability to find the JOIN RTE from the Var's
varno.

Another way in which this change broke ruleutils.c is that it's no
longer feasible to determine, from a JOIN RTE's joinaliasvars list,
which join columns correspond to which columns of the join's immediate
input relations.  (If those are sub-joins, the joinaliasvars entries
may point to columns of their base relations, not the sub-joins.)
But that was a horrid mess requiring a lot of fragile assumptions
already, so let's just bite the bullet and add some more JOIN RTE
fields to make it more straightforward to figure that out.  I added
two integer-List fields containing the relevant column numbers from
the left and right input rels, plus a count of how many merged columns
there are.

This patch depends on the ParseNamespaceColumn infrastructure that
I added in commit 5815696bc.  The biggest bit of code change is
restructuring transformFromClauseItem's handling of JOINs so that
the ParseNamespaceColumn data is propagated upward correctly.

Other than that and the ruleutils fixes, everything pretty much
just works, though some processing is now inessential.  I grabbed
two pieces of low-hanging fruit in that line:

1. In find_expr_references, we don't need to recurse into join alias
Vars anymore.  There aren't any except for references to merged USING
columns, which are more properly handled when we scan the join's RTE.
This change actually fixes an edge-case issue: we will now record a
dependency on any type-coercion function present in a USING column's
joinaliasvar, even if that join column has no references in the query
text.  The odds of the missing dependency causing a problem seem quite
small: you'd have to posit somebody dropping an implicit cast between
two data types, without removing the types themselves, and then having
a stored rule containing a whole-row Var for a join whose USING merge
depends on that cast.  So I don't feel a great need to change this in
the back branches.  But in theory this way is more correct.

2. markRTEForSelectPriv and markTargetListOrigin don't need to recurse
into join alias Vars either, because the cases they care about don't
apply to alias Vars for USING columns that are semantically distinct
from the underlying columns.  This removes the only case in which
markVarForSelectPriv could be called with NULL for the RTE, so adjust
the comments to describe that hack as being strictly internal to
markRTEForSelectPriv.

catversion bump required due to changes in stored rules.

Discussion: https://postgr.es/m/7115.1577986646@sss.pgh.pa.us
2020-01-09 11:56:59 -05:00
Tom Lane
913bbd88dc Improve the handling of result type coercions in SQL functions.
Use the parser's standard type coercion machinery to convert the
output column(s) of a SQL function's final SELECT or RETURNING
to the type(s) they should have according to the function's declared
result type.  We'll allow any case where an assignment-level
coercion is available.  Previously, we failed unless the required
coercion was a binary-compatible one (and the documentation ignored
this, falsely claiming that the types must match exactly).

Notably, the coercion now accounts for typmods, so that cases where
a SQL function is declared to return a composite type whose columns
are typmod-constrained now behave as one would expect.  Arguably
this aspect is a bug fix, but the overall behavioral change here
seems too large to consider back-patching.

A nice side-effect is that functions can now be inlined in a
few cases where we previously failed to do so because of type
mismatches.

Discussion: https://postgr.es/m/18929.1574895430@sss.pgh.pa.us
2020-01-08 11:07:59 -05:00
Bruce Momjian
7559d8ebfa Update copyrights for 2020
Backpatch-through: update all files in master, backpatch legal files through 9.4
2020-01-01 12:21:45 -05:00
Michael Paquier
7854e07f25 Revert "Rename files and headers related to index AM"
This follows multiple complains from Peter Geoghegan, Andres Freund and
Alvaro Herrera that this issue ought to be dug more before actually
happening, if it happens.

Discussion: https://postgr.es/m/20191226144606.GA5659@alvherre.pgsql
2019-12-27 08:09:00 +09:00
Michael Paquier
8ce3aa9b59 Rename files and headers related to index AM
The following renaming is done so as source files related to index
access methods are more consistent with table access methods (the
original names used for index AMs ware too generic, and could be
confused as including features related to table AMs):
- amapi.h -> indexam.h.
- amapi.c -> indexamapi.c.  Here we have an equivalent with
backend/access/table/tableamapi.c.
- amvalidate.c -> indexamvalidate.c.
- amvalidate.h -> indexamvalidate.h.
- genam.c -> indexgenam.c.
- genam.h -> indexgenam.h.

This has been discussed during the development of v12 when table AM was
worked on, but the renaming never happened.

Author: Michael Paquier
Reviewed-by: Fabien Coelho, Julien Rouhaud
Discussion: https://postgr.es/m/20191223053434.GF34339@paquier.xyz
2019-12-25 10:23:39 +09:00
Tom Lane
55a1954da1 Fix EXPLAIN's column alias output for mismatched child tables.
If an inheritance/partitioning parent table is assigned some column
alias names in the query, EXPLAIN mapped those aliases onto the
child tables' columns by physical position, resulting in bogus output
if a child table's columns aren't one-for-one with the parent's.

To fix, make expand_single_inheritance_child() generate a correctly
re-mapped column alias list, rather than just copying the parent
RTE's alias node.  (We have to fill the alias field, not just
adjust the eref field, because ruleutils.c will ignore eref in
favor of looking at the real column names.)

This means that child tables will now always have alias fields in
plan rtables, where before they might not have.  That results in
a rather substantial set of regression test output changes:
EXPLAIN will now always show child tables with aliases that match
the parent table (usually with "_N" appended for uniqueness).
But that seems like a net positive for understandability, since
the parent alias corresponds to something that actually appeared
in the original query, while the child table names didn't.
(Note that this does not change anything for cases where an explicit
table alias was written in the query for the parent table; it
just makes cases without such aliases behave similarly to that.)
Hence, while we could avoid these subsidiary changes if we made
inherit.c more complicated, we choose not to.

Discussion: https://postgr.es/m/12424.1575168015@sss.pgh.pa.us
2019-12-02 19:08:10 -05:00
Tom Lane
ce76c0ba53 Add a reverse-translation column number array to struct AppendRelInfo.
This provides for cheaper mapping of child columns back to parent
columns.  The one existing use-case in examine_simple_variable()
would hardly justify this by itself; but an upcoming bug fix will
make use of this array in a mainstream code path, and it seems
likely that we'll find other uses for it as we continue to build
out the partitioning infrastructure.

Discussion: https://postgr.es/m/12424.1575168015@sss.pgh.pa.us
2019-12-02 18:05:29 -05:00
Etsuro Fujita
47a3c7fa06 Fix typo in comment. 2019-11-27 16:00:45 +09:00
Amit Kapila
14aec03502 Make the order of the header file includes consistent in backend modules.
Similar to commits 7e735035f2 and dddf4cdc33, this commit makes the order
of header file inclusion consistent for backend modules.

In the passing, removed a couple of duplicate inclusions.

Author: Vignesh C
Reviewed-by: Kuntal Ghosh and Amit Kapila
Discussion: https://postgr.es/m/CALDaNm2Sznv8RR6Ex-iJO6xAdsxgWhCoETkaYX=+9DW3q0QCfA@mail.gmail.com
2019-11-12 08:30:16 +05:30
Andres Freund
01368e5d9d Split all OBJS style lines in makefiles into one-line-per-entry style.
When maintaining or merging patches, one of the most common sources
for conflicts are the list of objects in makefiles. Especially when
the split across lines has been changed on both sides, which is
somewhat common due to attempting to stay below 80 columns, those
conflicts are unnecessarily laborious to resolve.

By splitting, and alphabetically sorting, OBJS style lines into one
object per line, conflicts should be less frequent, and easier to
resolve when they still occur.

Author: Andres Freund
Discussion: https://postgr.es/m/20191029200901.vww4idgcxv74cwes@alap3.anarazel.de
2019-11-05 14:41:07 -08:00
Tom Lane
529ebb20aa Generate EquivalenceClass members for partitionwise child join rels.
Commit d25ea0127 got rid of what I thought were entirely unnecessary
derived child expressions in EquivalenceClasses for EC members that
mention multiple baserels.  But it turns out that some of the child
expressions that code created are necessary for partitionwise joins,
else we fail to find matching pathkeys for Sort nodes.  (This happens
only for certain shapes of the resulting plan; it may be that
partitionwise aggregation is also necessary to show the failure,
though I'm not sure of that.)

Reverting that commit entirely would be quite painful performance-wise
for large partition sets.  So instead, add code that explicitly
generates child expressions that match only partitionwise child join
rels we have actually generated.

Per report from Justin Pryzby.  (Amit Langote noticed the problem
earlier, though it's not clear if he recognized then that it could
result in a planner error, not merely failure to exploit partitionwise
join, in the code as-committed.)  Back-patch to v12 where commit
d25ea0127 came in.

Amit Langote, with lots of kibitzing from me

Discussion: https://postgr.es/m/CA+HiwqG2WVUGmLJqtR0tPFhniO=H=9qQ+Z3L_ZC+Y3-EVQHFGg@mail.gmail.com
Discussion: https://postgr.es/m/20191011143703.GN10470@telsasoft.com
2019-11-05 11:42:24 -05:00
Michael Paquier
f25968c496 Remove last traces of heap_open/close in the tree
Since pluggable storage has been introduced, those two routines have
been replaced by table_open/close, with some compatibility macros still
present to allow extensions to compile correctly with v12.

Some code paths using the old routines still remained, so replace them.
Based on the discussion done, the consensus reached is that it is better
to remove those compatibility macros so as nothing new uses the old
routines, so remove also the compatibility macros.

Discussion: https://postgr.es/m/20191017014706.GF5605@paquier.xyz
2019-10-19 11:18:15 +09:00
Etsuro Fujita
076e9d4209 Remove useless bms_free() calls in build_child_join_rel().
These seem to be leftovers from the original partitionwise-join patch,
perhaps.

Discussion: https://postgr.es/m/CAPmGK145YiMTPRnvev1dLz8na_-0aZ=Xyqn8f2QsJFBUTObNow@mail.gmail.com
2019-08-16 14:35:55 +09:00
Alvaro Herrera
815ef2f568 Don't constraint-exclude partitioned tables as much
We only need to invoke constraint exclusion on partitioned tables when
they are a partition, and they themselves contain a default partition;
it's not necessary otherwise, and it's expensive, so avoid it.  Also, we
were trying once for each clause separately, but we can do it for all
the clauses at once.

While at it, centralize setting of RelOptInfo->partition_qual instead of
computing it in slightly different ways in different places.

Per complaints from Simon Riggs about 4e85642d935e; reviewed by Yuzuko
Hosoya, Kyotaro Horiguchi.

Author: Amit Langote.  I (Álvaro) again mangled the patch somewhat.
Discussion: https://postgr.es/m/CANP8+j+tMCY=nEcQeqQam85=uopLBtX-2vHiLD2bbp7iQQUKpA@mail.gmail.com
2019-08-13 10:26:04 -04:00
Tom Lane
5ee190f8ec Rationalize use of list_concat + list_copy combinations.
In the wake of commit 1cff1b95a, the result of list_concat no longer
shares the ListCells of the second input.  Therefore, we can replace
"list_concat(x, list_copy(y))" with just "list_concat(x, y)".

To improve call sites that were list_copy'ing the first argument,
or both arguments, invent "list_concat_copy()" which produces a new
list sharing no ListCells with either input.  (This is a bit faster
than "list_concat(list_copy(x), y)" because it makes the result list
the right size to start with.)

In call sites that were not list_copy'ing the second argument, the new
semantics mean that we are usually leaking the second List's storage,
since typically there is no remaining pointer to it.  We considered
inventing another list_copy variant that would list_free the second
input, but concluded that for most call sites it isn't worth worrying
about, given the relative compactness of the new List representation.
(Note that in cases where such leakage would happen, the old code
already leaked the second List's header; so we're only discussing
the size of the leak not whether there is one.  I did adjust two or
three places that had been troubling to free that header so that
they manually free the whole second List.)

Patch by me; thanks to David Rowley for review.

Discussion: https://postgr.es/m/11587.1550975080@sss.pgh.pa.us
2019-08-12 11:20:18 -04:00
Tom Lane
1661a40505 Cosmetic improvements in setup of planner's per-RTE arrays.
Merge setup_append_rel_array into setup_simple_rel_arrays.  There's no
particularly good reason to keep them separate, and it's inconsistent
with the lack of separation in expand_planner_arrays.  The only apparent
benefit was that the fast path for trivial queries in query_planner()
doesn't need to set up the append_rel_array; but all we're saving there
is an if-test and NULL assignment, which surely ought to be negligible.

Also improve some obsolete comments.

Discussion: https://postgr.es/m/17220.1565301350@sss.pgh.pa.us
2019-08-09 12:33:43 -04:00
Michael Paquier
940c8b01b0 Fix typo in pathnode.c
Author: Amit Langote
Discussion: https://postgr.es/m/CA+HiwqFhZ6ABoz-i=JZ5wMMyz-orx4asjR0og9qBtgEwOww6Yg@mail.gmail.com
2019-08-06 18:11:02 +09:00
Tom Lane
7266d0997d Allow functions-in-FROM to be pulled up if they reduce to constants.
This allows simplification of the plan tree in some common usage
patterns: we can get rid of a join to the function RTE.

In principle we could pull up any immutable expression, but restricting
it to Consts avoids the risk that multiple evaluations of the expression
might cost more than we can save.  (Possibly this could be improved in
future --- but we've more or less promised people that putting a function
in FROM guarantees single evaluation, so we'd have to tread carefully.)

To do this, we need to rearrange when eval_const_expressions()
happens for expressions in function RTEs.  I moved it to
inline_set_returning_functions(), which already has to iterate over
every function RTE, and in consequence renamed that function to
preprocess_function_rtes().  A useful consequence is that
inline_set_returning_function() no longer has to do this for itself,
simplifying that code.

In passing, break out pull_up_simple_subquery's code that knows where
everything that needs pullup_replace_vars() processing is, so that
the new pull_up_constant_function() routine can share it.  We'd
gotten away with one-and-a-half copies of that code so far, since
pull_up_simple_values() could assume that a lot of cases didn't apply
to it --- but I don't think pull_up_constant_function() can make any
simplifying assumptions.  Might as well make pull_up_simple_values()
use it too.

(Possibly this refactoring should go further: maybe we could share
some of the code to fill in the pullup_replace_vars_context struct?
For now, I left it that the callers fill that completely.)

Note: the one existing test case that this patch changes has to be
changed because inlining its function RTEs would destroy the point
of the test, namely to check join order.

Alexander Kuzmenkov and Aleksandr Parfenov, reviewed by
Antonin Houska and Anastasia Lubennikova, and whacked around
some more by me

Discussion: https://postgr.es/m/402356c32eeb93d4fed01f66d6c7fe2d@postgrespro.ru
2019-08-01 18:50:22 -04:00
David Rowley
3373c71553 Speed up finding EquivalenceClasses for a given set of rels
Previously in order to determine which ECs a relation had members in, we
had to loop over all ECs stored in PlannerInfo's eq_classes and check if
ec_relids mentioned the relation.  For the most part, this was fine, as
generally, unless queries were fairly complex, the overhead of performing
the lookup would have not been that significant.  However, when queries
contained large numbers of joins and ECs, the overhead to find the set of
classes matching a given set of relations could become a significant
portion of the overall planning effort.

Here we allow a much more efficient method to access the ECs which match a
given relation or set of relations.  A new Bitmapset field in RelOptInfo
now exists to store the indexes into PlannerInfo's eq_classes list which
each relation is mentioned in.  This allows very fast lookups to find all
ECs belonging to a single relation.  When we need to lookup ECs belonging
to a given pair of relations, we can simply bitwise-AND the Bitmapsets from
each relation and use the result to perform the lookup.

We also take the opportunity to write a new implementation of
generate_join_implied_equalities which makes use of the new indexes.
generate_join_implied_equalities_for_ecs must remain as is as it can be
given a custom list of ECs, which we can't easily determine the indexes of.

This was originally intended to fix the performance penalty of looking up
foreign keys matching a join condition which was introduced by 100340e2d.
However, we're speeding up much more than just that here.

Author: David Rowley, Tom Lane
Reviewed-by: Tom Lane, Tomas Vondra
Discussion: https://postgr.es/m/6970.1545327857@sss.pgh.pa.us
2019-07-21 17:30:58 +12:00
Tom Lane
d97b714a21 Avoid using lcons and list_delete_first where it's easy to do so.
Formerly, lcons was about the same speed as lappend, but with the new
List implementation, that's not so; with a long List, data movement
imposes an O(N) cost on lcons and list_delete_first, but not lappend.

Hence, invent list_delete_last with semantics parallel to
list_delete_first (but O(1) cost), and change various places to use
lappend and list_delete_last where this can be done without much
violence to the code logic.

There are quite a few places that construct result lists using lcons not
lappend.  Some have semantic rationales for that; I added comments about
it to a couple that didn't have them already.  In many such places though,
I think the coding is that way only because back in the dark ages lcons
was faster than lappend.  Hence, switch to lappend where this can be done
without causing semantic changes.

In ExecInitExprRec(), this results in aggregates and window functions that
are in the same plan node being executed in a different order than before.
Generally, the executions of such functions ought to be independent of
each other, so this shouldn't result in visibly different query results.
But if you push it, as one regression test case does, you can show that
the order is different.  The new order seems saner; it's closer to
the order of the functions in the query text.  And we never documented
or promised anything about this, anyway.

Also, in gistfinishsplit(), don't bother building a reverse-order list;
it's easy now to iterate backwards through the original list.

It'd be possible to go further towards removing uses of lcons and
list_delete_first, but it'd require more extensive logic changes,
and I'm not convinced it's worth it.  Most of the remaining uses
deal with queues that probably never get long enough to be worth
sweating over.  (Actually, I doubt that any of the changes in this
patch will have measurable performance effects either.  But better
to have good examples than bad ones in the code base.)

Patch by me, thanks to David Rowley and Daniel Gustafsson for review.

Discussion: https://postgr.es/m/21272.1563318411@sss.pgh.pa.us
2019-07-17 11:15:34 -04:00
Tom Lane
569ed7f483 Redesign the API for list sorting (list_qsort becomes list_sort).
In the wake of commit 1cff1b95a, the obvious way to sort a List
is to apply qsort() directly to the array of ListCells.  list_qsort
was building an intermediate array of pointers-to-ListCells, which
we no longer need, but getting rid of it forces an API change:
the comparator functions need to do one less level of indirection.

Since we're having to touch the callers anyway, let's do two additional
changes: sort the given list in-place rather than making a copy (as
none of the existing callers have any use for the copying behavior),
and rename list_qsort to list_sort.  It was argued that the old name
exposes more about the implementation than it should, which I find
pretty questionable, but a better reason to rename it is to be sure
we get the attention of any external callers about the need to fix
their comparator functions.

While we're at it, change four existing callers of qsort() to use
list_sort instead; previously, they all had local reinventions
of list_qsort, ie build-an-array-from-a-List-and-qsort-it.
(There are some other places where changing to list_sort perhaps
would be worthwhile, but they're less obviously wins.)

Discussion: https://postgr.es/m/29361.1563220190@sss.pgh.pa.us
2019-07-16 11:51:44 -04:00