1
0
mirror of https://github.com/postgres/postgres.git synced 2025-08-22 21:53:06 +03:00
Commit Graph

788 Commits

Author SHA1 Message Date
David Rowley
f58b230ed0 Cache if PathTarget and RestrictInfos contain volatile functions
Here we aim to reduce duplicate work done by contain_volatile_functions()
by caching whether PathTargets and RestrictInfos contain any volatile
functions the first time contain_volatile_functions() is called for them.
Any future calls for these nodes just use the cached value rather than
going to the trouble of recursively checking the sub-node all over again.
Thanks to Tom Lane for the idea.

Any locations in the code which make changes to a PathTarget or
RestrictInfo which could change the outcome of the volatility check must
change the cached value back to VOLATILITY_UNKNOWN again.
contain_volatile_functions() is the only code in charge of setting the
cache value to either VOLATILITY_VOLATILE or VOLATILITY_NOVOLATILE.

Some existing code does benefit from this additional caching, however,
this change is mainly aimed at an upcoming patch that must check for
volatility during the join search.  Repeated volatility checks in that
case can become very expensive when the join search contains more than a
few relations.

Author: David Rowley
Discussion: https://postgr.es/m/3795226.1614059027@sss.pgh.pa.us
2021-03-29 14:55:26 +13:00
Tomas Vondra
a4d75c86bf Extended statistics on expressions
Allow defining extended statistics on expressions, not just just on
simple column references.  With this commit, expressions are supported
by all existing extended statistics kinds, improving the same types of
estimates. A simple example may look like this:

  CREATE TABLE t (a int);
  CREATE STATISTICS s ON mod(a,10), mod(a,20) FROM t;
  ANALYZE t;

The collected statistics are useful e.g. to estimate queries with those
expressions in WHERE or GROUP BY clauses:

  SELECT * FROM t WHERE mod(a,10) = 0 AND mod(a,20) = 0;

  SELECT 1 FROM t GROUP BY mod(a,10), mod(a,20);

This introduces new internal statistics kind 'e' (expressions) which is
built automatically when the statistics object definition includes any
expressions. This represents single-expression statistics, as if there
was an expression index (but without the index maintenance overhead).
The statistics is stored in pg_statistics_ext_data as an array of
composite types, which is possible thanks to 79f6a942bd.

CREATE STATISTICS allows building statistics on a single expression, in
which case in which case it's not possible to specify statistics kinds.

A new system view pg_stats_ext_exprs can be used to display expression
statistics, similarly to pg_stats and pg_stats_ext views.

ALTER TABLE ... ALTER COLUMN ... TYPE now treats indexes the same way it
treats indexes, i.e. it drops and recreates the statistics. This means
all statistics are reset, and we no longer try to preserve at least the
functional dependencies. This should not be a major issue in practice,
as the functional dependencies actually rely on per-column statistics,
which were always reset anyway.

Author: Tomas Vondra
Reviewed-by: Justin Pryzby, Dean Rasheed, Zhihong Yu
Discussion: https://postgr.es/m/ad7891d2-e90c-b446-9fe2-7419143847d7%40enterprisedb.com
2021-03-27 00:01:11 +01:00
Alvaro Herrera
71f4c8c6f7 ALTER TABLE ... DETACH PARTITION ... CONCURRENTLY
Allow a partition be detached from its partitioned table without
blocking concurrent queries, by running in two transactions and only
requiring ShareUpdateExclusive in the partitioned table.

Because it runs in two transactions, it cannot be used in a transaction
block.  This is the main reason to use dedicated syntax: so that users
can choose to use the original mode if they need it.  But also, it
doesn't work when a default partition exists (because an exclusive lock
would still need to be obtained on it, in order to change its partition
constraint.)

In case the second transaction is cancelled or a crash occurs, there's
ALTER TABLE .. DETACH PARTITION .. FINALIZE, which executes the final
steps.

The main trick to make this work is the addition of column
pg_inherits.inhdetachpending, initially false; can only be set true in
the first part of this command.  Once that is committed, concurrent
transactions that use a PartitionDirectory will include or ignore
partitions so marked: in optimizer they are ignored if the row is marked
committed for the snapshot; in executor they are always included.  As a
result, and because of the way PartitionDirectory caches partition
descriptors, queries that were planned before the detach will see the
rows in the detached partition and queries that are planned after the
detach, won't.

A CHECK constraint is created that duplicates the partition constraint.
This is probably not strictly necessary, and some users will prefer to
remove it afterwards, but if the partition is re-attached to a
partitioned table, the constraint needn't be rechecked.

Author: Álvaro Herrera <alvherre@alvh.no-ip.org>
Reviewed-by: Amit Langote <amitlangote09@gmail.com>
Reviewed-by: Justin Pryzby <pryzby@telsasoft.com>
Discussion: https://postgr.es/m/20200803234854.GA24158@alvherre.pgsql
2021-03-25 18:00:28 -03:00
Amit Kapila
26acb54a13 Revert "Enable parallel SELECT for "INSERT INTO ... SELECT ..."."
To allow inserts in parallel-mode this feature has to ensure that all the
constraints, triggers, etc. are parallel-safe for the partition hierarchy
which is costly and we need to find a better way to do that. Additionally,
we could have used existing cached information in some cases like indexes,
domains, etc. to determine the parallel-safety.

List of commits reverted, in reverse chronological order:

ed62d3737c Doc: Update description for parallel insert reloption.
c8f78b6161 Add a new GUC and a reloption to enable inserts in parallel-mode.
c5be48f092 Improve FK trigger parallel-safety check added by 05c8482f7f.
e2cda3c20a Fix use of relcache TriggerDesc field introduced by commit 05c8482f7f.
e4e87a32cc Fix valgrind issue in commit 05c8482f7f.
05c8482f7f Enable parallel SELECT for "INSERT INTO ... SELECT ...".

Discussion: https://postgr.es/m/E1lMiB9-0001c3-SY@gemulon.postgresql.org
2021-03-24 11:29:15 +05:30
Robert Haas
bbe0a81db6 Allow configurable LZ4 TOAST compression.
There is now a per-column COMPRESSION option which can be set to pglz
(the default, and the only option in up until now) or lz4. Or, if you
like, you can set the new default_toast_compression GUC to lz4, and
then that will be the default for new table columns for which no value
is specified. We don't have lz4 support in the PostgreSQL code, so
to use lz4 compression, PostgreSQL must be built --with-lz4.

In general, TOAST compression means compression of individual column
values, not the whole tuple, and those values can either be compressed
inline within the tuple or compressed and then stored externally in
the TOAST table, so those properties also apply to this feature.

Prior to this commit, a TOAST pointer has two unused bits as part of
the va_extsize field, and a compessed datum has two unused bits as
part of the va_rawsize field. These bits are unused because the length
of a varlena is limited to 1GB; we now use them to indicate the
compression type that was used. This means we only have bit space for
2 more built-in compresison types, but we could work around that
problem, if necessary, by introducing a new vartag_external value for
any further types we end up wanting to add. Hopefully, it won't be
too important to offer a wide selection of algorithms here, since
each one we add not only takes more coding but also adds a build
dependency for every packager. Nevertheless, it seems worth doing
at least this much, because LZ4 gets better compression than PGLZ
with less CPU usage.

It's possible for LZ4-compressed datums to leak into composite type
values stored on disk, just as it is for PGLZ. It's also possible for
LZ4-compressed attributes to be copied into a different table via SQL
commands such as CREATE TABLE AS or INSERT .. SELECT.  It would be
expensive to force such values to be decompressed, so PostgreSQL has
never done so. For the same reasons, we also don't force recompression
of already-compressed values even if the target table prefers a
different compression method than was used for the source data.  These
architectural decisions are perhaps arguable but revisiting them is
well beyond the scope of what seemed possible to do as part of this
project.  However, it's relatively cheap to recompress as part of
VACUUM FULL or CLUSTER, so this commit adjusts those commands to do
so, if the configured compression method of the table happens not to
match what was used for some column value stored therein.

Dilip Kumar. The original patches on which this work was based were
written by Ildus Kurbangaliev, and those were patches were based on
even earlier work by Nikita Glukhov, but the design has since changed
very substantially, since allow a potentially large number of
compression methods that could be added and dropped on a running
system proved too problematic given some of the architectural issues
mentioned above; the choice of which specific compression method to
add first is now different; and a lot of the code has been heavily
refactored.  More recently, Justin Przyby helped quite a bit with
testing and reviewing and this version also includes some code
contributions from him. Other design input and review from Tomas
Vondra, Álvaro Herrera, Andres Freund, Oleg Bartunov, Alexander
Korotkov, and me.

Discussion: http://postgr.es/m/20170907194236.4cefce96%40wp.localdomain
Discussion: http://postgr.es/m/CAFiTN-uUpX3ck%3DK0mLEk-G_kUQY%3DSNOTeqdaNRR9FMdQrHKebw%40mail.gmail.com
2021-03-19 15:10:38 -04:00
Tomas Vondra
be45be9c33 Implement GROUP BY DISTINCT
With grouping sets, it's possible that some of the grouping sets are
duplicate.  This is especially common with CUBE and ROLLUP clauses. For
example GROUP BY CUBE (a,b), CUBE (b,c) is equivalent to

  GROUP BY GROUPING SETS (
    (a, b, c),
    (a, b, c),
    (a, b, c),
    (a, b),
    (a, b),
    (a, b),
    (a),
    (a),
    (a),
    (c, a),
    (c, a),
    (c, a),
    (c),
    (b, c),
    (b),
    ()
  )

Some of the grouping sets are calculated multiple times, which is mostly
unnecessary.  This commit implements a new GROUP BY DISTINCT feature, as
defined in the SQL standard, which eliminates the duplicate sets.

Author: Vik Fearing
Reviewed-by: Erik Rijkers, Georgios Kokolatos, Tomas Vondra
Discussion: https://postgr.es/m/bf3805a8-d7d1-ae61-fece-761b7ff41ecc@postgresfriends.org
2021-03-18 18:22:18 +01:00
Amit Kapila
05c8482f7f Enable parallel SELECT for "INSERT INTO ... SELECT ...".
Parallel SELECT can't be utilized for INSERT in the following cases:
- INSERT statement uses the ON CONFLICT DO UPDATE clause
- Target table has a parallel-unsafe: trigger, index expression or
  predicate, column default expression or check constraint
- Target table has a parallel-unsafe domain constraint on any column
- Target table is a partitioned table with a parallel-unsafe partition key
  expression or support function

The planner is updated to perform additional parallel-safety checks for
the cases listed above, for determining whether it is safe to run INSERT
in parallel-mode with an underlying parallel SELECT. The planner will
consider using parallel SELECT for "INSERT INTO ... SELECT ...", provided
nothing unsafe is found from the additional parallel-safety checks, or
from the existing parallel-safety checks for SELECT.

While checking parallel-safety, we need to check it for all the partitions
on the table which can be costly especially when we decide not to use a
parallel plan. So, in a separate patch, we will introduce a GUC and or a
reloption to enable/disable parallelism for Insert statements.

Prior to entering parallel-mode for the execution of INSERT with parallel
SELECT, a TransactionId is acquired and assigned to the current
transaction state. This is necessary to prevent the INSERT from attempting
to assign the TransactionId whilst in parallel-mode, which is not allowed.
This approach has a disadvantage in that if the underlying SELECT does not
return any rows, then the TransactionId is not used, however that
shouldn't happen in practice in many cases.

Author: Greg Nancarrow, Amit Langote, Amit Kapila
Reviewed-by: Amit Langote, Hou Zhijie, Takayuki Tsunakawa, Antonin Houska, Bharath Rupireddy, Dilip Kumar, Vignesh C, Zhihong Yu, Amit Kapila
Tested-by: Tang, Haiying
Discussion: https://postgr.es/m/CAJcOf-cXnB5cnMKqWEp2E2z7Mvcd04iLVmV=qpFJrR3AcrTS3g@mail.gmail.com
Discussion: https://postgr.es/m/CAJcOf-fAdj=nDKMsRhQzndm-O13NY4dL6xGcEvdX5Xvbbi0V7g@mail.gmail.com
2021-03-10 07:38:58 +05:30
David Rowley
bb437f995d Add TID Range Scans to support efficient scanning ranges of TIDs
This adds a new executor node named TID Range Scan.  The query planner
will generate paths for TID Range scans when quals are discovered on base
relations which search for ranges on the table's ctid column.  These
ranges may be open at either end. For example, WHERE ctid >= '(10,0)';
will return all tuples on page 10 and over.

To support this, two new optional callback functions have been added to
table AM.  scan_set_tidrange is used to set the scan range to just the
given range of TIDs.  scan_getnextslot_tidrange fetches the next tuple
in the given range.

For AMs were scanning ranges of TIDs would not make sense, these functions
can be set to NULL in the TableAmRoutine.  The query planner won't
generate TID Range Scan Paths in that case.

Author: Edmund Horner, David Rowley
Reviewed-by: David Rowley, Tomas Vondra, Tom Lane, Andres Freund, Zhihong Yu
Discussion: https://postgr.es/m/CAMyN-kB-nFTkF=VA_JPwFNo08S0d-Yk0F741S2B7LDmYAi8eyA@mail.gmail.com
2021-02-27 22:59:36 +13:00
Peter Eisentraut
3696a600e2 SEARCH and CYCLE clauses
This adds the SQL standard feature that adds the SEARCH and CYCLE
clauses to recursive queries to be able to do produce breadth- or
depth-first search orders and detect cycles.  These clauses can be
rewritten into queries using existing syntax, and that is what this
patch does in the rewriter.

Reviewed-by: Vik Fearing <vik@postgresfriends.org>
Reviewed-by: Pavel Stehule <pavel.stehule@gmail.com>
Discussion: https://www.postgresql.org/message-id/flat/db80ceee-6f97-9b4a-8ee8-3ba0c58e5be2@2ndquadrant.com
2021-02-01 14:32:51 +01:00
Peter Eisentraut
6aaaa76bb4 Allow GRANTED BY clause in normal GRANT and REVOKE statements
The SQL standard allows a GRANTED BY clause on GRANT and
REVOKE (privilege) statements that can specify CURRENT_USER or
CURRENT_ROLE.  In PostgreSQL, both of these are the default behavior.
Since we already have all the parsing support for this for the
GRANT (role) statement, we might as well add basic support for this
for the privilege variant as well.  This allows us to check off SQL
feature T332.  In the future, perhaps more interesting things could be
done with this, too.

Reviewed-by: Simon Riggs <simon@2ndquadrant.com>
Discussion: https://www.postgresql.org/message-id/flat/f2feac44-b4c5-f38f-3699-2851d6a76dc9@2ndquadrant.com
2021-01-30 09:45:11 +01:00
Tom Lane
c9d5298485 Re-implement pl/pgsql's expression and assignment parsing.
Invent new RawParseModes that allow the core grammar to handle
pl/pgsql expressions and assignments directly, and thereby get rid
of a lot of hackery in pl/pgsql's parser.  This moves a good deal
of knowledge about pl/pgsql into the core code: notably, we have to
invent a CoercionContext that matches pl/pgsql's (rather dubious)
historical behavior for assignment coercions.  That's getting away
from the original idea of pl/pgsql as an arm's-length extension of
the core, but really we crossed that bridge a long time ago.

The main advantage of doing this is that we can now use the core
parser to generate FieldStore and/or SubscriptingRef nodes to handle
assignments to pl/pgsql variables that are records or arrays.  That
fixes a number of cases that had never been implemented in pl/pgsql
assignment, such as nested records and array slicing, and it allows
pl/pgsql assignment to support the datatype-specific subscripting
behaviors introduced in commit c7aba7c14.

There are cosmetic benefits too: when a syntax error occurs in a
pl/pgsql expression, the error report no longer includes the confusing
"SELECT" keyword that used to get prefixed to the expression text.
Also, there seem to be some small speed gains.

Discussion: https://postgr.es/m/4165684.1607707277@sss.pgh.pa.us
2021-01-04 11:52:00 -05:00
Bruce Momjian
ca3b37487b Update copyright for 2021
Backpatch-through: 9.5
2021-01-02 13:06:25 -05:00
Tom Lane
c7aba7c14e Support subscripting of arbitrary types, not only arrays.
This patch generalizes the subscripting infrastructure so that any
data type can be subscripted, if it provides a handler function to
define what that means.  Traditional variable-length (varlena) arrays
all use array_subscript_handler(), while the existing fixed-length
types that support subscripting use raw_array_subscript_handler().
It's expected that other types that want to use subscripting notation
will define their own handlers.  (This patch provides no such new
features, though; it only lays the foundation for them.)

To do this, move the parser's semantic processing of subscripts
(including coercion to whatever data type is required) into a
method callback supplied by the handler.  On the execution side,
replace the ExecEvalSubscriptingRef* layer of functions with direct
calls to callback-supplied execution routines.  (Thus, essentially
no new run-time overhead should be caused by this patch.  Indeed,
there is room to remove some overhead by supplying specialized
execution routines.  This patch does a little bit in that line,
but more could be done.)

Additional work is required here and there to remove formerly
hard-wired assumptions about the result type, collation, etc
of a SubscriptingRef expression node; and to remove assumptions
that the subscript values must be integers.

One useful side-effect of this is that we now have a less squishy
mechanism for identifying whether a data type is a "true" array:
instead of wiring in weird rules about typlen, we can look to see
if pg_type.typsubscript == F_ARRAY_SUBSCRIPT_HANDLER.  For this
to be bulletproof, we have to forbid user-defined types from using
that handler directly; but there seems no good reason for them to
do so.

This patch also removes assumptions that the number of subscripts
is limited to MAXDIM (6), or indeed has any hard-wired limit.
That limit still applies to types handled by array_subscript_handler
or raw_array_subscript_handler, but to discourage other dependencies
on this constant, I've moved it from c.h to utils/array.h.

Dmitry Dolgov, reviewed at various times by Tom Lane, Arthur Zakirov,
Peter Eisentraut, Pavel Stehule

Discussion: https://postgr.es/m/CA+q6zcVDuGBv=M0FqBYX8DPebS3F_0KQ6OVFobGJPM507_SZ_w@mail.gmail.com
Discussion: https://postgr.es/m/CA+q6zcVovR+XY4mfk-7oNk-rF91gH0PebnNfuUjuuDsyHjOcVA@mail.gmail.com
2020-12-09 12:40:37 -05:00
Michael Paquier
b5913f6120 Refactor CLUSTER and REINDEX grammar to use DefElem for option lists
This changes CLUSTER and REINDEX so as a parenthesized grammar becomes
possible for options, while unifying the grammar parsing rules for
option lists with the existing ones.

This is a follow-up of the work done in 873ea9e for VACUUM, ANALYZE and
EXPLAIN.  This benefits REINDEX for a potential backend-side filtering
for collatable-sensitive indexes and TABLESPACE, while CLUSTER would
benefit from the latter.

Author: Alexey Kondratov, Justin Pryzby
Discussion: https://postgr.es/m/8a8f5f73-00d3-55f8-7583-1375ca8f6a91@postgrespro.ru
2020-12-03 10:13:21 +09:00
Tom Lane
f7f83a55bf Ensure that expandTableLikeClause() re-examines the same table.
As it stood, expandTableLikeClause() re-did the same relation_openrv
call that transformTableLikeClause() had done.  However there are
scenarios where this would not find the same table as expected.
We hold lock on the LIKE source table, so it can't be renamed or
dropped, but another table could appear before it in the search path.
This explains the odd behavior reported in bug #16758 when cloning a
table as a temp table of the same name.  This case worked as expected
before commit 502898192 introduced the need to open the source table
twice, so we should fix it.

To make really sure we get the same table, let's re-open it by OID not
name.  That requires adding an OID field to struct TableLikeClause,
which is a little nervous-making from an ABI standpoint, but as long
as it's at the end I don't think there's any serious risk.

Per bug #16758 from Marc Boeren.  Like the previous patch,
back-patch to all supported branches.

Discussion: https://postgr.es/m/16758-840e84a6cfab276d@postgresql.org
2020-12-01 14:02:27 -05:00
Heikki Linnakangas
0a2bc5d61e Move per-agg and per-trans duplicate finding to the planner.
This has the advantage that the cost estimates for aggregates can count
the number of calls to transition and final functions correctly.

Bump catalog version, because views can contain Aggrefs.

Reviewed-by: Andres Freund
Discussion: https://www.postgresql.org/message-id/b2e3536b-1dbc-8303-c97e-89cb0b4a9a48%40iki.fi
2020-11-24 10:45:00 +02:00
Tom Lane
92bf7e2d02 Provide the OR REPLACE option for CREATE TRIGGER.
This is mostly straightforward.  However, we disallow replacing
constraint triggers or changing the is-constraint property; perhaps
that can be added later, but the complexity versus benefit tradeoff
doesn't look very good.

Also, no special thought is taken here for whether replacing an
existing trigger should result in changes to queued-but-not-fired
trigger actions.  We just document that if you're surprised by the
results, too bad, don't do that.  (Note that any such pending trigger
activity would have to be within the current session.)

Takamichi Osumi, reviewed at various times by Surafel Temesgen,
Peter Smith, and myself

Discussion: https://postgr.es/m/0DDF369B45A1B44B8A687ED43F06557C010BC362@G01JPEXMBYT03
2020-11-14 17:05:34 -05:00
Tom Lane
40c24bfef9 Improve our ability to regurgitate SQL-syntax function calls.
The SQL spec calls out nonstandard syntax for certain function calls,
for example substring() with numeric position info is supposed to be
spelled "SUBSTRING(string FROM start FOR count)".  We accept many
of these things, but up to now would not print them in the same format,
instead simplifying down to "substring"(string, start, count).
That's long annoyed me because it creates an interoperability
problem: we're gratuitously injecting Postgres-specific syntax into
what might otherwise be a perfectly spec-compliant view definition.
However, the real reason for addressing it right now is to support
a planned change in the semantics of EXTRACT() a/k/a date_part().
When we switch that to returning numeric, we'll have the parser
translate EXTRACT() to some new function name (might as well be
"extract" if you ask me) and then teach ruleutils.c to reverse-list
that per SQL spec.  In this way existing calls to date_part() will
continue to have the old semantics.

To implement this, invent a new CoercionForm value COERCE_SQL_SYNTAX,
and make the parser insert that rather than COERCE_EXPLICIT_CALL when
the input has SQL-spec decoration.  (But if the input has the form of
a plain function call, continue to mark it COERCE_EXPLICIT_CALL, even
if it's calling one of these functions.)  Then ruleutils.c recognizes
COERCE_SQL_SYNTAX as a cue to emit SQL call syntax.  It can know
which decoration to emit using hard-wired knowledge about the
functions that could be called this way.  (While this solution isn't
extensible without manual additions, neither is the grammar, so this
doesn't seem unmaintainable.)  Notice that this solution will
reverse-list a function call with SQL decoration only if it was
entered that way; so dump-and-reload will not by itself produce any
changes in the appearance of views.

This requires adding a CoercionForm field to struct FuncCall.
(I couldn't resist the temptation to rearrange that struct's
field order a tad while I was at it.)  FuncCall doesn't appear
in stored rules, so that change isn't a reason for a catversion
bump, but I did one anyway because the new enum value for
CoercionForm fields could confuse old backend code.

Possible future work:

* Perhaps CoercionForm should now be renamed to DisplayForm,
or something like that, to reflect its more general meaning.
This'd require touching a couple hundred places, so it's not
clear it's worth the code churn.

* The SQLValueFunction node type, which was invented partly for
the same goal of improving SQL-compatibility of view output,
could perhaps be replaced with regular function calls marked
with COERCE_SQL_SYNTAX.  It's unclear if this would be a net
code savings, however.

Discussion: https://postgr.es/m/42b73d2d-da12-ba9f-570a-420e0cce19d9@phystech.edu
2020-11-04 12:34:50 -05:00
Thomas Munro
257836a755 Track collation versions for indexes.
Record the current version of dependent collations in pg_depend when
creating or rebuilding an index.  When accessing the index later, warn
that the index may be corrupted if the current version doesn't match.

Thanks to Douglas Doole, Peter Eisentraut, Christoph Berg, Laurenz Albe,
Michael Paquier, Robert Haas, Tom Lane and others for very helpful
discussion.

Author: Thomas Munro <thomas.munro@gmail.com>
Author: Julien Rouhaud <rjuju123@gmail.com>
Reviewed-by: Peter Eisentraut <peter.eisentraut@2ndquadrant.com> (earlier versions)
Discussion: https://postgr.es/m/CAEepm%3D0uEQCpfq_%2BLYFBdArCe4Ot98t1aR4eYiYTe%3DyavQygiQ%40mail.gmail.com
2020-11-03 01:19:50 +13:00
Thomas Munro
7d1297df08 Remove pg_collation.collversion.
This model couldn't be extended to cover the default collation, and
didn't have any information about the affected database objects when the
version changed.  Remove, in preparation for a follow-up commit that
will add a new mechanism.

Author: Thomas Munro <thomas.munro@gmail.com>
Reviewed-by: Julien Rouhaud <rjuju123@gmail.com>
Reviewed-by: Peter Eisentraut <peter.eisentraut@2ndquadrant.com>
Discussion: https://postgr.es/m/CAEepm%3D0uEQCpfq_%2BLYFBdArCe4Ot98t1aR4eYiYTe%3DyavQygiQ%40mail.gmail.com
2020-11-03 00:44:59 +13:00
Heikki Linnakangas
178f2d560d Include result relation info in direct modify ForeignScan nodes.
FDWs that can perform an UPDATE/DELETE remotely using the "direct modify"
set of APIs need to access the ResultRelInfo of the target table. That's
currently available in EState.es_result_relation_info, but the next
commit will remove that field.

This commit adds a new resultRelation field in ForeignScan, to store the
target relation's RT index, and the corresponding ResultRelInfo in
ForeignScanState. The FDW's PlanDirectModify callback is expected to set
'resultRelation' along with 'operation'. The core code doesn't need them
for anything, they are for the convenience of FDW's Begin- and
IterateDirectModify callbacks.

Authors: Amit Langote, Etsuro Fujita
Discussion: https://www.postgresql.org/message-id/CA%2BHiwqGEmiib8FLiHMhKB%2BCH5dRgHSLc5N5wnvc4kym%2BZYpQEQ%40mail.gmail.com
2020-10-14 10:58:38 +03:00
Heikki Linnakangas
1375422c78 Create ResultRelInfos later in InitPlan, index them by RT index.
Instead of allocating all the ResultRelInfos upfront in one big array,
allocate them in ExecInitModifyTable(). es_result_relations is now an
array of ResultRelInfo pointers, rather than an array of structs, and it
is indexed by the RT index.

This simplifies things: we get rid of the separate concept of a "result
rel index", and don't need to set it in setrefs.c anymore. This also
allows follow-up optimizations (not included in this commit yet) to skip
initializing ResultRelInfos for target relations that were not needed at
runtime, and removal of the es_result_relation_info pointer.

The EState arrays of regular result rels and root result rels are merged
into one array. Similarly, the resultRelations and rootResultRelations
lists in PlannedStmt are merged into one. It's not actually clear to me
why they were kept separate in the first place, but now that the
es_result_relations array is indexed by RT index, it certainly seems
pointless.

The PlannedStmt->resultRelations list is now only needed for
ExecRelationIsTargetRelation(). One visible effect of this change is that
ExecRelationIsTargetRelation() will now return 'true' also for the
partition root, if a partitioned table is updated. That seems like a good
thing, although the function isn't used in core code, and I don't see any
reason for an FDW to call it on a partition root.

Author: Amit Langote
Discussion: https://www.postgresql.org/message-id/CA%2BHiwqGEmiib8FLiHMhKB%2BCH5dRgHSLc5N5wnvc4kym%2BZYpQEQ%40mail.gmail.com
2020-10-13 12:57:02 +03:00
Michael Paquier
844c05abc3 Remove variable "concurrent" from ReindexStmt
This node already handles multiple options using a bitmask, so having a
separate boolean flag is not necessary.  This simplifies the code a bit
with less arguments to give to the reindex routines, by replacing the
boolean with an equivalent bitmask value.

Reviewed-by: Julien Rouhaud
Discussion: https://postgr.es/m/20200902110326.GA14963@paquier.xyz
2020-09-04 10:43:32 +09:00
Michael Paquier
cc35d8933a Rename field "relkind" to "objtype" for CTAS and ALTER TABLE nodes
"relkind" normally refers to the char field from pg_class.  However, in
the parse nodes AlterTableStmt and CreateTableAsStmt, "relkind" was used
for a field of type enum ObjectType, that could refer to other object
types than those possible for a relkind.  Such fields being usually
named "objtype", switch the name in both structures to make things more
consistent.  Note that this led to some confusion in functions that
also operate on a RangeTableEntry object, which also has a field named
"relkind".

This naming goes back to commit 09d4e96, where only OBJECT_TABLE and
OBJECT_INDEX were used.  This got extended later to use as well
OBJECT_TYPE with e440e12, not really a relation kind.

Author: Mark Dilger
Reviewed-by: Daniel Gustafsson, Álvaro Herrera, Michael Paquier
Discussion: https://postgr.es/m/609181AE-E399-47C7-9221-856E0F96BF93@enterprisedb.com
2020-07-11 13:32:28 +09:00
Noah Misch
587322de36 Reconcile nodes/*funcs.c.
The stmt_len changes do not affect behavior.  LimitPath has no other
support functions, so that part changes only debugging output.
2020-05-25 16:23:48 -07:00
Alvaro Herrera
5fc703946b Add ALTER .. NO DEPENDS ON
Commit f2fcad27d5 (9.6 era) added the ability to mark objects as
dependent an extension, but forgot to add a way for such dependencies to
be removed.  This commit fixes that oversight.

Strictly speaking this should be backpatched to 9.6, but due to lack of
demand we're not doing so at this time.

Discussion: https://postgr.es/m/20200217225333.GA30974@alvherre.pgsql
Reviewed-by: ahsan hadi <ahsan.hadi@gmail.com>
Reviewed-by: Ibrar Ahmed <ibrar.ahmad@gmail.com>
Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us>
2020-04-20 13:42:12 -04:00
Alexander Korotkov
1aac32df89 Revert 0f5ca02f53
0f5ca02f53 introduces 3 new keywords.  It appears to be too much for relatively
small feature.  Given now we past feature freeze, it's already late for
discussion of the new syntax.  So, revert.

Discussion: https://postgr.es/m/28209.1586294824%40sss.pgh.pa.us
2020-04-08 11:37:27 +03:00
Alexander Korotkov
0f5ca02f53 Implement waiting for given lsn at transaction start
This commit adds following optional clause to BEGIN and START TRANSACTION
commands.

  WAIT FOR LSN lsn [ TIMEOUT timeout ]

New clause pospones transaction start till given lsn is applied on standby.
This clause allows user be sure, that changes previously made on primary would
be visible on standby.

New shared memory struct is used to track awaited lsn per backend.  Recovery
process wakes up backend once required lsn is applied.

Author: Ivan Kartyshov, Anna Akenteva
Reviewed-by: Craig Ringer, Thomas Munro, Robert Haas, Kyotaro Horiguchi
Reviewed-by: Masahiko Sawada, Ants Aasma, Dmitry Ivanov, Simon Riggs
Reviewed-by: Amit Kapila, Alexander Korotkov
Discussion: https://postgr.es/m/0240c26c-9f84-30ea-fca9-93ab2df5f305%40postgrespro.ru
2020-04-07 23:51:10 +03:00
Alvaro Herrera
357889eb17 Support FETCH FIRST WITH TIES
WITH TIES is an option to the FETCH FIRST N ROWS clause (the SQL
standard's spelling of LIMIT), where you additionally get rows that
compare equal to the last of those N rows by the columns in the
mandatory ORDER BY clause.

There was a proposal by Andrew Gierth to implement this functionality in
a more powerful way that would yield more features, but the other patch
had not been finished at this time, so we decided to use this one for
now in the spirit of incremental development.

Author: Surafel Temesgen <surafel3000@gmail.com>
Reviewed-by: Álvaro Herrera <alvherre@alvh.no-ip.org>
Reviewed-by: Tomas Vondra <tomas.vondra@2ndquadrant.com>
Discussion: https://postgr.es/m/CALAY4q9ky7rD_A4vf=FVQvCGngm3LOes-ky0J6euMrg=_Se+ag@mail.gmail.com
Discussion: https://postgr.es/m/87o8wvz253.fsf@news-spur.riddles.org.uk
2020-04-07 16:22:13 -04:00
Tomas Vondra
d2d8a229bc Implement Incremental Sort
Incremental Sort is an optimized variant of multikey sort for cases when
the input is already sorted by a prefix of the requested sort keys. For
example when the relation is already sorted by (key1, key2) and we need
to sort it by (key1, key2, key3) we can simply split the input rows into
groups having equal values in (key1, key2), and only sort/compare the
remaining column key3.

This has a number of benefits:

- Reduced memory consumption, because only a single group (determined by
  values in the sorted prefix) needs to be kept in memory. This may also
  eliminate the need to spill to disk.

- Lower startup cost, because Incremental Sort produce results after each
  prefix group, which is beneficial for plans where startup cost matters
  (like for example queries with LIMIT clause).

We consider both Sort and Incremental Sort, and decide based on costing.

The implemented algorithm operates in two different modes:

- Fetching a minimum number of tuples without check of equality on the
  prefix keys, and sorting on all columns when safe.

- Fetching all tuples for a single prefix group and then sorting by
  comparing only the remaining (non-prefix) keys.

We always start in the first mode, and employ a heuristic to switch into
the second mode if we believe it's beneficial - the goal is to minimize
the number of unnecessary comparions while keeping memory consumption
below work_mem.

This is a very old patch series. The idea was originally proposed by
Alexander Korotkov back in 2013, and then revived in 2017. In 2018 the
patch was taken over by James Coleman, who wrote and rewrote most of the
current code.

There were many reviewers/contributors since 2013 - I've done my best to
pick the most active ones, and listed them in this commit message.

Author: James Coleman, Alexander Korotkov
Reviewed-by: Tomas Vondra, Andreas Karlsson, Marti Raudsepp, Peter Geoghegan, Robert Haas, Thomas Munro, Antonin Houska, Andres Freund, Alexander Kuzmenkov
Discussion: https://postgr.es/m/CAPpHfdscOX5an71nHd8WSUH6GNOCf=V7wgDaTXdDd9=goN-gfA@mail.gmail.com
Discussion: https://postgr.es/m/CAPpHfds1waRZ=NOmueYq0sx1ZSCnt+5QJvizT8ndT2=etZEeAQ@mail.gmail.com
2020-04-06 21:35:10 +02:00
Noah Misch
c6b92041d3 Skip WAL for new relfilenodes, under wal_level=minimal.
Until now, only selected bulk operations (e.g. COPY) did this.  If a
given relfilenode received both a WAL-skipping COPY and a WAL-logged
operation (e.g. INSERT), recovery could lose tuples from the COPY.  See
src/backend/access/transam/README section "Skipping WAL for New
RelFileNode" for the new coding rules.  Maintainers of table access
methods should examine that section.

To maintain data durability, just before commit, we choose between an
fsync of the relfilenode and copying its contents to WAL.  A new GUC,
wal_skip_threshold, guides that choice.  If this change slows a workload
that creates small, permanent relfilenodes under wal_level=minimal, try
adjusting wal_skip_threshold.  Users setting a timeout on COMMIT may
need to adjust that timeout, and log_min_duration_statement analysis
will reflect time consumption moving to COMMIT from commands like COPY.

Internally, this requires a reliable determination of whether
RollbackAndReleaseCurrentSubTransaction() would unlink a relation's
current relfilenode.  Introduce rd_firstRelfilenodeSubid.  Amend the
specification of rd_createSubid such that the field is zero when a new
rel has an old rd_node.  Make relcache.c retain entries for certain
dropped relations until end of transaction.

Bump XLOG_PAGE_MAGIC, since this introduces XLOG_GIST_ASSIGN_LSN.
Future servers accept older WAL, so this bump is discretionary.

Kyotaro Horiguchi, reviewed (in earlier, similar versions) by Robert
Haas.  Heikki Linnakangas and Michael Paquier implemented earlier
designs that materially clarified the problem.  Reviewed, in earlier
designs, by Andrew Dunstan, Andres Freund, Alvaro Herrera, Tom Lane,
Fujii Masao, and Simon Riggs.  Reported by Martijn van Oosterhout.

Discussion: https://postgr.es/m/20150702220524.GA9392@svana.org
2020-04-04 12:25:34 -07:00
Alexander Korotkov
911e702077 Implement operator class parameters
PostgreSQL provides set of template index access methods, where opclasses have
much freedom in the semantics of indexing.  These index AMs are GiST, GIN,
SP-GiST and BRIN.  There opclasses define representation of keys, operations on
them and supported search strategies.  So, it's natural that opclasses may be
faced some tradeoffs, which require user-side decision.  This commit implements
opclass parameters allowing users to set some values, which tell opclass how to
index the particular dataset.

This commit doesn't introduce new storage in system catalog.  Instead it uses
pg_attribute.attoptions, which is used for table column storage options but
unused for index attributes.

In order to evade changing signature of each opclass support function, we
implement unified way to pass options to opclass support functions.  Options
are set to fn_expr as the constant bytea expression.  It's possible due to the
fact that opclass support functions are executed outside of expressions, so
fn_expr is unused for them.

This commit comes with some examples of opclass options usage.  We parametrize
signature length in GiST.  That applies to multiple opclasses: tsvector_ops,
gist__intbig_ops, gist_ltree_ops, gist__ltree_ops, gist_trgm_ops and
gist_hstore_ops.  Also we parametrize maximum number of integer ranges for
gist__int_ops.  However, the main future usage of this feature is expected
to be json, where users would be able to specify which way to index particular
json parts.

Catversion is bumped.

Discussion: https://postgr.es/m/d22c3a18-31c7-1879-fc11-4c1ce2f5e5af%40postgrespro.ru
Author: Nikita Glukhov, revised by me
Reviwed-by: Nikolay Shaplov, Robert Haas, Tom Lane, Tomas Vondra, Alvaro Herrera
2020-03-30 19:17:23 +03:00
Noah Misch
de9396326e Revert "Skip WAL for new relfilenodes, under wal_level=minimal."
This reverts commit cb2fd7eac2.  Per
numerous buildfarm members, it was incompatible with parallel query, and
a test case assumed LP64.  Back-patch to 9.5 (all supported versions).

Discussion: https://postgr.es/m/20200321224920.GB1763544@rfd.leadboat.com
2020-03-22 09:24:09 -07:00
Noah Misch
cb2fd7eac2 Skip WAL for new relfilenodes, under wal_level=minimal.
Until now, only selected bulk operations (e.g. COPY) did this.  If a
given relfilenode received both a WAL-skipping COPY and a WAL-logged
operation (e.g. INSERT), recovery could lose tuples from the COPY.  See
src/backend/access/transam/README section "Skipping WAL for New
RelFileNode" for the new coding rules.  Maintainers of table access
methods should examine that section.

To maintain data durability, just before commit, we choose between an
fsync of the relfilenode and copying its contents to WAL.  A new GUC,
wal_skip_threshold, guides that choice.  If this change slows a workload
that creates small, permanent relfilenodes under wal_level=minimal, try
adjusting wal_skip_threshold.  Users setting a timeout on COMMIT may
need to adjust that timeout, and log_min_duration_statement analysis
will reflect time consumption moving to COMMIT from commands like COPY.

Internally, this requires a reliable determination of whether
RollbackAndReleaseCurrentSubTransaction() would unlink a relation's
current relfilenode.  Introduce rd_firstRelfilenodeSubid.  Amend the
specification of rd_createSubid such that the field is zero when a new
rel has an old rd_node.  Make relcache.c retain entries for certain
dropped relations until end of transaction.

Back-patch to 9.5 (all supported versions).  This introduces a new WAL
record type, XLOG_GIST_ASSIGN_LSN, without bumping XLOG_PAGE_MAGIC.  As
always, update standby systems before master systems.  This changes
sizeof(RelationData) and sizeof(IndexStmt), breaking binary
compatibility for affected extensions.  (The most recent commit to
affect the same class of extensions was
089e4d405d0f3b94c74a2c6a54357a84a681754b.)

Kyotaro Horiguchi, reviewed (in earlier, similar versions) by Robert
Haas.  Heikki Linnakangas and Michael Paquier implemented earlier
designs that materially clarified the problem.  Reviewed, in earlier
designs, by Andrew Dunstan, Andres Freund, Alvaro Herrera, Tom Lane,
Fujii Masao, and Simon Riggs.  Reported by Martijn van Oosterhout.

Discussion: https://postgr.es/m/20150702220524.GA9392@svana.org
2020-03-21 09:38:26 -07:00
Tom Lane
fe30e7ebfa Allow ALTER TYPE to change some properties of a base type.
Specifically, this patch allows ALTER TYPE to:
* Change the default TOAST strategy for a toastable base type;
* Promote a non-toastable type to toastable;
* Add/remove binary I/O functions for a type;
* Add/remove typmod I/O functions for a type;
* Add/remove a custom ANALYZE statistics functions for a type.

The first of these can be done by the type's owner; all the others
require superuser privilege since misuse could cause problems.

The main motivation for this patch is to allow extensions to
upgrade the feature sets of their data types, so the set of
alterable properties is biased towards that use-case.  However
it's also true that changing some other properties would be
a lot harder, as they get baked into physical storage and/or
stored expressions that depend on the type.

Along the way, refactor GenerateTypeDependencies() to make it easier
to call, refactor DefineType's volatility checks so they can be shared
by AlterType, and teach typcache.c that it might have to reload data
from the type's pg_type row, a scenario it never handled before.
Also rearrange alter_type.sgml a bit for clarity (put the
composite-type operations together).

Tomas Vondra and Tom Lane

Discussion: https://postgr.es/m/20200228004440.b23ein4qvmxnlpht@development
2020-03-06 12:19:29 -05:00
Jeff Davis
32bb4535a0 Fix commit c11cb17d.
I neglected to update copyfuncs/outfuncs/readfuncs.

Discussion: https://postgr.es/m/12491.1582833409%40sss.pgh.pa.us
2020-02-28 09:35:11 -08:00
Tom Lane
9ce77d75c5 Reconsider the representation of join alias Vars.
The core idea of this patch is to make the parser generate join alias
Vars (that is, ones with varno pointing to a JOIN RTE) only when the
alias Var is actually different from any raw join input, that is a type
coercion and/or COALESCE is necessary to generate the join output value.
Otherwise just generate varno/varattno pointing to the relevant join
input column.

In effect, this means that the planner's flatten_join_alias_vars()
transformation is already done in the parser, for all cases except
(a) columns that are merged by JOIN USING and are transformed in the
process, and (b) whole-row join Vars.  In principle that would allow
us to skip doing flatten_join_alias_vars() in many more queries than
we do now, but we don't have quite enough infrastructure to know that
we can do so --- in particular there's no cheap way to know whether
there are any whole-row join Vars.  I'm not sure if it's worth the
trouble to add a Query-level flag for that, and in any case it seems
like fit material for a separate patch.  But even without skipping the
work entirely, this should make flatten_join_alias_vars() faster,
particularly where there are nested joins that it previously had to
flatten recursively.

An essential part of this change is to replace Var nodes'
varnoold/varoattno fields with varnosyn/varattnosyn, which have
considerably more tightly-defined meanings than the old fields: when
they differ from varno/varattno, they identify the Var's position in
an aliased JOIN RTE, and the join alias is what ruleutils.c should
print for the Var.  This is necessary because the varno change
destroyed ruleutils.c's ability to find the JOIN RTE from the Var's
varno.

Another way in which this change broke ruleutils.c is that it's no
longer feasible to determine, from a JOIN RTE's joinaliasvars list,
which join columns correspond to which columns of the join's immediate
input relations.  (If those are sub-joins, the joinaliasvars entries
may point to columns of their base relations, not the sub-joins.)
But that was a horrid mess requiring a lot of fragile assumptions
already, so let's just bite the bullet and add some more JOIN RTE
fields to make it more straightforward to figure that out.  I added
two integer-List fields containing the relevant column numbers from
the left and right input rels, plus a count of how many merged columns
there are.

This patch depends on the ParseNamespaceColumn infrastructure that
I added in commit 5815696bc.  The biggest bit of code change is
restructuring transformFromClauseItem's handling of JOINs so that
the ParseNamespaceColumn data is propagated upward correctly.

Other than that and the ruleutils fixes, everything pretty much
just works, though some processing is now inessential.  I grabbed
two pieces of low-hanging fruit in that line:

1. In find_expr_references, we don't need to recurse into join alias
Vars anymore.  There aren't any except for references to merged USING
columns, which are more properly handled when we scan the join's RTE.
This change actually fixes an edge-case issue: we will now record a
dependency on any type-coercion function present in a USING column's
joinaliasvar, even if that join column has no references in the query
text.  The odds of the missing dependency causing a problem seem quite
small: you'd have to posit somebody dropping an implicit cast between
two data types, without removing the types themselves, and then having
a stored rule containing a whole-row Var for a join whose USING merge
depends on that cast.  So I don't feel a great need to change this in
the back branches.  But in theory this way is more correct.

2. markRTEForSelectPriv and markTargetListOrigin don't need to recurse
into join alias Vars either, because the cases they care about don't
apply to alias Vars for USING columns that are semantically distinct
from the underlying columns.  This removes the only case in which
markVarForSelectPriv could be called with NULL for the RTE, so adjust
the comments to describe that hack as being strictly internal to
markRTEForSelectPriv.

catversion bump required due to changes in stored rules.

Discussion: https://postgr.es/m/7115.1577986646@sss.pgh.pa.us
2020-01-09 11:56:59 -05:00
Bruce Momjian
7559d8ebfa Update copyrights for 2020
Backpatch-through: update all files in master, backpatch legal files through 9.4
2020-01-01 12:21:45 -05:00
Tom Lane
6ef77cf46e Further adjust EXPLAIN's choices of table alias names.
This patch causes EXPLAIN to always assign a separate table alias to the
parent RTE of an append relation (inheritance set); before, such RTEs
were ignored if not actually scanned by the plan.  Since the child RTEs
now always have that same alias to start with (cf. commit 55a1954da),
the net effect is that the parent RTE usually gets the alias used or
implied by the query text, and the children all get that alias with "_N"
appended.  (The exception to "usually" is if there are duplicate aliases
in different subtrees of the original query; then some of those original
RTEs will also have "_N" appended.)

This results in more uniform output for partitioned-table plans than
we had before: the partitioned table itself gets the original alias,
and all child tables have aliases with "_N", rather than the previous
behavior where one of the children would get an alias without "_N".

The reason for giving the parent RTE an alias, even if it isn't scanned
by the plan, is that we now use the parent's alias to qualify Vars that
refer to an appendrel output column and appear above the Append or
MergeAppend that computes the appendrel.  But below the append, Vars
refer to some one of the child relations, and are displayed that way.
This seems clearer than the old behavior where a Var that could carry
values from any child relation was displayed as if it referred to only
one of them.

While at it, change ruleutils.c so that the code paths used by EXPLAIN
deal in Plan trees not PlanState trees.  This effectively reverts a
decision made in commit 1cc29fe7c, which seemed like a good idea at
the time to make ruleutils.c consistent with explain.c.  However,
it's problematic because we'd really like to allow executor startup
pruning to remove all the children of an append node when possible,
leaving no child PlanState to resolve Vars against.  (That's not done
here, but will be in the next patch.)  This requires different handling
of subplans and initplans than before, but is otherwise a pretty
straightforward change.

Discussion: https://postgr.es/m/001001d4f44b$2a2cca50$7e865ef0$@lab.ntt.co.jp
2019-12-11 17:05:18 -05:00
Tom Lane
ce76c0ba53 Add a reverse-translation column number array to struct AppendRelInfo.
This provides for cheaper mapping of child columns back to parent
columns.  The one existing use-case in examine_simple_variable()
would hardly justify this by itself; but an upcoming bug fix will
make use of this array in a mainstream code path, and it seems
likely that we'll find other uses for it as we continue to build
out the partitioning infrastructure.

Discussion: https://postgr.es/m/12424.1575168015@sss.pgh.pa.us
2019-12-02 18:05:29 -05:00
Amit Kapila
1379fd537f Introduce the 'force' option for the Drop Database command.
This new option terminates the other sessions connected to the target
database and then drop it.  To terminate other sessions, the current user
must have desired permissions (same as pg_terminate_backend()).  We don't
allow to terminate the sessions if prepared transactions, active logical
replication slots or subscriptions are present in the target database.

Author: Pavel Stehule with changes by me
Reviewed-by: Dilip Kumar, Vignesh C, Ibrar Ahmed, Anthony Nowocien,
Ryan Lambert and Amit Kapila
Discussion: https://postgr.es/m/CAP_rwwmLJJbn70vLOZFpxGw3XD7nLB_7+NKz46H5EOO2k5H7OQ@mail.gmail.com
2019-11-13 08:25:33 +05:30
Tomas Vondra
d06215d03b Allow setting statistics target for extended statistics
When building statistics, we need to decide how many rows to sample and
how accurate the resulting statistics should be. Until now, it was not
possible to explicitly define statistics target for extended statistics
objects, the value was always computed from the per-attribute targets
with a fallback to the system-wide default statistics target.

That's a bit inconvenient, as it ties together the statistics target set
for per-column and extended statistics. In some cases it may be useful
to require larger sample / higher accuracy for extended statics (or the
other way around), but with this approach that's not possible.

So this commit introduces a new command, allowing to specify statistics
target for individual extended statistics objects, overriding the value
derived from per-attribute targets (and the system default).

  ALTER STATISTICS stat_name SET STATISTICS target_value;

When determining statistics target for an extended statistics object we
first look at this explicitly set value. When this value is -1, we fall
back to the old formula, looking at the per-attribute targets first and
then the system default. This means the behavior is backwards compatible
with older PostgreSQL releases.

Author: Tomas Vondra
Discussion: https://postgr.es/m/20190618213357.vli3i23vpkset2xd@development
Reviewed-by: Kirk Jamison, Dean Rasheed
2019-09-11 00:25:51 +02:00
Andres Freund
2abd7ae9b2 Fix representation of hash keys in Hash/HashJoin nodes.
In 5f32b29c18 I changed the creation of HashState.hashkeys to
actually use HashState as the parent (instead of HashJoinState, which
was incorrect, as they were executed below HashState), to fix the
problem of hashkeys expressions otherwise relying on slot types
appropriate for HashJoinState, rather than HashState as would be
correct. That reliance was only introduced in 12, which is why it
previously worked to use HashJoinState as the parent (although I'd be
unsurprised if there were problematic cases).

Unfortunately that's not a sufficient solution, because before this
commit, the to-be-hashed expressions referenced inner/outer as
appropriate for the HashJoin, not Hash. That didn't have obvious bad
consequences, because the slots containing the tuples were put into
ecxt_innertuple when hashing a tuple for HashState (even though Hash
doesn't have an inner plan).

There are less common cases where this can cause visible problems
however (rather than just confusion when inspecting such executor
trees). E.g. "ERROR: bogus varno: 65000", when explaining queries
containing a HashJoin where the subsidiary Hash node's hash keys
reference a subplan. While normally hashkeys aren't displayed by
EXPLAIN, if one of those expressions references a subplan, that
subplan may be printed as part of the Hash node - which then failed
because an inner plan was referenced, and Hash doesn't have that.

It seems quite possible that there's other broken cases, too.

Fix the problem by properly splitting the expression for the HashJoin
and Hash nodes at plan time, and have them reference the proper
subsidiary node. While other workarounds are possible, fixing this
correctly seems easy enough. It was a pretty ugly hack to have
ExecInitHashJoin put the expression into the already initialized
HashState, in the first place.

I decided to not just split inner/outer hashkeys inside
make_hashjoin(), but also to separate out hashoperators and
hashcollations at plan time. Otherwise we would have ended up having
two very similar loops, one at plan time and the other during executor
startup. The work seems to more appropriately belong to plan time,
anyway.

Reported-By: Nikita Glukhov, Alexander Korotkov
Author: Andres Freund
Reviewed-By: Tom Lane, in an earlier version
Discussion: https://postgr.es/m/CAPpHfdvGVegF_TKKRiBrSmatJL2dR9uwFCuR+teQ_8tEXU8mxg@mail.gmail.com
Backpatch: 12-
2019-08-02 00:02:46 -07:00
Tom Lane
1cff1b95ab Represent Lists as expansible arrays, not chains of cons-cells.
Originally, Postgres Lists were a more or less exact reimplementation of
Lisp lists, which consist of chains of separately-allocated cons cells,
each having a value and a next-cell link.  We'd hacked that once before
(commit d0b4399d8) to add a separate List header, but the data was still
in cons cells.  That makes some operations -- notably list_nth() -- O(N),
and it's bulky because of the next-cell pointers and per-cell palloc
overhead, and it's very cache-unfriendly if the cons cells end up
scattered around rather than being adjacent.

In this rewrite, we still have List headers, but the data is in a
resizable array of values, with no next-cell links.  Now we need at
most two palloc's per List, and often only one, since we can allocate
some values in the same palloc call as the List header.  (Of course,
extending an existing List may require repalloc's to enlarge the array.
But this involves just O(log N) allocations not O(N).)

Of course this is not without downsides.  The key difficulty is that
addition or deletion of a list entry may now cause other entries to
move, which it did not before.

For example, that breaks foreach() and sister macros, which historically
used a pointer to the current cons-cell as loop state.  We can repair
those macros transparently by making their actual loop state be an
integer list index; the exposed "ListCell *" pointer is no longer state
carried across loop iterations, but is just a derived value.  (In
practice, modern compilers can optimize things back to having just one
loop state value, at least for simple cases with inline loop bodies.)
In principle, this is a semantics change for cases where the loop body
inserts or deletes list entries ahead of the current loop index; but
I found no such cases in the Postgres code.

The change is not at all transparent for code that doesn't use foreach()
but chases lists "by hand" using lnext().  The largest share of such
code in the backend is in loops that were maintaining "prev" and "next"
variables in addition to the current-cell pointer, in order to delete
list cells efficiently using list_delete_cell().  However, we no longer
need a previous-cell pointer to delete a list cell efficiently.  Keeping
a next-cell pointer doesn't work, as explained above, but we can improve
matters by changing such code to use a regular foreach() loop and then
using the new macro foreach_delete_current() to delete the current cell.
(This macro knows how to update the associated foreach loop's state so
that no cells will be missed in the traversal.)

There remains a nontrivial risk of code assuming that a ListCell *
pointer will remain good over an operation that could now move the list
contents.  To help catch such errors, list.c can be compiled with a new
define symbol DEBUG_LIST_MEMORY_USAGE that forcibly moves list contents
whenever that could possibly happen.  This makes list operations
significantly more expensive so it's not normally turned on (though it
is on by default if USE_VALGRIND is on).

There are two notable API differences from the previous code:

* lnext() now requires the List's header pointer in addition to the
current cell's address.

* list_delete_cell() no longer requires a previous-cell argument.

These changes are somewhat unfortunate, but on the other hand code using
either function needs inspection to see if it is assuming anything
it shouldn't, so it's not all bad.

Programmers should be aware of these significant performance changes:

* list_nth() and related functions are now O(1); so there's no
major access-speed difference between a list and an array.

* Inserting or deleting a list element now takes time proportional to
the distance to the end of the list, due to moving the array elements.
(However, it typically *doesn't* require palloc or pfree, so except in
long lists it's probably still faster than before.)  Notably, lcons()
used to be about the same cost as lappend(), but that's no longer true
if the list is long.  Code that uses lcons() and list_delete_first()
to maintain a stack might usefully be rewritten to push and pop at the
end of the list rather than the beginning.

* There are now list_insert_nth...() and list_delete_nth...() functions
that add or remove a list cell identified by index.  These have the
data-movement penalty explained above, but there's no search penalty.

* list_concat() and variants now copy the second list's data into
storage belonging to the first list, so there is no longer any
sharing of cells between the input lists.  The second argument is
now declared "const List *" to reflect that it isn't changed.

This patch just does the minimum needed to get the new implementation
in place and fix bugs exposed by the regression tests.  As suggested
by the foregoing, there's a fair amount of followup work remaining to
do.

Also, the ENABLE_LIST_COMPAT macros are finally removed in this
commit.  Code using those should have been gone a dozen years ago.

Patch by me; thanks to David Rowley, Jesper Pedersen, and others
for review.

Discussion: https://postgr.es/m/11587.1550975080@sss.pgh.pa.us
2019-07-15 13:41:58 -04:00
Tom Lane
6630ccad7a Restructure creation of run-time pruning steps.
Previously, gen_partprune_steps() always built executor pruning steps
using all suitable clauses, including those containing PARAM_EXEC
Params.  This meant that the pruning steps were only completely safe
for executor run-time (scan start) pruning.  To prune at executor
startup, we had to ignore the steps involving exec Params.  But this
doesn't really work in general, since there may be logic changes
needed as well --- for example, pruning according to the last operator's
btree strategy is the wrong thing if we're not applying that operator.
The rules embodied in gen_partprune_steps() and its minions are
sufficiently complicated that tracking their incremental effects in
other logic seems quite impractical.

Short of a complete redesign, the only safe fix seems to be to run
gen_partprune_steps() twice, once to create executor startup pruning
steps and then again for run-time pruning steps.  We can save a few
cycles however by noting during the first scan whether we rejected
any clauses because they involved exec Params --- if not, we don't
need to do the second scan.

In support of this, refactor the internal APIs in partprune.c to make
more use of passing information in the GeneratePruningStepsContext
struct, rather than as separate arguments.

This is, I hope, the last piece of our response to a bug report from
Alan Jackson.  Back-patch to v11 where this code came in.

Discussion: https://postgr.es/m/FAD28A83-AC73-489E-A058-2681FA31D648@tvsquared.com
2019-05-17 19:44:34 -04:00
Alvaro Herrera
87259588d0 Fix tablespace inheritance for partitioned rels
Commit ca4103025d left a few loose ends.  The most important one
(broken pg_dump output) is already fixed by virtue of commit
3b23552ad8, but some things remained:

* When ALTER TABLE rewrites tables, the indexes must remain in the
  tablespace they were originally in.  This didn't work because
  index recreation during ALTER TABLE runs manufactured SQL (yuck),
  which runs afoul of default_tablespace in competition with the parent
  relation tablespace.  To fix, reset default_tablespace to the empty
  string temporarily, and add the TABLESPACE clause as appropriate.

* Setting a partitioned rel's tablespace to the database default is
  confusing; if it worked, it would direct the partitions to that
  tablespace regardless of default_tablespace.  But in reality it does
  not work, and making it work is a larger project.  Therefore, throw
  an error when this condition is detected, to alert the unwary.

Add some docs and tests, too.

Author: Álvaro Herrera
Discussion: https://postgr.es/m/CAKJS1f_1c260nOt_vBJ067AZ3JXptXVRohDVMLEBmudX1YEx-A@mail.gmail.com
2019-04-25 10:31:32 -04:00
Peter Eisentraut
fc22b6623b Generated columns
This is an SQL-standard feature that allows creating columns that are
computed from expressions rather than assigned, similar to a view or
materialized view but on a column basis.

This implements one kind of generated column: stored (computed on
write).  Another kind, virtual (computed on read), is planned for the
future, and some room is left for it.

Reviewed-by: Michael Paquier <michael@paquier.xyz>
Reviewed-by: Pavel Stehule <pavel.stehule@gmail.com>
Discussion: https://www.postgresql.org/message-id/flat/b151f851-4019-bdb1-699e-ebab07d2f40a@2ndquadrant.com
2019-03-30 08:15:57 +01:00
Peter Eisentraut
5dc92b844e REINDEX CONCURRENTLY
This adds the CONCURRENTLY option to the REINDEX command.  A REINDEX
CONCURRENTLY on a specific index creates a new index (like CREATE
INDEX CONCURRENTLY), then renames the old index away and the new index
in place and adjusts the dependencies, and then drops the old
index (like DROP INDEX CONCURRENTLY).  The REINDEX command also has
the capability to run its other variants (TABLE, DATABASE) with the
CONCURRENTLY option (but not SYSTEM).

The reindexdb command gets the --concurrently option.

Author: Michael Paquier, Andreas Karlsson, Peter Eisentraut
Reviewed-by: Andres Freund, Fujii Masao, Jim Nasby, Sergei Kornilov
Discussion: https://www.postgresql.org/message-id/flat/60052986-956b-4478-45ed-8bd119e9b9cf%402ndquadrant.com#74948a1044c56c5e817a5050f554ddee
2019-03-29 08:26:33 +01:00
Robert Haas
5857be907d Fix use of wrong datatype with sizeof().
OID and int are the same size, but they are not the same thing.

David Rowley

Discussion: http://postgr.es/m/CAKJS1f_MhS++XngkTvWL9X1v8M5t-0N0B-R465yHQY=TmNV0Ew@mail.gmail.com
2019-03-25 11:28:06 -04:00
Peter Eisentraut
280a408b48 Transaction chaining
Add command variants COMMIT AND CHAIN and ROLLBACK AND CHAIN, which
start new transactions with the same transaction characteristics as the
just finished one, per SQL standard.

Support for transaction chaining in PL/pgSQL is also added.  This
functionality is especially useful when running COMMIT in a loop in
PL/pgSQL.

Reviewed-by: Fabien COELHO <coelho@cri.ensmp.fr>
Discussion: https://www.postgresql.org/message-id/flat/28536681-324b-10dc-ade8-ab46f7645a5a@2ndquadrant.com
2019-03-24 11:33:02 +01:00