MERGE performs actions that modify rows in the target table
using a source table or query. MERGE provides a single SQL
statement that can conditionally INSERT/UPDATE/DELETE rows
a task that would other require multiple PL statements.
e.g.
MERGE INTO target AS t
USING source AS s
ON t.tid = s.sid
WHEN MATCHED AND t.balance > s.delta THEN
UPDATE SET balance = t.balance - s.delta
WHEN MATCHED THEN
DELETE
WHEN NOT MATCHED AND s.delta > 0 THEN
INSERT VALUES (s.sid, s.delta)
WHEN NOT MATCHED THEN
DO NOTHING;
MERGE works with regular and partitioned tables, including
column and row security enforcement, as well as support for
row, statement and transition triggers.
MERGE is optimized for OLTP and is parameterizable, though
also useful for large scale ETL/ELT. MERGE is not intended
to be used in preference to existing single SQL commands
for INSERT, UPDATE or DELETE since there is some overhead.
MERGE can be used statically from PL/pgSQL.
MERGE does not yet support inheritance, write rules,
RETURNING clauses, updatable views or foreign tables.
MERGE follows SQL Standard per the most recent SQL:2016.
Includes full tests and documentation, including full
isolation tests to demonstrate the concurrent behavior.
This version written from scratch in 2017 by Simon Riggs,
using docs and tests originally written in 2009. Later work
from Pavan Deolasee has been both complex and deep, leaving
the lead author credit now in his hands.
Extensive discussion of concurrency from Peter Geoghegan,
with thanks for the time and effort contributed.
Various issues reported via sqlsmith by Andreas Seltenreich
Authors: Pavan Deolasee, Simon Riggs
Reviewer: Peter Geoghegan, Amit Langote, Tomas Vondra, Simon Riggs
Discussion:
https://postgr.es/m/CANP8+jKitBSrB7oTgT9CY2i1ObfOt36z0XMraQc+Xrz8QB0nXA@mail.gmail.comhttps://postgr.es/m/CAH2-WzkJdBuxj9PO=2QaO9-3h3xGbQPZ34kJH=HukRekwM-GZg@mail.gmail.com
Commit eb7ed3f30634 enabled unique constraints on partitioned tables,
but one thing that was not working properly is INSERT/ON CONFLICT.
This commit introduces a new node keeps state related to the ON CONFLICT
clause per partition, and fills it when that partition is about to be
used for tuple routing.
Author: Amit Langote, Álvaro Herrera
Reviewed-by: Etsuro Fujita, Pavan Deolasee
Discussion: https://postgr.es/m/20180228004602.cwdyralmg5ejdqkq@alvherre.pgsql
In each of the supplied procedural languages (PL/pgSQL, PL/Perl,
PL/Python, PL/Tcl), add language-specific commit and rollback
functions/commands to control transactions in procedures in that
language. Add similar underlying functions to SPI. Some additional
cleanup so that transaction commit or abort doesn't blow away data
structures still used by the procedure call. Add execution context
tracking to CALL and DO statements so that transaction control commands
can only be issued in top-level procedure and block calls, not function
calls or other procedure or block calls.
- SPI
Add a new function SPI_connect_ext() that is like SPI_connect() but
allows passing option flags. The only option flag right now is
SPI_OPT_NONATOMIC. A nonatomic SPI connection can execute transaction
control commands, otherwise it's not allowed. This is meant to be
passed down from CALL and DO statements which themselves know in which
context they are called. A nonatomic SPI connection uses different
memory management. A normal SPI connection allocates its memory in
TopTransactionContext. For nonatomic connections we use PortalContext
instead. As the comment in SPI_connect_ext() (previously SPI_connect())
indicates, one could potentially use PortalContext in all cases, but it
seems safest to leave the existing uses alone, because this stuff is
complicated enough already.
SPI also gets new functions SPI_start_transaction(), SPI_commit(), and
SPI_rollback(), which can be used by PLs to implement their transaction
control logic.
- portalmem.c
Some adjustments were made in the code that cleans up portals at
transaction abort. The portal code could already handle a command
*committing* a transaction and continuing (e.g., VACUUM), but it was not
quite prepared for a command *aborting* a transaction and continuing.
In AtAbort_Portals(), remove the code that marks an active portal as
failed. As the comment there already predicted, this doesn't work if
the running command wants to keep running after transaction abort. And
it's actually not necessary, because pquery.c is careful to run all
portal code in a PG_TRY block and explicitly runs MarkPortalFailed() if
there is an exception. So the code in AtAbort_Portals() is never used
anyway.
In AtAbort_Portals() and AtCleanup_Portals(), we need to be careful not
to clean up active portals too much. This mirrors similar code in
PreCommit_Portals().
- PL/Perl
Gets new functions spi_commit() and spi_rollback()
- PL/pgSQL
Gets new commands COMMIT and ROLLBACK.
Update the PL/SQL porting example in the documentation to reflect that
transactions are now possible in procedures.
- PL/Python
Gets new functions plpy.commit and plpy.rollback.
- PL/Tcl
Gets new commands commit and rollback.
Reviewed-by: Andrew Dunstan <andrew.dunstan@2ndquadrant.com>
This adds a new object type "procedure" that is similar to a function
but does not have a return type and is invoked by the new CALL statement
instead of SELECT or similar. This implementation is aligned with the
SQL standard and compatible with or similar to other SQL implementations.
This commit adds new commands CALL, CREATE/ALTER/DROP PROCEDURE, as well
as ALTER/DROP ROUTINE that can refer to either a function or a
procedure (or an aggregate function, as an extension to SQL). There is
also support for procedures in various utility commands such as COMMENT
and GRANT, as well as support in pg_dump and psql. Support for defining
procedures is available in all the languages supplied by the core
distribution.
While this commit is mainly syntax sugar around existing functionality,
future features will rely on having procedures as a separate object
type.
Reviewed-by: Andrew Dunstan <andrew.dunstan@2ndquadrant.com>
Add new style of memory allocator, known as Generational
appropriate for use in cases where memory is allocated
and then freed in roughly oldest first order (FIFO).
Use new allocator for logical decoding’s reorderbuffer
to significantly reduce memory usage and improve performance.
Author: Tomas Vondra
Reviewed-by: Simon Riggs
Not much to say about this; does what it says on the tin.
However, formerly, if there was a column list then the ANALYZE action was
implied; now it must be specified, or you get an error. This is because
it would otherwise be a bit unclear what the user meant if some tables
have column lists and some don't.
Nathan Bossart, reviewed by Michael Paquier and Masahiko Sawada, with some
editorialization by me
Discussion: https://postgr.es/m/E061A8E3-5E3D-494D-94F0-E8A9B312BBFC@amazon.com
Add missing infrastructure for this node type, notably in ruleutils.c where
its lack could demonstrably cause EXPLAIN to fail. Add outfuncs/readfuncs
support. (outfuncs support is useful today for debugging purposes. The
readfuncs support may never be needed, since at present it would only
matter for parallel query and NextValueExpr should never appear in a
parallelizable query; but it seems like a bad idea to have a primnode type
that isn't fully supported here.) Teach planner infrastructure that
NextValueExpr is a volatile, parallel-unsafe, non-leaky expression node
with cost cpu_operator_cost. Given its limited scope of usage, there
*might* be no live bug today from the lack of that knowledge, but it's
certainly going to bite us on the rear someday. Teach pg_stat_statements
about the new node type, too.
While at it, also teach cost_qual_eval() that MinMaxExpr, SQLValueFunction,
XmlExpr, and CoerceToDomain should be charged as cpu_operator_cost.
Failing to do this for SQLValueFunction was an oversight in my commit
0bb51aa96. The others are longer-standing oversights, but no time like the
present to fix them. (In principle, CoerceToDomain could have cost much
higher than this, but it doesn't presently seem worth trying to examine the
domain's constraints here.)
Modify execExprInterp.c to execute NextValueExpr as an out-of-line
function; it seems quite unlikely to me that it's worth insisting that
it be inlined in all expression eval methods. Besides, providing the
out-of-line function doesn't stop anyone from inlining if they want to.
Adjust some places where NextValueExpr support had been inserted with the
aid of a dartboard rather than keeping it in the same order as elsewhere.
Discussion: https://postgr.es/m/23862.1499981661@sss.pgh.pa.us
Change pg_bsd_indent to follow upstream rules for placement of comments
to the right of code, and remove pgindent hack that caused comments
following #endif to not obey the general rule.
Commit e3860ffa4dd0dad0dd9eea4be9cc1412373a8c89 wasn't actually using
the published version of pg_bsd_indent, but a hacked-up version that
tried to minimize the amount of movement of comments to the right of
code. The situation of interest is where such a comment has to be
moved to the right of its default placement at column 33 because there's
code there. BSD indent has always moved right in units of tab stops
in such cases --- but in the previous incarnation, indent was working
in 8-space tab stops, while now it knows we use 4-space tabs. So the
net result is that in about half the cases, such comments are placed
one tab stop left of before. This is better all around: it leaves
more room on the line for comment text, and it means that in such
cases the comment uniformly starts at the next 4-space tab stop after
the code, rather than sometimes one and sometimes two tabs after.
Also, ensure that comments following #endif are indented the same
as comments following other preprocessor commands such as #else.
That inconsistency turns out to have been self-inflicted damage
from a poorly-thought-through post-indent "fixup" in pgindent.
This patch is much less interesting than the first round of indent
changes, but also bulkier, so I thought it best to separate the effects.
Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org
Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
The new indent version includes numerous fixes thanks to Piotr Stefaniak.
The main changes visible in this commit are:
* Nicer formatting of function-pointer declarations.
* No longer unexpectedly removes spaces in expressions using casts,
sizeof, or offsetof.
* No longer wants to add a space in "struct structname *varname", as
well as some similar cases for const- or volatile-qualified pointers.
* Declarations using PG_USED_FOR_ASSERTS_ONLY are formatted more nicely.
* Fixes bug where comments following declarations were sometimes placed
with no space separating them from the code.
* Fixes some odd decisions for comments following case labels.
* Fixes some cases where comments following code were indented to less
than the expected column 33.
On the less good side, it now tends to put more whitespace around typedef
names that are not listed in typedefs.list. This might encourage us to
put more effort into typedef name collection; it's not really a bug in
indent itself.
There are more changes coming after this round, having to do with comment
indentation and alignment of lines appearing within parentheses. I wanted
to limit the size of the diffs to something that could be reviewed without
one's eyes completely glazing over, so it seemed better to split up the
changes as much as practical.
Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org
Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
Fix failure to check that we got a plain Const from const-simplification of
a coercion request. This is the cause of bug #14666 from Tian Bing: there
is an int4 to money cast, but it's only stable not immutable (because of
dependence on lc_monetary), resulting in a FuncExpr that the code was
miserably unequipped to deal with, or indeed even to notice that it was
failing to deal with. Add test cases around this coercion behavior.
In view of the above, sprinkle the code liberally with castNode() macros,
in hope of catching the next such bug a bit sooner. Also, change some
functions that were randomly declared to take Node* to take more specific
pointer types. And change some struct fields that were declared Node*
but could be given more specific types, allowing removal of assorted
explicit casts.
Place PARTITION_MAX_KEYS check a bit closer to the code it's protecting.
Likewise check only-one-key-for-list-partitioning restriction in a less
random place.
Avoid not-per-project-style usages like !strcmp(...).
Fix assorted failures to avoid scribbling on the input of parse
transformation. I'm not sure how necessary this is, but it's entirely
silly for these functions to be expending cycles to avoid that and not
getting it right.
Add guards against partitioning on system columns.
Put backend/nodes/ support code into an order that matches handling
of these node types elsewhere.
Annotate the fact that somebody added location fields to PartitionBoundSpec
and PartitionRangeDatum but forgot to handle them in
outfuncs.c/readfuncs.c. This is fairly harmless for production purposes
(since readfuncs.c would just substitute -1 anyway) but it's still bogus.
It's not worth forcing a post-beta1 initdb just to fix this, but if we
have another reason to force initdb before 10.0, we should go back and
clean this up.
Contrariwise, somebody added location fields to PartitionElem and
PartitionSpec but forgot to teach exprLocation() about them.
Consolidate duplicative code in transformPartitionBound().
Improve a couple of error messages.
Improve assorted commentary.
Re-pgindent the files touched by this patch; this affects a few comment
blocks that must have been added quite recently.
Report: https://postgr.es/m/20170524024550.29935.14396@wrigleys.postgresql.org
This is the SQL standard-conforming variant of PostgreSQL's serial
columns. It fixes a few usability issues that serial columns have:
- CREATE TABLE / LIKE copies default but refers to same sequence
- cannot add/drop serialness with ALTER TABLE
- dropping default does not drop sequence
- need to grant separate privileges to sequence
- other slight weirdnesses because serial is some kind of special macro
Reviewed-by: Vitaly Burovoy <vitaly.burovoy@gmail.com>
A QueryEnvironment concept is added, which allows new types of
objects to be passed into queries from parsing on through
execution. At this point, the only thing implemented is a
collection of EphemeralNamedRelation objects -- relations which
can be referenced by name in queries, but do not exist in the
catalogs. The only type of ENR implemented is NamedTuplestore, but
provision is made to add more types fairly easily.
An ENR can carry its own TupleDesc or reference a relation in the
catalogs by relid.
Although these features can be used without SPI, convenience
functions are added to SPI so that ENRs can easily be used by code
run through SPI.
The initial use of all this is going to be transition tables in
AFTER triggers, but that will be added to each PL as a separate
commit.
An incidental effect of this patch is to produce a more informative
error message if an attempt is made to modify the contents of a CTE
from a referencing DML statement. No tests previously covered that
possibility, so one is added.
Kevin Grittner and Thomas Munro
Reviewed by Heikki Linnakangas, David Fetter, and Thomas Munro
with valuable comments and suggestions from many others
copyObject() is declared to return void *, which allows easily assigning
the result independent of the input, but it loses all type checking.
If the compiler supports typeof or something similar, cast the result to
the input type. This creates a greater amount of type safety. In some
cases, where the result is assigned to a generic type such as Node * or
Expr *, new casts are now necessary, but in general casts are now
unnecessary in the normal case and indicate that something unusual is
happening.
Reviewed-by: Mark Dilger <hornschnorter@gmail.com>
This extends the Aggregate node with two new features: HashAggregate
can now run multiple hashtables concurrently, and a new strategy
MixedAggregate populates hashtables while doing sorted grouping.
The planner will now attempt to save as many sorts as possible when
planning grouping sets queries, while not exceeding work_mem for the
estimated combined sizes of all hashtables used. No SQL-level changes
are required. There should be no user-visible impact other than the
new EXPLAIN output and possible changes to result ordering when ORDER
BY was not used (which affected a few regression tests). The
enable_hashagg option is respected.
Author: Andrew Gierth
Reviewers: Mark Dilger, Andres Freund
Discussion: https://postgr.es/m/87vatszyhj.fsf@news-spur.riddles.org.uk
This replaces the old, recursive tree-walk based evaluation, with
non-recursive, opcode dispatch based, expression evaluation.
Projection is now implemented as part of expression evaluation.
This both leads to significant performance improvements, and makes
future just-in-time compilation of expressions easier.
The speed gains primarily come from:
- non-recursive implementation reduces stack usage / overhead
- simple sub-expressions are implemented with a single jump, without
function calls
- sharing some state between different sub-expressions
- reduced amount of indirect/hard to predict memory accesses by laying
out operation metadata sequentially; including the avoidance of
nearly all of the previously used linked lists
- more code has been moved to expression initialization, avoiding
constant re-checks at evaluation time
Future just-in-time compilation (JIT) has become easier, as
demonstrated by released patches intended to be merged in a later
release, for primarily two reasons: Firstly, due to a stricter split
between expression initialization and evaluation, less code has to be
handled by the JIT. Secondly, due to the non-recursive nature of the
generated "instructions", less performance-critical code-paths can
easily be shared between interpreted and compiled evaluation.
The new framework allows for significant future optimizations. E.g.:
- basic infrastructure for to later reduce the per executor-startup
overhead of expression evaluation, by caching state in prepared
statements. That'd be helpful in OLTPish scenarios where
initialization overhead is measurable.
- optimizing the generated "code". A number of proposals for potential
work has already been made.
- optimizing the interpreter. Similarly a number of proposals have
been made here too.
The move of logic into the expression initialization step leads to some
backward-incompatible changes:
- Function permission checks are now done during expression
initialization, whereas previously they were done during
execution. In edge cases this can lead to errors being raised that
previously wouldn't have been, e.g. a NULL array being coerced to a
different array type previously didn't perform checks.
- The set of domain constraints to be checked, is now evaluated once
during expression initialization, previously it was re-built
every time a domain check was evaluated. For normal queries this
doesn't change much, but e.g. for plpgsql functions, which caches
ExprStates, the old set could stick around longer. The behavior
around might still change.
Author: Andres Freund, with significant changes by Tom Lane,
changes by Heikki Linnakangas
Reviewed-By: Tom Lane, Heikki Linnakangas
Discussion: https://postgr.es/m/20161206034955.bh33paeralxbtluv@alap3.anarazel.de
Add support for explicitly declared statistic objects (CREATE
STATISTICS), allowing collection of statistics on more complex
combinations that individual table columns. Companion commands DROP
STATISTICS and ALTER STATISTICS ... OWNER TO / SET SCHEMA / RENAME are
added too. All this DDL has been designed so that more statistic types
can be added later on, such as multivariate most-common-values and
multivariate histograms between columns of a single table, leaving room
for permitting columns on multiple tables, too, as well as expressions.
This commit only adds support for collection of n-distinct coefficient
on user-specified sets of columns in a single table. This is useful to
estimate number of distinct groups in GROUP BY and DISTINCT clauses;
estimation errors there can cause over-allocation of memory in hashed
aggregates, for instance, so it's a worthwhile problem to solve. A new
special pseudo-type pg_ndistinct is used.
(num-distinct estimation was deemed sufficiently useful by itself that
this is worthwhile even if no further statistic types are added
immediately; so much so that another version of essentially the same
functionality was submitted by Kyotaro Horiguchi:
https://postgr.es/m/20150828.173334.114731693.horiguchi.kyotaro@lab.ntt.co.jp
though this commit does not use that code.)
Author: Tomas Vondra. Some code rework by Álvaro.
Reviewed-by: Dean Rasheed, David Rowley, Kyotaro Horiguchi, Jeff Janes,
Ideriha Takeshi
Discussion: https://postgr.es/m/543AFA15.4080608@fuzzy.czhttps://postgr.es/m/20170320190220.ixlaueanxegqd5gr@alvherre.pgsql
Add a column collprovider to pg_collation that determines which library
provides the collation data. The existing choices are default and libc,
and this adds an icu choice, which uses the ICU4C library.
The pg_locale_t type is changed to a union that contains the
provider-specific locale handles. Users of locale information are
changed to look into that struct for the appropriate handle to use.
Also add a collversion column that records the version of the collation
when it is created, and check at run time whether it is still the same.
This detects potentially incompatible library upgrades that can corrupt
indexes and other structures. This is currently only supported by
ICU-provided collations.
initdb initializes the default collation set as before from the `locale
-a` output but also adds all available ICU locales with a "-x-icu"
appended.
Currently, ICU-provided collations can only be explicitly named
collations. The global database locales are still always libc-provided.
ICU support is enabled by configure --with-icu.
Reviewed-by: Thomas Munro <thomas.munro@enterprisedb.com>
Reviewed-by: Andreas Karlsson <andreas@proxel.se>
Add functionality for a new subscription to copy the initial data in the
tables and then sync with the ongoing apply process.
For the copying, add a new internal COPY option to have the COPY source
data provided by a callback function. The initial data copy works on
the subscriber by receiving COPY data from the publisher and then
providing it locally into a COPY that writes to the destination table.
A WAL receiver can now execute full SQL commands. This is used here to
obtain information about tables and publications.
Several new options were added to CREATE and ALTER SUBSCRIPTION to
control whether and when initial table syncing happens.
Change pg_dump option --no-create-subscription-slots to
--no-subscription-connect and use the new CREATE SUBSCRIPTION
... NOCONNECT option for that.
Author: Petr Jelinek <petr.jelinek@2ndquadrant.com>
Tested-by: Erik Rijkers <er@xs4all.nl>
Partitioned tables do not contain any data; only their unpartitioned
descendents need to be scanned. However, the partitioned tables still
need to be locked, even though they're not scanned. To make that
work, Append and MergeAppend relations now need to carry a list of
(unscanned) partitioned relations that must be locked, and InitPlan
must lock all partitioned result relations.
Aside from the obvious advantage of avoiding some work at execution
time, this has two other advantages. First, it may improve the
planner's decision-making in some cases since the empty relation
might throw things off. Second, it paves the way to getting rid of
the storage for partitioned tables altogether.
Amit Langote, reviewed by me.
Discussion: http://postgr.es/m/6837c359-45c4-8044-34d1-736756335a15@lab.ntt.co.jp
Like Gather, we spawn multiple workers and run the same plan in each
one; however, Gather Merge is used when each worker produces the same
output ordering and we want to preserve that output ordering while
merging together the streams of tuples from various workers. (In a
way, Gather Merge is like a hybrid of Gather and MergeAppend.)
This works out to a win if it saves us from having to perform an
expensive Sort. In cases where only a small amount of data would need
to be sorted, it may actually be faster to use a regular Gather node
and then sort the results afterward, because Gather Merge sometimes
needs to wait synchronously for tuples whereas a pure Gather generally
doesn't. But if this avoids an expensive sort then it's a win.
Rushabh Lathia, reviewed and tested by Amit Kapila, Thomas Munro,
and Neha Sharma, and reviewed and revised by me.
Discussion: http://postgr.es/m/CAGPqQf09oPX-cQRpBKS0Gq49Z+m6KBxgxd_p9gX8CKk_d75HoQ@mail.gmail.com
XMLTABLE is defined by the SQL/XML standard as a feature that allows
turning XML-formatted data into relational form, so that it can be used
as a <table primary> in the FROM clause of a query.
This new construct provides significant simplicity and performance
benefit for XML data processing; what in a client-side custom
implementation was reported to take 20 minutes can be executed in 400ms
using XMLTABLE. (The same functionality was said to take 10 seconds
using nested PostgreSQL XPath function calls, and 5 seconds using
XMLReader under PL/Python).
The implemented syntax deviates slightly from what the standard
requires. First, the standard indicates that the PASSING clause is
optional and that multiple XML input documents may be given to it; we
make it mandatory and accept a single document only. Second, we don't
currently support a default namespace to be specified.
This implementation relies on a new executor node based on a hardcoded
method table. (Because the grammar is fixed, there is no extensibility
in the current approach; further constructs can be implemented on top of
this such as JSON_TABLE, but they require changes to core code.)
Author: Pavel Stehule, Álvaro Herrera
Extensively reviewed by: Craig Ringer
Discussion: https://postgr.es/m/CAFj8pRAgfzMD-LoSmnMGybD0WsEznLHWap8DO79+-GTRAPR4qA@mail.gmail.com
This makes the handling of operators similar to that of functions and
aggregates.
Rename node FuncWithArgs to ObjectWithArgs, to reflect the expanded use.
Reviewed-by: Jim Nasby <Jim.Nasby@BlueTreble.com>
Reviewed-by: Michael Paquier <michael.paquier@gmail.com>
The default general purpose aset.c style memory context is not a great
choice for allocations that are all going to be evenly sized,
especially when those objects aren't small, and have varying
lifetimes. There tends to be a lot of fragmentation, larger
allocations always directly go to libc rather than have their cost
amortized over several pallocs.
These problems lead to the introduction of ad-hoc slab allocators in
reorderbuffer.c. But it turns out that the simplistic implementation
leads to problems when a lot of objects are allocated and freed, as
aset.c is still the underlying implementation. Especially freeing can
easily run into O(n^2) behavior in aset.c.
While the O(n^2) behavior in aset.c can, and probably will, be
addressed, custom allocators for this behavior are more efficient
both in space and time.
This allocator is for evenly sized allocations, and supports both
cheap allocations and freeing, without fragmenting significantly. It
does so by allocating evenly sized blocks via malloc(), and carves
them into chunks that can be used for allocations. In order to
release blocks to the OS as early as possible, chunks are allocated
from the fullest block that still has free objects, increasing the
likelihood of a block being entirely unused.
A subsequent commit uses this in reorderbuffer.c, but a further
allocator is needed to resolve the performance problems triggering
this work.
There likely are further potentialy uses of this allocator besides
reorderbuffer.c.
There's potential further optimizations of the new slab.c, in
particular the array of freelists could be replaced by a more
intelligent structure - but for now this looks more than good enough.
Author: Tomas Vondra, editorialized by Andres Freund
Reviewed-By: Andres Freund, Petr Jelinek, Robert Haas, Jim Nasby
Discussion: https://postgr.es/m/d15dff83-0b37-28ed-0809-95a5cc7292ad@2ndquadrant.com
The new function allows to cast from one NodeTag based type to
another, while asserting that the conversion is valid. This replaces
the common pattern of doing a cast and a Assert(IsA(ptr, type))
close-by.
As this seems likely to be used pervasively, we decided to backpatch
this change the addition of this macro. Otherwise backpatched fixes
are more likely not to work on back-branches.
On branches before 9.6, where we do not yet rely on inline functions
being available, the type assertion is only performed if PG_USE_INLINE
support is detected. The cast obviously is performed regardless.
For the benefit of verifying the macro compiles in the back-branches,
this commit contains a single use of the new macro. On master, a
somewhat larger conversion will be committed separately.
Author: Peter Eisentraut and Andres Freund
Reviewed-By: Tom Lane
Discussion: https://postgr.es/m/c5d387d9-3440-f5e0-f9d4-71d53b9fbe52@2ndquadrant.com
Backpatch: 9.2-
Evaluation of set returning functions (SRFs_ in the targetlist (like SELECT
generate_series(1,5)) so far was done in the expression evaluation (i.e.
ExecEvalExpr()) and projection (i.e. ExecProject/ExecTargetList) code.
This meant that most executor nodes performing projection, and most
expression evaluation functions, had to deal with the possibility that an
evaluated expression could return a set of return values.
That's bad because it leads to repeated code in a lot of places. It also,
and that's my (Andres's) motivation, made it a lot harder to implement a
more efficient way of doing expression evaluation.
To fix this, introduce a new executor node (ProjectSet) that can evaluate
targetlists containing one or more SRFs. To avoid the complexity of the old
way of handling nested expressions returning sets (e.g. having to pass up
ExprDoneCond, and dealing with arguments to functions returning sets etc.),
those SRFs can only be at the top level of the node's targetlist. The
planner makes sure (via split_pathtarget_at_srfs()) that SRF evaluation is
only necessary in ProjectSet nodes and that SRFs are only present at the
top level of the node's targetlist. If there are nested SRFs the planner
creates multiple stacked ProjectSet nodes. The ProjectSet nodes always get
input from an underlying node.
We also discussed and prototyped evaluating targetlist SRFs using ROWS
FROM(), but that turned out to be more complicated than we'd hoped.
While moving SRF evaluation to ProjectSet would allow to retain the old
"least common multiple" behavior when multiple SRFs are present in one
targetlist (i.e. continue returning rows until all SRFs are at the end of
their input at the same time), we decided to instead only return rows till
all SRFs are exhausted, returning NULL for already exhausted ones. We
deemed the previous behavior to be too confusing, unexpected and actually
not particularly useful.
As a side effect, the previously prohibited case of multiple set returning
arguments to a function, is now allowed. Not because it's particularly
desirable, but because it ends up working and there seems to be no argument
for adding code to prohibit it.
Currently the behavior for COALESCE and CASE containing SRFs has changed,
returning multiple rows from the expression, even when the SRF containing
"arm" of the expression is not evaluated. That's because the SRFs are
evaluated in a separate ProjectSet node. As that's quite confusing, we're
likely to instead prohibit SRFs in those places. But that's still being
discussed, and the code would reside in places not touched here, so that's
a task for later.
There's a lot of, now superfluous, code dealing with set return expressions
around. But as the changes to get rid of those are verbose largely boring,
it seems better for readability to keep the cleanup as a separate commit.
Author: Tom Lane and Andres Freund
Discussion: https://postgr.es/m/20160822214023.aaxz5l4igypowyri@alap3.anarazel.de
This patch makes several changes that improve the consistency of
representation of lists of statements. It's always been the case
that the output of parse analysis is a list of Query nodes, whatever
the types of the individual statements in the list. This patch brings
similar consistency to the outputs of raw parsing and planning steps:
* The output of raw parsing is now always a list of RawStmt nodes;
the statement-type-dependent nodes are one level down from that.
* The output of pg_plan_queries() is now always a list of PlannedStmt
nodes, even for utility statements. In the case of a utility statement,
"planning" just consists of wrapping a CMD_UTILITY PlannedStmt around
the utility node. This list representation is now used in Portal and
CachedPlan plan lists, replacing the former convention of intermixing
PlannedStmts with bare utility-statement nodes.
Now, every list of statements has a consistent head-node type depending
on how far along it is in processing. This allows changing many places
that formerly used generic "Node *" pointers to use a more specific
pointer type, thus reducing the number of IsA() tests and casts needed,
as well as improving code clarity.
Also, the post-parse-analysis representation of DECLARE CURSOR is changed
so that it looks more like EXPLAIN, PREPARE, etc. That is, the contained
SELECT remains a child of the DeclareCursorStmt rather than getting flipped
around to be the other way. It's now true for both Query and PlannedStmt
that utilityStmt is non-null if and only if commandType is CMD_UTILITY.
That allows simplifying a lot of places that were testing both fields.
(I think some of those were just defensive programming, but in many places,
it was actually necessary to avoid confusing DECLARE CURSOR with SELECT.)
Because PlannedStmt carries a canSetTag field, we're also able to get rid
of some ad-hoc rules about how to reconstruct canSetTag for a bare utility
statement; specifically, the assumption that a utility is canSetTag if and
only if it's the only one in its list. While I see no near-term need for
relaxing that restriction, it's nice to get rid of the ad-hocery.
The API of ProcessUtility() is changed so that what it's passed is the
wrapper PlannedStmt not just the bare utility statement. This will affect
all users of ProcessUtility_hook, but the changes are pretty trivial; see
the affected contrib modules for examples of the minimum change needed.
(Most compilers should give pointer-type-mismatch warnings for uncorrected
code.)
There's also a change in the API of ExplainOneQuery_hook, to pass through
cursorOptions instead of expecting hook functions to know what to pick.
This is needed because of the DECLARE CURSOR changes, but really should
have been done in 9.6; it's unlikely that any extant hook functions
know about using CURSOR_OPT_PARALLEL_OK.
Finally, teach gram.y to save statement boundary locations in RawStmt
nodes, and pass those through to Query and PlannedStmt nodes. This allows
more intelligent handling of cases where a source query string contains
multiple statements. This patch doesn't actually do anything with the
information, but a follow-on patch will. (Passing this information through
cleanly is the true motivation for these changes; while I think this is all
good cleanup, it's unlikely we'd have bothered without this end goal.)
catversion bump because addition of location fields to struct Query
affects stored rules.
This patch is by me, but it owes a good deal to Fabien Coelho who did
a lot of preliminary work on the problem, and also reviewed the patch.
Discussion: https://postgr.es/m/alpine.DEB.2.20.1612200926310.29821@lancre
Commit f0e44751d added new node tags at a place in the tag numbering
where there was no daylight left before the next hard-coded number,
resulting in some duplicate tag assignments. This doesn't seem to have
caused any big problem so far, but it's surely trouble waiting to happen.
We could adjust the manually assigned breakpoints to make more room,
but that just leaves the same hazard waiting to strike again in future.
What seems like a better idea is to get rid of the manual assignments
and leave NodeTags to be automatically assigned, consecutively from one
on up. This means that any change in the tag list forces a backend-wide
recompile, but realistically that's usually needed anyway.
Discussion: https://postgr.es/m/29670.1482942811@sss.pgh.pa.us
Table partitioning is like table inheritance and reuses much of the
existing infrastructure, but there are some important differences.
The parent is called a partitioned table and is always empty; it may
not have indexes or non-inherited constraints, since those make no
sense for a relation with no data of its own. The children are called
partitions and contain all of the actual data. Each partition has an
implicit partitioning constraint. Multiple inheritance is not
allowed, and partitioning and inheritance can't be mixed. Partitions
can't have extra columns and may not allow nulls unless the parent
does. Tuples inserted into the parent are automatically routed to the
correct partition, so tuple-routing ON INSERT triggers are not needed.
Tuple routing isn't yet supported for partitions which are foreign
tables, and it doesn't handle updates that cross partition boundaries.
Currently, tables can be range-partitioned or list-partitioned. List
partitioning is limited to a single column, but range partitioning can
involve multiple columns. A partitioning "column" can be an
expression.
Because table partitioning is less general than table inheritance, it
is hoped that it will be easier to reason about properties of
partitions, and therefore that this will serve as a better foundation
for a variety of possible optimizations, including query planner
optimizations. The tuple routing based which this patch does based on
the implicit partitioning constraints is an example of this, but it
seems likely that many other useful optimizations are also possible.
Amit Langote, reviewed and tested by Robert Haas, Ashutosh Bapat,
Amit Kapila, Rajkumar Raghuwanshi, Corey Huinker, Jaime Casanova,
Rushabh Lathia, Erik Rijkers, among others. Minor revisions by me.
This is infrastructure for the complete SQL standard feature. No
support is included at this point for execution nodes or PLs. The
intent is to add that soon.
As this patch leaves things, standard syntax can create tuplestores
to contain old and/or new versions of rows affected by a statement.
References to these tuplestores are in the TriggerData structure.
C triggers can access the tuplestores directly, so they are usable,
but they cannot yet be referenced within a SQL statement.
This function has no direct callers at present, but it's convenient for
manual use in a debugger, rather than having to inspect memory and do
bit-counting in your head.
In passing, get rid of useless outBitmapset() wrapper around
_outBitmapset(); let's just export the function that does the work.
Likewise for outToken().
Ashutosh Bapat, tweaked a bit by me
Discussion: <CAFjFpRdiht8e1HTVirbubr4YzaON5iZTzFJjq909y4sU8M_6eA@mail.gmail.com>
We implement a dozen or so parameterless functions that the SQL standard
defines special syntax for. Up to now, that was done by converting them
into more or less ad-hoc constructs such as "'now'::text::date". That's
messy for multiple reasons: it exposes what should be implementation
details to users, and performance is worse than it needs to be in several
cases. To improve matters, invent a new expression node type
SQLValueFunction that can represent any of these parameterless functions.
Bump catversion because this changes stored parsetrees for rules.
Discussion: <30058.1463091294@sss.pgh.pa.us>
The original coding had three separate booleans representing partial
aggregation behavior, which was confusing, unreadable, and error-prone,
not least because the booleans weren't always listed in the same order.
It was also inadequate for the allegedly-desirable future extension to
support intermediate partial aggregation, because we'd need separate
markers for serialization and deserialization in such a case.
Merge these bools into an enum "AggSplit" to provide symbolic names for
the supported operating modes (and document what those are). By assigning
the values of the enum constants carefully, we can treat AggSplit values
as options bitmasks so that tests of what to do aren't noticeably more
expensive than before.
While at it, get rid of Aggref.aggoutputtype. That's not needed since
commit 59a3795c2 got rid of setrefs.c's special-purpose Aggref comparison
code, and it likewise seemed more confusing than helpful.
Assorted comment cleanup as well (there's still more that I want to do
in that line).
catversion bump for change in Aggref node contents. Should be the last
one for partial-aggregation changes.
Discussion: <29309.1466699160@sss.pgh.pa.us>
This patch provides a new implementation of the logic added by commit
137805f89 and later removed by 77ba61080. It differs from the original
primarily in expending much less effort per joinrel in large queries,
which it accomplishes by doing most of the matching work once per query not
once per joinrel. Hopefully, it's also less buggy and better commented.
The never-documented enable_fkey_estimates GUC remains gone.
There remains work to be done to make the selectivity estimates account
for nulls in FK referencing columns; but that was true of the original
patch as well. We may be able to address this point later in beta.
In the meantime, any error should be in the direction of overestimating
rather than underestimating joinrel sizes, which seems like the direction
we want to err in.
Tomas Vondra and Tom Lane
Discussion: <31041.1465069446@sss.pgh.pa.us>
This commit reverts 137805f89 as well as the associated commits 015e88942,
5306df283, and 68d704edb. We found multiple bugs in this feature, and
there was concern about possible planner slowdown (though to be fair,
exhibiting a very large slowdown proved difficult). The way forward
requires a considerable rewrite, which may or may not be possible to
accomplish in time for beta2. In my judgment reviewing the rewrite will
be easier to accomplish starting from a clean slate, so let's temporarily
revert what's there now. This also leaves us in a safe state if it turns
out to be necessary to postpone the rewrite to the next development cycle.
Discussion: <20160429102531.GA13701@huehner.biz>
Previously bcac23d exposed a subset of support functions, namely the
ones Kaigai found useful. In
20160304193704.elq773pyg5fyl3mi@alap3.anarazel.de I mentioned that
there's some functions missing to use the facility in an external
project.
To avoid having to add functions piecemeal, add all the functions which
are used to define READ_* and WRITE_* macros; users of the extensible
node functionality are likely to need these. Additionally expose
outDatum(), which doesn't have it's own WRITE_ macro, as it needs
information from the embedding struct.
Discussion: 20160304193704.elq773pyg5fyl3mi@alap3.anarazel.de
This introduces a new dependency type which marks an object as depending
on an extension, such that if the extension is dropped, the object
automatically goes away; and also, if the database is dumped, the object
is included in the dump output. Currently the grammar supports this for
indexes, triggers, materialized views and functions only, although the
utility code is generic so adding support for more object types is a
matter of touching the parser rules only.
Author: Abhijit Menon-Sen
Reviewed-by: Alexander Korotkov, Álvaro Herrera
Discussion: http://www.postgresql.org/message-id/20160115062649.GA5068@toroid.org
This enables external code to create access methods. This is useful so
that extensions can add their own access methods which can be formally
tracked for dependencies, so that DROP operates correctly. Also, having
explicit support makes pg_dump work correctly.
Currently only index AMs are supported, but we expect different types to
be added in the future.
Authors: Alexander Korotkov, Petr Jelínek
Reviewed-By: Teodor Sigaev, Petr Jelínek, Jim Nasby
Commitfest-URL: https://commitfest.postgresql.org/9/353/
Discussion: https://www.postgresql.org/message-id/CAPpHfdsXwZmojm6Dx+TJnpYk27kT4o7Ri6X_4OSWcByu1Rm+VA@mail.gmail.com
In commit 19a541143a09c067 I did not make PathTarget a subtype of Node,
and embedded a RelOptInfo's reltarget directly into it rather than having
a separately-allocated Node. In hindsight that was misguided
micro-optimization, enabled by the fact that at that point we didn't have
any Paths with custom PathTargets. Now that PathTarget processing has
been fleshed out some more, it's easier to see that it's better to have
PathTarget as an indepedent Node type, even if it does cost us one more
palloc to create a RelOptInfo. So change it while we still can.
This commit just changes the representation, without doing anything more
interesting than that.
I've been saying we needed to do this for more than five years, and here it
finally is. This patch removes the ever-growing tangle of spaghetti logic
that grouping_planner() used to use to try to identify the best plan for
post-scan/join query steps. Now, there is (nearly) independent
consideration of each execution step, and entirely separate construction of
Paths to represent each of the possible ways to do that step. We choose
the best Path or set of Paths using the same add_path() logic that's been
used inside query_planner() for years.
In addition, this patch removes the old restriction that subquery_planner()
could return only a single Plan. It now returns a RelOptInfo containing a
set of Paths, just as query_planner() does, and the parent query level can
use each of those Paths as the basis of a SubqueryScanPath at its level.
This allows finding some optimizations that we missed before, wherein a
subquery was capable of returning presorted data and thereby avoiding a
sort in the parent level, making the overall cost cheaper even though
delivering sorted output was not the cheapest plan for the subquery in
isolation. (A couple of regression test outputs change in consequence of
that. However, there is very little change in visible planner behavior
overall, because the point of this patch is not to get immediate planning
benefits but to create the infrastructure for future improvements.)
There is a great deal left to do here. This patch unblocks a lot of
planner work that was basically impractical in the old code structure,
such as allowing FDWs to implement remote aggregation, or rewriting
plan_set_operations() to allow consideration of multiple implementation
orders for set operations. (The latter will likely require a full
rewrite of plan_set_operations(); what I've done here is only to fix it
to return Paths not Plans.) I have also left unfinished some localized
refactoring in createplan.c and planner.c, because it was not necessary
to get this patch to a working state.
Thanks to Robert Haas, David Rowley, and Amit Kapila for review.
An extensible node is always tagged T_Extensible, but the extnodename
field identifies it more specifically; it may also include arbitrary
private data. Extensible nodes can be copied, tested for equality,
serialized, and deserialized, but the core system doesn't know
anything about them otherwise. Some extensions may find it useful to
include these nodes in fdw_private or custom_private lists in lieu of
arm-wrestling their data into a format that the core code can
understand.
Along the way, so as not to burden the authors of such extensible
node types too much, expose the functions for writing serialized
tokens, and for serializing and deserializing bitmapsets.
KaiGai Kohei, per a design suggested by me. Reviewed by Andres Freund
and by me, and further edited by me.