MERGE performs actions that modify rows in the target table
using a source table or query. MERGE provides a single SQL
statement that can conditionally INSERT/UPDATE/DELETE rows
a task that would other require multiple PL statements.
e.g.
MERGE INTO target AS t
USING source AS s
ON t.tid = s.sid
WHEN MATCHED AND t.balance > s.delta THEN
UPDATE SET balance = t.balance - s.delta
WHEN MATCHED THEN
DELETE
WHEN NOT MATCHED AND s.delta > 0 THEN
INSERT VALUES (s.sid, s.delta)
WHEN NOT MATCHED THEN
DO NOTHING;
MERGE works with regular and partitioned tables, including
column and row security enforcement, as well as support for
row, statement and transition triggers.
MERGE is optimized for OLTP and is parameterizable, though
also useful for large scale ETL/ELT. MERGE is not intended
to be used in preference to existing single SQL commands
for INSERT, UPDATE or DELETE since there is some overhead.
MERGE can be used statically from PL/pgSQL.
MERGE does not yet support inheritance, write rules,
RETURNING clauses, updatable views or foreign tables.
MERGE follows SQL Standard per the most recent SQL:2016.
Includes full tests and documentation, including full
isolation tests to demonstrate the concurrent behavior.
This version written from scratch in 2017 by Simon Riggs,
using docs and tests originally written in 2009. Later work
from Pavan Deolasee has been both complex and deep, leaving
the lead author credit now in his hands.
Extensive discussion of concurrency from Peter Geoghegan,
with thanks for the time and effort contributed.
Various issues reported via sqlsmith by Andreas Seltenreich
Authors: Pavan Deolasee, Simon Riggs
Reviewer: Peter Geoghegan, Amit Langote, Tomas Vondra, Simon Riggs
Discussion:
https://postgr.es/m/CANP8+jKitBSrB7oTgT9CY2i1ObfOt36z0XMraQc+Xrz8QB0nXA@mail.gmail.comhttps://postgr.es/m/CAH2-WzkJdBuxj9PO=2QaO9-3h3xGbQPZ34kJH=HukRekwM-GZg@mail.gmail.com
If the partition keys of input relation are part of the GROUP BY
clause, all the rows belonging to a given group come from a single
partition. This allows aggregation/grouping over a partitioned
relation to be broken down * into aggregation/grouping on each
partition. This should be no worse, and often better, than the normal
approach.
If the GROUP BY clause does not contain all the partition keys, we can
still perform partial aggregation for each partition and then finalize
aggregation after appending the partial results. This is less certain
to be a win, but it's still useful.
Jeevan Chalke, Ashutosh Bapat, Robert Haas. The larger patch series
of which this patch is a part was also reviewed and tested by Antonin
Houska, Rajkumar Raghuwanshi, David Rowley, Dilip Kumar, Konstantin
Knizhnik, Pascal Legrand, and Rafia Sabih.
Discussion: http://postgr.es/m/CAM2+6=V64_xhstVHie0Rz=KPEQnLJMZt_e314P0jaT_oJ9MR8A@mail.gmail.com
The previous code considered two tables to have the partition scheme
if the underlying columns had the same collation, but what we
actually need to compare is not the collations associated with the
column but the collation used for partitioning. Fix that.
Robert Haas and Amit Langote
Discussion: http://postgr.es/m/0f95f924-0efa-4cf5-eb5f-9a3d1bc3c33d@lab.ntt.co.jp
Up until now, we've abused grouped_rel->partial_pathlist as a place to
store partial paths that have been partially aggregate, but that's
really not correct, because a partial path for a relation is supposed
to be one which produces the correct results with the addition of only
a Gather or Gather Merge node, and these paths also require a Finalize
Aggregate step. Instead, add a new partially_group_rel which can hold
either partial paths (which need to be gathered and then have
aggregation finalized) or non-partial paths (which only need to have
aggregation finalized). This allows us to reuse generate_gather_paths
for partially_grouped_rel instead of writing new code, so that this
patch actually basically no net new code while making things cleaner,
simplifying things for pending patches for partition-wise aggregate.
Robert Haas and Jeevan Chalke. The larger patch series of which this
patch is a part was also reviewed and tested by Antonin Houska,
Rajkumar Raghuwanshi, David Rowley, Dilip Kumar, Konstantin Knizhnik,
Pascal Legrand, Rafia Sabih, and me.
Discussion: http://postgr.es/m/CA+TgmobrzFYS3+U8a_BCy3-hOvh5UyJbC18rEcYehxhpw5=ETA@mail.gmail.com
Discussion: http://postgr.es/m/CA+TgmoZyQEjdBNuoG9-wC5GQ5GrO4544Myo13dVptvx+uLg9uQ@mail.gmail.com
The previous code assumed that we'd always succeed in creating
child-joins for a joinrel for which partition-wise join was considered,
but that's not guaranteed, at least in the case where dummy rels
are involved.
Ashutosh Bapat, with some wordsmithing by me.
Discussion: http://postgr.es/m/CAFjFpRf8=uyMYYfeTBjWDMs1tR5t--FgOe2vKZPULxxdYQ4RNw@mail.gmail.com
When an UPDATE causes a row to no longer match the partition
constraint, try to move it to a different partition where it does
match the partition constraint. In essence, the UPDATE is split into
a DELETE from the old partition and an INSERT into the new one. This
can lead to surprising behavior in concurrency scenarios because
EvalPlanQual rechecks won't work as they normally did; the known
problems are documented. (There is a pending patch to improve the
situation further, but it needs more review.)
Amit Khandekar, reviewed and tested by Amit Langote, David Rowley,
Rajkumar Raghuwanshi, Dilip Kumar, Amul Sul, Thomas Munro, Álvaro
Herrera, Amit Kapila, and me. A few final revisions by me.
Discussion: http://postgr.es/m/CAJ3gD9do9o2ccQ7j7+tSgiE1REY65XRiMb=yJO3u3QhyP8EEPQ@mail.gmail.com
Introduce parallel-aware hash joins that appear in EXPLAIN plans as Parallel
Hash Join with Parallel Hash. While hash joins could already appear in
parallel queries, they were previously always parallel-oblivious and had a
partial subplan only on the outer side, meaning that the work of the inner
subplan was duplicated in every worker.
After this commit, the planner will consider using a partial subplan on the
inner side too, using the Parallel Hash node to divide the work over the
available CPU cores and combine its results in shared memory. If the join
needs to be split into multiple batches in order to respect work_mem, then
workers process different batches as much as possible and then work together
on the remaining batches.
The advantages of a parallel-aware hash join over a parallel-oblivious hash
join used in a parallel query are that it:
* avoids wasting memory on duplicated hash tables
* avoids wasting disk space on duplicated batch files
* divides the work of building the hash table over the CPUs
One disadvantage is that there is some communication between the participating
CPUs which might outweigh the benefits of parallelism in the case of small
hash tables. This is avoided by the planner's existing reluctance to supply
partial plans for small scans, but it may be necessary to estimate
synchronization costs in future if that situation changes. Another is that
outer batch 0 must be written to disk if multiple batches are required.
A potential future advantage of parallel-aware hash joins is that right and
full outer joins could be supported, since there is a single set of matched
bits for each hashtable, but that is not yet implemented.
A new GUC enable_parallel_hash is defined to control the feature, defaulting
to on.
Author: Thomas Munro
Reviewed-By: Andres Freund, Robert Haas
Tested-By: Rafia Sabih, Prabhat Sahu
Discussion:
https://postgr.es/m/CAEepm=2W=cOkiZxcg6qiFQP-dHUe09aqTrEMM7yJDrHMhDv_RA@mail.gmail.comhttps://postgr.es/m/CAEepm=37HKyJ4U6XOLi=JgfSHM3o6B-GaeO-6hkOmneTDkH+Uw@mail.gmail.com
When we create an Append node, we can spread out the workers over the
subplans instead of piling on to each subplan one at a time, which
should typically be a bit more efficient, both because the startup
cost of any plan executed entirely by one worker is paid only once and
also because of reduced contention. We can also construct Append
plans using a mix of partial and non-partial subplans, which may allow
for parallelism in places that otherwise couldn't support it.
Unfortunately, this patch doesn't handle the important case of
parallelizing UNION ALL by running each branch in a separate worker;
the executor infrastructure is added here, but more planner work is
needed.
Amit Khandekar, Robert Haas, Amul Sul, reviewed and tested by
Ashutosh Bapat, Amit Langote, Rafia Sabih, Amit Kapila, and
Rajkumar Raghuwanshi.
Discussion: http://postgr.es/m/CAJ3gD9dy0K_E8r727heqXoBmWZ83HwLFwdcaSSmBQ1+S+vRuUQ@mail.gmail.com
Up until now, we only tracked the number of parameters, which was
sufficient to allocate an array of Datums of the appropriate size,
but not sufficient to, for example, know how to serialize a Datum
stored in one of those slots. An upcoming patch wants to do that,
so add this tracking to make it possible.
Patch by me, reviewed by Tom Lane and Amit Kapila.
Discussion: http://postgr.es/m/CA+TgmoYqpxDKn8koHdW8BEKk8FMUL0=e8m2Qe=M+r0UBjr3tuQ@mail.gmail.com
The lower case spellings are C and C++ standard and are used in most
parts of the PostgreSQL sources. The upper case spellings are only used
in some files/modules. So standardize on the standard spellings.
The APIs for ICU, Perl, and Windows define their own TRUE and FALSE, so
those are left as is when using those APIs.
In code comments, we use the lower-case spelling for the C concepts and
keep the upper-case spelling for the SQL concepts.
Reviewed-by: Michael Paquier <michael.paquier@gmail.com>
Instead of joining two partitioned tables in their entirety we can, if
it is an equi-join on the partition keys, join the matching partitions
individually. This involves teaching the planner about "other join"
rels, which are related to regular join rels in the same way that
other member rels are related to baserels. This can use significantly
more CPU time and memory than regular join planning, because there may
now be a set of "other" rels not only for every base relation but also
for every join relation. In most practical cases, this probably
shouldn't be a problem, because (1) it's probably unusual to join many
tables each with many partitions using the partition keys for all
joins and (2) if you do that scenario then you probably have a big
enough machine to handle the increased memory cost of planning and (3)
the resulting plan is highly likely to be better, so what you spend in
planning you'll make up on the execution side. All the same, for now,
turn this feature off by default.
Currently, we can only perform joins between two tables whose
partitioning schemes are absolutely identical. It would be nice to
cope with other scenarios, such as extra partitions on one side or the
other with no match on the other side, but that will have to wait for
a future patch.
Ashutosh Bapat, reviewed and tested by Rajkumar Raghuwanshi, Amit
Langote, Rafia Sabih, Thomas Munro, Dilip Kumar, Antonin Houska, Amit
Khandekar, and by me. A few final adjustments by me.
Discussion: http://postgr.es/m/CAFjFpRfQ8GrQvzp3jA2wnLqrHmaXna-urjm_UY9BqXj=EaDTSA@mail.gmail.com
Discussion: http://postgr.es/m/CAFjFpRcitjfrULr5jfuKWRPsGUX0LQ0k8-yG0Qw2+1LBGNpMdw@mail.gmail.com
This is not used for anything yet, but it is necessary infrastructure
for partition-wise join and for partition pruning without constraint
exclusion.
Ashutosh Bapat, reviewed by Amit Langote and with quite a few changes,
mostly cosmetic, by me. Additional review and testing of this patch
series by Antonin Houska, Amit Khandekar, Rafia Sabih, Rajkumar
Raghuwanshi, Thomas Munro, and Dilip Kumar.
Discussion: http://postgr.es/m/CAFjFpRfneFG3H+F6BaiXemMrKF+FY-POpx3Ocy+RiH3yBmXSNw@mail.gmail.com
Flattening the partitioning hierarchy at this stage makes various
desirable optimizations difficult. The original use case for this
patch was partition-wise join, which wants to match up the partitions
in one partitioning hierarchy with those in another such hierarchy.
However, it now seems that it will also be useful in making partition
pruning work using the PartitionDesc rather than constraint exclusion,
because with a flattened expansion, we have no easy way to figure out
which PartitionDescs apply to which leaf tables in a multi-level
partition hierarchy.
As it turns out, we end up creating both rte->inh and !rte->inh RTEs
for each intermediate partitioned table, just as we previously did for
the root table. This seems unnecessary since the partitioned tables
have no storage and are not scanned. We might want to go back and
rejigger things so that no partitioned tables (including the parent)
need !rte->inh RTEs, but that seems to require some adjustments not
related to the core purpose of this patch.
Ashutosh Bapat, reviewed by me and by Amit Langote. Some final
adjustments by me.
Discussion: http://postgr.es/m/CAFjFpRd=1venqLL7oGU=C1dEkuvk2DJgvF+7uKbnPHaum1mvHQ@mail.gmail.com
The ExecReScan machinery contains various optimizations for postponing
or skipping rescans of plan subtrees; for example a HashAgg node may
conclude that it can re-use the table it built before, instead of
re-reading its input subtree. But that is wrong if the input contains
a parallel-aware table scan node, since the portion of the table scanned
by the leader process is likely to vary from one rescan to the next.
This explains the timing-dependent buildfarm failures we saw after
commit a2b70c89c.
The established mechanism for showing that a plan node's output is
potentially variable is to mark it as depending on some runtime Param.
Hence, to fix this, invent a dummy Param (one that has a PARAM_EXEC
parameter number, but carries no actual value) associated with each Gather
or GatherMerge node, mark parallel-aware nodes below that node as dependent
on that Param, and arrange for ExecReScanGather[Merge] to flag that Param
as changed whenever the Gather[Merge] node is rescanned.
This solution breaks an undocumented assumption made by the parallel
executor logic, namely that all rescans of nodes below a Gather[Merge]
will happen synchronously during the ReScan of the top node itself.
But that's fundamentally contrary to the design of the ExecReScan code,
and so was doomed to fail someday anyway (even if you want to argue
that the bug being fixed here wasn't a failure of that assumption).
A follow-on patch will address that issue. In the meantime, the worst
that's expected to happen is that given very bad timing luck, the leader
might have to do all the work during a rescan, because workers think
they have nothing to do, if they are able to start up before the eventual
ReScan of the leader's parallel-aware table scan node has reset the
shared scan state.
Although this problem exists in 9.6, there does not seem to be any way
for it to manifest there. Without GatherMerge, it seems that a plan tree
that has a rescan-short-circuiting node below Gather will always also
have one above it that will short-circuit in the same cases, preventing
the Gather from being rescanned. Hence we won't take the risk of
back-patching this change into 9.6. But v10 needs it.
Discussion: https://postgr.es/m/CAA4eK1JkByysFJNh9M349u_nNjqETuEnY_y1VUc_kJiU0bxtaQ@mail.gmail.com
Previously, if we had to estimate the number of distinct values in a
VALUES column, we fell back on the default behavior used whenever we lack
statistics, which effectively is that there are Min(# of entries, 200)
distinct values. This can be very badly off with a large VALUES list,
as noted by Jeff Janes.
We could consider actually running an ANALYZE-like scan on the VALUES,
but that seems unduly expensive, and anyway it could not deliver reliable
info if the entries are not all constants. What seems like a better choice
is to assume that the values are all distinct. This will sometimes be just
as wrong as the old code, but it seems more likely to be more nearly right
in many common cases. Also, it is more consistent with what happens in
some related cases, for example WHERE x = ANY(ARRAY[1,2,3,...,n]) and
WHERE x = ANY(VALUES (1),(2),(3),...,(n)) now are estimated similarly.
This was discussed some time ago, but consensus was it'd be better
to slip it in at the start of a development cycle not near the end.
(It should've gone into v10, really, but I forgot about it.)
Discussion: https://postgr.es/m/CAMkU=1xHkyPa8VQgGcCNg3RMFFvVxUdOpus1gKcFuvVi0w6Acg@mail.gmail.com
The executor is capable of splitting buckets during a hash join if
too much memory is being used by a small number of buckets. However,
this only helps if a bucket's population is actually divisible; if
all the hash keys are alike, the tuples still end up in the same
new bucket. This can result in an OOM failure if there are enough
inner keys with identical hash values. The planner's cost estimates
will bias it against choosing a hash join in such situations, but not
by so much that it will never do so. To mitigate the OOM hazard,
explicitly estimate the hash bucket space needed by just the inner
side's most common value, and if that would exceed work_mem then
add disable_cost to the hash cost estimate.
This approach doesn't account for the possibility that two or more
common values would share the same hash value. On the other hand,
work_mem is normally a fairly conservative bound, so that eating
two or more times that much space is probably not going to kill us.
If we have no stats about the inner side, ignore this consideration.
There was some discussion of making a conservative assumption, but that
would effectively result in disabling hash join whenever we lack stats,
which seems like an overreaction given how seldom the problem manifests
in the field.
Per a complaint from David Hinkle. Although this could be viewed
as a bug fix, the lack of similar complaints weighs against back-
patching; indeed we waited for v11 because it seemed already rather
late in the v10 cycle to be making plan choice changes like this one.
Discussion: https://postgr.es/m/32013.1487271761@sss.pgh.pa.us
Change pg_bsd_indent to follow upstream rules for placement of comments
to the right of code, and remove pgindent hack that caused comments
following #endif to not obey the general rule.
Commit e3860ffa4d wasn't actually using
the published version of pg_bsd_indent, but a hacked-up version that
tried to minimize the amount of movement of comments to the right of
code. The situation of interest is where such a comment has to be
moved to the right of its default placement at column 33 because there's
code there. BSD indent has always moved right in units of tab stops
in such cases --- but in the previous incarnation, indent was working
in 8-space tab stops, while now it knows we use 4-space tabs. So the
net result is that in about half the cases, such comments are placed
one tab stop left of before. This is better all around: it leaves
more room on the line for comment text, and it means that in such
cases the comment uniformly starts at the next 4-space tab stop after
the code, rather than sometimes one and sometimes two tabs after.
Also, ensure that comments following #endif are indented the same
as comments following other preprocessor commands such as #else.
That inconsistency turns out to have been self-inflicted damage
from a poorly-thought-through post-indent "fixup" in pgindent.
This patch is much less interesting than the first round of indent
changes, but also bulkier, so I thought it best to separate the effects.
Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org
Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
The new indent version includes numerous fixes thanks to Piotr Stefaniak.
The main changes visible in this commit are:
* Nicer formatting of function-pointer declarations.
* No longer unexpectedly removes spaces in expressions using casts,
sizeof, or offsetof.
* No longer wants to add a space in "struct structname *varname", as
well as some similar cases for const- or volatile-qualified pointers.
* Declarations using PG_USED_FOR_ASSERTS_ONLY are formatted more nicely.
* Fixes bug where comments following declarations were sometimes placed
with no space separating them from the code.
* Fixes some odd decisions for comments following case labels.
* Fixes some cases where comments following code were indented to less
than the expected column 33.
On the less good side, it now tends to put more whitespace around typedef
names that are not listed in typedefs.list. This might encourage us to
put more effort into typedef name collection; it's not really a bug in
indent itself.
There are more changes coming after this round, having to do with comment
indentation and alignment of lines appearing within parentheses. I wanted
to limit the size of the diffs to something that could be reviewed without
one's eyes completely glazing over, so it seemed better to split up the
changes as much as practical.
Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org
Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
Even though no actual tuples are ever inserted into a partitioned
table (the actual tuples are in the partitions, not the partitioned
table itself), we still need to have a ResultRelInfo for the
partitioned table, or per-statement triggers won't get fired.
Amit Langote, per a report from Rajkumar Raghuwanshi. Reviewed by me.
Discussion: http://postgr.es/m/CAKcux6%3DwYospCRY2J4XEFuVy0L41S%3Dfic7rmkbsU-GXhhSbmBg%40mail.gmail.com
If there can certainly be no more than one matching inner row for a given
outer row, then the executor can move on to the next outer row as soon as
it's found one match; there's no need to continue scanning the inner
relation for this outer row. This saves useless scanning in nestloop
and hash joins. In merge joins, it offers the opportunity to skip
mark/restore processing, because we know we have not advanced past the
first possible match for the next outer row.
Of course, the devil is in the details: the proof of uniqueness must
depend only on joinquals (not otherquals), and if we want to skip
mergejoin mark/restore then it must depend only on merge clauses.
To avoid adding more planning overhead than absolutely necessary,
the present patch errs in the conservative direction: there are cases
where inner_unique or skip_mark_restore processing could be used, but
it will not do so because it's not sure that the uniqueness proof
depended only on "safe" clauses. This could be improved later.
David Rowley, reviewed and rather heavily editorialized on by me
Discussion: https://postgr.es/m/CAApHDvqF6Sw-TK98bW48TdtFJ+3a7D2mFyZ7++=D-RyPsL76gw@mail.gmail.com
Currently, the only type of child relation is an "other member rel",
which is the child of a baserel, but in the future joins and even
upper relations may have child rels. To facilitate that, introduce
macros that test to test for particular RelOptKind values, and use
them in various places where they help to clarify the sense of a test.
(For example, a test may allow RELOPT_OTHER_MEMBER_REL either because
it intends to allow child rels, or because it intends to allow simple
rels.)
Also, remove find_childrel_top_parent, which will not work for a
child rel that is not a baserel. Instead, add a new RelOptInfo
member top_parent_relids to track the same kind of information in a
more generic manner.
Ashutosh Bapat, slightly tweaked by me. Review and testing of the
patch set from which this was taken by Rajkumar Raghuwanshi and Rafia
Sabih.
Discussion: http://postgr.es/m/CA+TgmoagTnF2yqR3PT2rv=om=wJiZ4-A+ATwdnriTGku1CLYxA@mail.gmail.com
Commit 45be99f8cd removed GatherPath's
num_workers field, but this is entirely bogus. Normally, a path's
parallel_workers flag is supposed to indicate the number of workers
that it wants, and should be 0 for a non-partial path. In that
commit, I mistakenly thought that GatherPath could also use that field
to indicate the number of workers that it would try to start, but
that's disastrous, because then it can propagate up to higher nodes in
the plan tree, which will then get incorrect rowcounts because the
parallel_workers flag is involved in computing those values. Repair
by putting the separate field back.
Report by Tomas Vondra. Patch by me, reviewed by Amit Kapila.
Discussion: http://postgr.es/m/f91b4a44-f739-04bd-c4b6-f135bd643669@2ndquadrant.com
This extends the Aggregate node with two new features: HashAggregate
can now run multiple hashtables concurrently, and a new strategy
MixedAggregate populates hashtables while doing sorted grouping.
The planner will now attempt to save as many sorts as possible when
planning grouping sets queries, while not exceeding work_mem for the
estimated combined sizes of all hashtables used. No SQL-level changes
are required. There should be no user-visible impact other than the
new EXPLAIN output and possible changes to result ordering when ORDER
BY was not used (which affected a few regression tests). The
enable_hashagg option is respected.
Author: Andrew Gierth
Reviewers: Mark Dilger, Andres Freund
Discussion: https://postgr.es/m/87vatszyhj.fsf@news-spur.riddles.org.uk
Add support for explicitly declared statistic objects (CREATE
STATISTICS), allowing collection of statistics on more complex
combinations that individual table columns. Companion commands DROP
STATISTICS and ALTER STATISTICS ... OWNER TO / SET SCHEMA / RENAME are
added too. All this DDL has been designed so that more statistic types
can be added later on, such as multivariate most-common-values and
multivariate histograms between columns of a single table, leaving room
for permitting columns on multiple tables, too, as well as expressions.
This commit only adds support for collection of n-distinct coefficient
on user-specified sets of columns in a single table. This is useful to
estimate number of distinct groups in GROUP BY and DISTINCT clauses;
estimation errors there can cause over-allocation of memory in hashed
aggregates, for instance, so it's a worthwhile problem to solve. A new
special pseudo-type pg_ndistinct is used.
(num-distinct estimation was deemed sufficiently useful by itself that
this is worthwhile even if no further statistic types are added
immediately; so much so that another version of essentially the same
functionality was submitted by Kyotaro Horiguchi:
https://postgr.es/m/20150828.173334.114731693.horiguchi.kyotaro@lab.ntt.co.jp
though this commit does not use that code.)
Author: Tomas Vondra. Some code rework by Álvaro.
Reviewed-by: Dean Rasheed, David Rowley, Kyotaro Horiguchi, Jeff Janes,
Ideriha Takeshi
Discussion: https://postgr.es/m/543AFA15.4080608@fuzzy.czhttps://postgr.es/m/20170320190220.ixlaueanxegqd5gr@alvherre.pgsql
Partitioned tables do not contain any data; only their unpartitioned
descendents need to be scanned. However, the partitioned tables still
need to be locked, even though they're not scanned. To make that
work, Append and MergeAppend relations now need to carry a list of
(unscanned) partitioned relations that must be locked, and InitPlan
must lock all partitioned result relations.
Aside from the obvious advantage of avoiding some work at execution
time, this has two other advantages. First, it may improve the
planner's decision-making in some cases since the empty relation
might throw things off. Second, it paves the way to getting rid of
the storage for partitioned tables altogether.
Amit Langote, reviewed by me.
Discussion: http://postgr.es/m/6837c359-45c4-8044-34d1-736756335a15@lab.ntt.co.jp
Like Gather, we spawn multiple workers and run the same plan in each
one; however, Gather Merge is used when each worker produces the same
output ordering and we want to preserve that output ordering while
merging together the streams of tuples from various workers. (In a
way, Gather Merge is like a hybrid of Gather and MergeAppend.)
This works out to a win if it saves us from having to perform an
expensive Sort. In cases where only a small amount of data would need
to be sorted, it may actually be faster to use a regular Gather node
and then sort the results afterward, because Gather Merge sometimes
needs to wait synchronously for tuples whereas a pure Gather generally
doesn't. But if this avoids an expensive sort then it's a win.
Rushabh Lathia, reviewed and tested by Amit Kapila, Thomas Munro,
and Neha Sharma, and reviewed and revised by me.
Discussion: http://postgr.es/m/CAGPqQf09oPX-cQRpBKS0Gq49Z+m6KBxgxd_p9gX8CKk_d75HoQ@mail.gmail.com
In combination with 569174f1be, which
taught the btree AM how to perform parallel index scans, this allows
parallel index scan plans on btree indexes. This infrastructure
should be general enough to support parallel index scans for other
index AMs as well, if someone updates them to support parallel
scans.
Amit Kapila, reviewed and tested by Anastasia Lubennikova, Tushar
Ahuja, and Haribabu Kommi, and me.
Evaluation of set returning functions (SRFs_ in the targetlist (like SELECT
generate_series(1,5)) so far was done in the expression evaluation (i.e.
ExecEvalExpr()) and projection (i.e. ExecProject/ExecTargetList) code.
This meant that most executor nodes performing projection, and most
expression evaluation functions, had to deal with the possibility that an
evaluated expression could return a set of return values.
That's bad because it leads to repeated code in a lot of places. It also,
and that's my (Andres's) motivation, made it a lot harder to implement a
more efficient way of doing expression evaluation.
To fix this, introduce a new executor node (ProjectSet) that can evaluate
targetlists containing one or more SRFs. To avoid the complexity of the old
way of handling nested expressions returning sets (e.g. having to pass up
ExprDoneCond, and dealing with arguments to functions returning sets etc.),
those SRFs can only be at the top level of the node's targetlist. The
planner makes sure (via split_pathtarget_at_srfs()) that SRF evaluation is
only necessary in ProjectSet nodes and that SRFs are only present at the
top level of the node's targetlist. If there are nested SRFs the planner
creates multiple stacked ProjectSet nodes. The ProjectSet nodes always get
input from an underlying node.
We also discussed and prototyped evaluating targetlist SRFs using ROWS
FROM(), but that turned out to be more complicated than we'd hoped.
While moving SRF evaluation to ProjectSet would allow to retain the old
"least common multiple" behavior when multiple SRFs are present in one
targetlist (i.e. continue returning rows until all SRFs are at the end of
their input at the same time), we decided to instead only return rows till
all SRFs are exhausted, returning NULL for already exhausted ones. We
deemed the previous behavior to be too confusing, unexpected and actually
not particularly useful.
As a side effect, the previously prohibited case of multiple set returning
arguments to a function, is now allowed. Not because it's particularly
desirable, but because it ends up working and there seems to be no argument
for adding code to prohibit it.
Currently the behavior for COALESCE and CASE containing SRFs has changed,
returning multiple rows from the expression, even when the SRF containing
"arm" of the expression is not evaluated. That's because the SRFs are
evaluated in a separate ProjectSet node. As that's quite confusing, we're
likely to instead prohibit SRFs in those places. But that's still being
discussed, and the code would reside in places not touched here, so that's
a task for later.
There's a lot of, now superfluous, code dealing with set return expressions
around. But as the changes to get rid of those are verbose largely boring,
it seems better for readability to keep the cleanup as a separate commit.
Author: Tom Lane and Andres Freund
Discussion: https://postgr.es/m/20160822214023.aaxz5l4igypowyri@alap3.anarazel.de
In an RLS query, we must ensure that security filter quals are evaluated
before ordinary query quals, in case the latter contain "leaky" functions
that could expose the contents of sensitive rows. The original
implementation of RLS planning ensured this by pushing the scan of a
secured table into a sub-query that it marked as a security-barrier view.
Unfortunately this results in very inefficient plans in many cases, because
the sub-query cannot be flattened and gets planned independently of the
rest of the query.
To fix, drop the use of sub-queries to enforce RLS qual order, and instead
mark each qual (RestrictInfo) with a security_level field establishing its
priority for evaluation. Quals must be evaluated in security_level order,
except that "leakproof" quals can be allowed to go ahead of quals of lower
security_level, if it's helpful to do so. This has to be enforced within
the ordering of any one list of quals to be evaluated at a table scan node,
and we also have to ensure that quals are not chosen for early evaluation
(i.e., use as an index qual or TID scan qual) if they're not allowed to go
ahead of other quals at the scan node.
This is sufficient to fix the problem for RLS quals, since we only support
RLS policies on simple tables and thus RLS quals will always exist at the
table scan level only. Eventually these qual ordering rules should be
enforced for join quals as well, which would permit improving planning for
explicit security-barrier views; but that's a task for another patch.
Note that FDWs would need to be aware of these rules --- and not, for
example, send an insecure qual for remote execution --- but since we do
not yet allow RLS policies on foreign tables, the case doesn't arise.
This will need to be addressed before we can allow such policies.
Patch by me, reviewed by Stephen Frost and Dean Rasheed.
Discussion: https://postgr.es/m/8185.1477432701@sss.pgh.pa.us
We need to scan the whole parse tree for parallel-unsafe functions.
If there are none, we'll later need to determine whether particular
subtrees contain any parallel-restricted functions. The previous coding
retained no knowledge from the first scan, even though this is very
wasteful in the common case where the query contains only parallel-safe
functions. We can bypass all of the later scans by remembering that fact.
This provides a small but measurable speed improvement when the case
applies, and shouldn't cost anything when it doesn't.
Patch by me, reviewed by Robert Haas
Discussion: <3740.1471538387@sss.pgh.pa.us>
We must not push down a foreign join when the foreign tables involved
should be accessed under different user mappings. Previously we tried
to enforce that rule literally during planning, but that meant that the
resulting plans were dependent on the current contents of the
pg_user_mapping catalog, and we had to blow away all cached plans
containing any remote join when anything at all changed in pg_user_mapping.
This could have been improved somewhat, but the fact that a syscache inval
callback has very limited info about what changed made it hard to do better
within that design. Instead, let's change the planner to not consider user
mappings per se, but to allow a foreign join if both RTEs have the same
checkAsUser value. If they do, then they necessarily will use the same
user mapping at runtime, and we don't need to know specifically which one
that is. Post-plan-time changes in pg_user_mapping no longer require any
plan invalidation.
This rule does give up some optimization ability, to wit where two foreign
table references come from views with different owners or one's from a view
and one's directly in the query, but nonetheless the same user mapping
would have applied. We'll sacrifice the first case, but to not regress
more than we have to in the second case, allow a foreign join involving
both zero and nonzero checkAsUser values if the nonzero one is the same as
the prevailing effective userID. In that case, mark the plan as only
runnable by that userID.
The plancache code already had a notion of plans being userID-specific,
in order to support RLS. It was a little confused though, in particular
lacking clarity of thought as to whether it was the rewritten query or just
the finished plan that's dependent on the userID. Rearrange that code so
that it's clearer what depends on which, and so that the same logic applies
to both RLS-injected role dependency and foreign-join-injected role
dependency.
Note that this patch doesn't remove the other issue mentioned in the
original complaint, which is that while we'll reliably stop using a foreign
join if it's disallowed in a new context, we might fail to start using a
foreign join if it's now allowed, but we previously created a generic
cached plan that didn't use one. It was agreed that the chance of winning
that way was not high enough to justify the much larger number of plan
invalidations that would have to occur if we tried to cause it to happen.
In passing, clean up randomly-varying spelling of EXPLAIN commands in
postgres_fdw.sql, and fix a COSTS ON example that had been allowed to
leak into the committed tests.
This reverts most of commits fbe5a3fb7 and 5d4171d1c, which were the
previous attempt at ensuring we wouldn't push down foreign joins that
span permissions contexts.
Etsuro Fujita and Tom Lane
Discussion: <d49c1e5b-f059-20f4-c132-e9752ee0113e@lab.ntt.co.jp>
Commit 3fc6e2d7f5 introduced new "upper"
RelOptInfo structures but didn't set consider_parallel for them
correctly, a point I completely missed when reviewing it. Later,
commit e06a38965b made the situation
worse by doing it incorrectly for the grouping relation. Try to
straighten all of that out. Along the way, get rid of the annoying
wholePlanParallelSafe flag, which was only necessarily because of
the fact that upper planning stages didn't use paths at the time
that code was written.
The most important immediate impact of these changes is that
force_parallel_mode will provide useful test coverage in quite a few
more scenarios than it did previously, but it's also necessary
preparation for fixing some problems related to subqueries.
Patch by me, reviewed by Tom Lane.
It's rather silly to make a separate pass over the tlist + HAVING qual,
and a separate set of visits to the syscache, when get_agg_clause_costs
already has all the required information in hand. This nets out as less
code as well as fewer cycles.
The original coding had three separate booleans representing partial
aggregation behavior, which was confusing, unreadable, and error-prone,
not least because the booleans weren't always listed in the same order.
It was also inadequate for the allegedly-desirable future extension to
support intermediate partial aggregation, because we'd need separate
markers for serialization and deserialization in such a case.
Merge these bools into an enum "AggSplit" to provide symbolic names for
the supported operating modes (and document what those are). By assigning
the values of the enum constants carefully, we can treat AggSplit values
as options bitmasks so that tests of what to do aren't noticeably more
expensive than before.
While at it, get rid of Aggref.aggoutputtype. That's not needed since
commit 59a3795c2 got rid of setrefs.c's special-purpose Aggref comparison
code, and it likewise seemed more confusing than helpful.
Assorted comment cleanup as well (there's still more that I want to do
in that line).
catversion bump for change in Aggref node contents. Should be the last
one for partial-aggregation changes.
Discussion: <29309.1466699160@sss.pgh.pa.us>
The original upper-planner-pathification design (commit 3fc6e2d7f5)
assumed that we could always determine during Path formation whether or not
we would need a Result plan node to perform projection of a targetlist.
That turns out not to work very well, though, because createplan.c still
has some responsibilities for choosing the specific target list associated
with sorting/grouping nodes (in particular it might choose to add resjunk
columns for sorting). We might not ever refactor that --- doing so would
push more work into Path formation, which isn't attractive --- and we
certainly won't do so for 9.6. So, while create_projection_path and
apply_projection_to_path can tell for sure what will happen if the subpath
is projection-capable, they can't tell for sure when it isn't. This is at
least a latent bug in apply_projection_to_path, which might think it can
apply a target to a non-projecting node when the node will end up computing
something different.
Also, I'd tied the creation of a ProjectionPath node to whether or not a
Result is needed, but it turns out that we sometimes need a ProjectionPath
node anyway to avoid modifying a possibly-shared subpath node. Callers had
to use create_projection_path for such cases, and we added code to them
that knew about the potential omission of a Result node and attempted to
adjust the cost estimates for that. That was uncertainly correct and
definitely ugly/unmaintainable.
To fix, have create_projection_path explicitly check whether a Result
is needed and adjust its cost estimate accordingly, though it creates
a ProjectionPath in either case. apply_projection_to_path is now mostly
just an optimized version that can avoid creating an extra Path node when
the input is known to not be shared with any other live path. (There
is one case that create_projection_path doesn't handle, which is pushing
parallel-safe expressions below a Gather node. We could make it do that
by duplicating the GatherPath, but there seems no need as yet.)
create_projection_plan still has to recheck the tlist-match condition,
which means that if the matching situation does get changed by createplan.c
then we'll have made a slightly incorrect cost estimate. But there seems
no help for that in the near term, and I doubt it occurs often enough,
let alone would change planning decisions often enough, to be worth
stressing about.
I added a "dummypp" field to ProjectionPath to track whether
create_projection_path thinks a Result is needed. This is not really
necessary as-committed because create_projection_plan doesn't look at the
flag; but it seems like a good idea to remember what we thought when
forming the cost estimate, if only for debugging purposes.
In passing, get rid of the target_parallel parameter added to
apply_projection_to_path by commit 54f5c5150. I don't think that's a good
idea because it involves callers in what should be an internal decision,
and opens us up to missing optimization opportunities if callers think they
don't need to provide a valid flag, as most don't. For the moment, this
just costs us an extra has_parallel_hazard call when planning a Gather.
If that starts to look expensive, I think a better solution would be to
teach PathTarget to carry/cache knowledge of parallel-safety of its
contents.
This patch provides a new implementation of the logic added by commit
137805f89 and later removed by 77ba61080. It differs from the original
primarily in expending much less effort per joinrel in large queries,
which it accomplishes by doing most of the matching work once per query not
once per joinrel. Hopefully, it's also less buggy and better commented.
The never-documented enable_fkey_estimates GUC remains gone.
There remains work to be done to make the selectivity estimates account
for nulls in FK referencing columns; but that was true of the original
patch as well. We may be able to address this point later in beta.
In the meantime, any error should be in the direction of overestimating
rather than underestimating joinrel sizes, which seems like the direction
we want to err in.
Tomas Vondra and Tom Lane
Discussion: <31041.1465069446@sss.pgh.pa.us>
The struct definition for PathTarget specifies that a NULL sortgrouprefs
pointer means no sortgroupref labels. While it's likely that there
should always be at least one labeled column in the places that were
unconditionally fetching through the pointer, it seems wiser to adhere to
the data structure specification and test first. Add a macro to make this
convenient. Per experimentation with running the regression tests with a
very small parallelization threshold --- the crash I observed may well
represent a bug elsewhere, but still this coding was not very robust.
Report: <20756.1465834072@sss.pgh.pa.us>
Commit b12fd41c6 added a "reltarget_has_non_vars" field to RelOptInfo,
but failed to maintain it accurately. Since its only purpose was to skip
calls to has_parallel_hazard() in the simple case where a rel's targetlist
is all Vars, and that call is really pretty cheap in that case anyway, it
seems like this is just a case of premature optimization. Let's drop the
flag and do the calls unconditionally until it's proven that we need more
smarts here.