This commit adds postgres_fdw.application_name GUC which specifies
a value for application_name configuration parameter used
when postgres_fdw establishes a connection to a foreign server.
This GUC setting always overrides application_name option of
the foreign server object. This GUC is useful when we want to
specify our own application_name per remote connection.
Previously application_name of a remote connection could be set
basically only via options of a server object. But which meant that
every session connecting to the same foreign server basically
should use the same application_name. Also if we want to change
the setting, we had to execute "ALTER SERVER ... OPTIONS ..." command.
It was inconvenient.
Author: Hayato Kuroda
Reviewed-by: Masahiro Ikeda, Fujii Masao
Discussion: https://postgr.es/m/TYCPR01MB5870D1E8B949DAF6D3B84E02F5F29@TYCPR01MB5870.jpnprd01.prod.outlook.com
postgres_fdw imported generated columns from the remote tables as plain
columns, and caused failures like "ERROR: cannot insert a non-DEFAULT
value into column "foo"" when inserting into the foreign tables, as it
tried to insert values into the generated columns. To fix, we do the
following under the assumption that generated columns in a postgres_fdw
foreign table are defined so that they represent generated columns in
the underlying remote table:
* Send DEFAULT for the generated columns to the foreign server on insert
or update, not generated column values computed on the local server.
* Add to postgresImportForeignSchema() an option "import_generated" to
include column generated expressions in the definitions of foreign
tables imported from a foreign server. The option is true by default.
The assumption seems reasonable, because that would make a query of the
postgres_fdw foreign table return values for the generated columns that
are consistent with the generated expression.
While here, fix another issue in postgresImportForeignSchema(): it tried
to include column generated expressions as column default expressions in
the foreign table definitions when the import_default option was enabled.
Per bug #16631 from Daniel Cherniy. Back-patch to v12 where generated
columns were added.
Discussion: https://postgr.es/m/16631-e929fe9db0ffc7cf%40postgresql.org
Commit 8ff1c94649 allowed TRUNCATE command to truncate foreign tables.
Previously the information about "ONLY" options specified in TRUNCATE
command were passed to the foreign data wrapper. Then postgres_fdw
constructed the TRUNCATE command to issue the remote server and
included "ONLY" options in it based on the passed information.
On the other hand, "ONLY" options specified in SELECT, UPDATE or DELETE
have no effect when accessing or modifying the remote table, i.e.,
are not passed to the foreign data wrapper. So it's inconsistent to
make only TRUNCATE command pass the "ONLY" options to the foreign data
wrapper. Therefore this commit changes the TRUNCATE command so that
it doesn't pass the "ONLY" options to the foreign data wrapper,
for the consistency with other statements. Also this commit changes
postgres_fdw so that it always doesn't include "ONLY" options in
the TRUNCATE command that it constructs.
Author: Fujii Masao
Reviewed-by: Bharath Rupireddy, Kyotaro Horiguchi, Justin Pryzby, Zhihong Yu
Discussion: https://postgr.es/m/551ed8c1-f531-818b-664a-2cecdab99cd8@oss.nttdata.com
This commit introduces new foreign data wrapper API for TRUNCATE.
It extends TRUNCATE command so that it accepts foreign tables as
the targets to truncate and invokes that API. Also it extends postgres_fdw
so that it can issue TRUNCATE command to foreign servers, by adding
new routine for that TRUNCATE API.
The information about options specified in TRUNCATE command, e.g.,
ONLY, CACADE, etc is passed to FDW via API. The list of foreign tables to
truncate is also passed to FDW. FDW truncates the foreign data sources
that the passed foreign tables specify, based on those information.
For example, postgres_fdw constructs TRUNCATE command using them
and issues it to the foreign server.
For performance, TRUNCATE command invokes the FDW routine for
TRUNCATE once per foreign server that foreign tables to truncate belong to.
Author: Kazutaka Onishi, Kohei KaiGai, slightly modified by Fujii Masao
Reviewed-by: Bharath Rupireddy, Michael Paquier, Zhihong Yu, Alvaro Herrera, Stephen Frost, Ashutosh Bapat, Amit Langote, Daniel Gustafsson, Ibrar Ahmed, Fujii Masao
Discussion: https://postgr.es/m/CAOP8fzb_gkReLput7OvOK+8NHgw-RKqNv59vem7=524krQTcWA@mail.gmail.com
Discussion: https://postgr.es/m/CAJuF6cMWDDqU-vn_knZgma+2GMaout68YUgn1uyDnexRhqqM5Q@mail.gmail.com
This implements asynchronous execution, which runs multiple parts of a
non-parallel-aware Append concurrently rather than serially to improve
performance when possible. Currently, the only node type that can be
run concurrently is a ForeignScan that is an immediate child of such an
Append. In the case where such ForeignScans access data on different
remote servers, this would run those ForeignScans concurrently, and
overlap the remote operations to be performed simultaneously, so it'll
improve the performance especially when the operations involve
time-consuming ones such as remote join and remote aggregation.
We may extend this to other node types such as joins or aggregates over
ForeignScans in the future.
This also adds the support for postgres_fdw, which is enabled by the
table-level/server-level option "async_capable". The default is false.
Robert Haas, Kyotaro Horiguchi, Thomas Munro, and myself. This commit
is mostly based on the patch proposed by Robert Haas, but also uses
stuff from the patch proposed by Kyotaro Horiguchi and from the patch
proposed by Thomas Munro. Reviewed by Kyotaro Horiguchi, Konstantin
Knizhnik, Andrey Lepikhov, Movead Li, Thomas Munro, Justin Pryzby, and
others.
Discussion: https://postgr.es/m/CA%2BTgmoaXQEt4tZ03FtQhnzeDEMzBck%2BLrni0UWHVVgOTnA6C1w%40mail.gmail.com
Discussion: https://postgr.es/m/CA%2BhUKGLBRyu0rHrDCMC4%3DRn3252gogyp1SjOgG8SEKKZv%3DFwfQ%40mail.gmail.com
Discussion: https://postgr.es/m/20200228.170650.667613673625155850.horikyota.ntt%40gmail.com
Extends the FDW API to allow batching inserts into foreign tables. That
is usually much more efficient than inserting individual rows, due to
high latency for each round-trip to the foreign server.
It was possible to implement something similar in the regular FDW API,
but it was inconvenient and there were issues with reporting the number
of actually inserted rows etc. This extends the FDW API with two new
functions:
* GetForeignModifyBatchSize - allows the FDW picking optimal batch size
* ExecForeignBatchInsert - inserts a batch of rows at once
Currently, only INSERT queries support batching. Support for DELETE and
UPDATE may be added in the future.
This also implements batching for postgres_fdw. The batch size may be
specified using "batch_size" option both at the server and table level.
The initial patch version was written by me, but it was rewritten and
improved in many ways by Takayuki Tsunakawa.
Author: Takayuki Tsunakawa
Reviewed-by: Tomas Vondra, Amit Langote
Discussion: https://postgr.es/m/20200628151002.7x5laxwpgvkyiu3q@development
The relation aliases shown in the "Relations" line for a foreign scan
didn't always agree with those used in the rest of EXPLAIN's output.
The regression test result changes appearing here provide examples.
It's really impossible for postgres_fdw to duplicate EXPLAIN's alias
assignment logic during postgresGetForeignRelSize(), because of the
de-duplication that EXPLAIN does on a global basis --- and anyway,
trying to duplicate that would be unmaintainable. Instead, just put
numeric rangetable indexes into the string, and convert those to
table names/aliases in postgresExplainForeignScan, which does have
access to the results of ruleutils.c's alias assignment logic.
Aside from being more reliable, this shifts some work from planning
to EXPLAIN, which is a good tradeoff for performance. (I also
changed from using StringInfo to using psprintf, which makes the
code slightly simpler and reduces its memory consumption.)
A kluge required by this solution is that we have to reverse-engineer
the rtoffset applied by setrefs.c. If that logic ever fails
(presumably because the member tables of a join got offset by
different amounts), we'll need some more cooperation with setrefs.c
to keep things straight. But for now, there's no need for that.
Arguably this is a back-patchable bug fix, but since this is a mostly
cosmetic issue and there have been no field complaints, I'll refrain
for now.
Discussion: https://postgr.es/m/12424.1575168015@sss.pgh.pa.us
Commit aa09cd242 modified estimate_path_cost_size() so that it reuses
cached costs of a basic foreign path for a given foreign-base/join
relation when costing pre-sorted foreign paths for that relation, but it
incorrectly re-computed retrieved_rows, an estimated number of rows
fetched from the remote side, which is needed for costing both the basic
and pre-sorted foreign paths. To fix, handle retrieved_rows the same way
as the cached costs: store in that relation's fpinfo the retrieved_rows
estimate computed for costing the basic foreign path, and reuse it when
costing the pre-sorted foreign paths. Also, reuse the rows/width
estimates stored in that relation's fpinfo when costing the pre-sorted
foreign paths, to make the code consistent.
In commit ffab494a4, to extend the costing mentioned above to the
foreign-grouping case, I made a change to add_foreign_grouping_paths() to
store in a given foreign-grouped relation's RelOptInfo the rows estimate
for that relation for reuse, but this patch makes that change unnecessary
since we already store the row estimate in that relation's fpinfo, which
this patch reuses when costing a foreign path for that relation with the
sortClause ordering; remove that change.
In passing, fix thinko in commit 7012b132d: in estimate_path_cost_size(),
the width estimate for a given foreign-grouped relation to be stored in
that relation's fpinfo was reset incorrectly when costing a basic foreign
path for that relation with local stats.
Apply the patch to HEAD only to avoid destabilizing existing plan choices.
Author: Etsuro Fujita
Discussion: https://postgr.es/m/CAPmGK17jaJLPDEkgnP2VmkOg=5wT8YQ1CqssU8JRpZ_NSE+dqQ@mail.gmail.com
foreign_grouping_ok() is willing to put fairly arbitrary expressions into
the targetlist of a remote SELECT that's doing grouping or aggregation on
the remote side, including expressions that have no foreign component to
them at all. This is possibly a bit dubious from an efficiency standpoint;
but it rises to the level of a crash-causing bug if the expression is just
a Param or non-foreign Var. In that case, the expression will necessarily
also appear in the fdw_exprs list of values we need to send to the remote
server, and then setrefs.c's set_foreignscan_references will mistakenly
replace the fdw_exprs entry with a Var referencing the targetlist result.
The root cause of this problem is bad design in commit e7cb7ee14: it put
logic into set_foreignscan_references that IMV is postgres_fdw-specific,
and yet this bug shows that it isn't postgres_fdw-specific enough. The
transformation being done on fdw_exprs assumes that fdw_exprs is to be
evaluated with the fdw_scan_tlist as input, which is not how postgres_fdw
uses it; yet it could be the right thing for some other FDW. (In the
bigger picture, setrefs.c has no business assuming this for the other
expression fields of a ForeignScan either.)
The right fix therefore would be to expand the FDW API so that the
FDW could inform setrefs.c how it intends to evaluate these various
expressions. We can't change that in the back branches though, and we
also can't just summarily change setrefs.c's behavior there, or we're
likely to break external FDWs.
As a stopgap, therefore, hack up postgres_fdw so that it won't attempt
to send targetlist entries that look exactly like the fdw_exprs entries
they'd produce. In most cases this actually produces a superior plan,
IMO, with less data needing to be transmitted and returned; so we probably
ought to think harder about whether we should ship tlist expressions at
all when they don't contain any foreign Vars or Aggs. But that's an
optimization not a bug fix so I left it for later. One case where this
produces an inferior plan is where the expression in question is actually
a GROUP BY expression: then the restriction prevents us from using remote
grouping. It might be possible to work around that (since that would
reduce to group-by-a-constant on the remote side); but it seems like a
pretty unlikely corner case, so I'm not sure it's worth expending effort
solely to improve that. In any case the right long-term answer is to fix
the API as sketched above, and then revert this hack.
Per bug #15781 from Sean Johnston. Back-patch to v10 where the problem
was introduced.
Discussion: https://postgr.es/m/15781-2601b1002bad087c@postgresql.org
The upper-planner pathification allows FDWs to arrange to push down
different types of upper-stage operations to the remote side. This
commit teaches postgres_fdw to do it for the (FINAL, NULL) upperrel,
which is responsible for doing LockRows, LIMIT, and/or ModifyTable.
This provides the ability for postgres_fdw to handle SELECT commands
so that it 1) skips the LockRows step (if any) (note that this is
safe since it performs early locking) and 2) pushes down the LIMIT
and/or OFFSET restrictions (if any) to the remote side. This doesn't
handle the INSERT/UPDATE/DELETE cases.
Author: Etsuro Fujita
Reviewed-By: Antonin Houska and Jeff Janes
Discussion: https://postgr.es/m/87pnz1aby9.fsf@news-spur.riddles.org.uk
The upper-planner pathification allows FDWs to arrange to push down
different types of upper-stage operations to the remote side. This
commit teaches postgres_fdw to do it for the (ORDERED, NULL) upperrel,
which is responsible for evaluating the query's ORDER BY ordering.
Since postgres_fdw is already able to evaluate that ordering remotely
for foreign baserels and foreign joinrels (see commit aa09cd242f et al.),
this adds support for that for foreign grouping relations.
Author: Etsuro Fujita
Reviewed-By: Antonin Houska and Jeff Janes
Discussion: https://postgr.es/m/87pnz1aby9.fsf@news-spur.riddles.org.uk
The old name of this file was never a very good indication of what it
was for. Now that there's also access/relation.h, we have a potential
confusion hazard as well, so let's rename it to something more apropos.
Per discussion, "pathnodes.h" is reasonable, since a good fraction of
the file is Path node definitions.
While at it, tweak a couple of other headers that were gratuitously
importing relation.h into modules that don't need it.
Discussion: https://postgr.es/m/7719.1548688728@sss.pgh.pa.us
If a view references a foreign table, and the foreign table has a
BEFORE INSERT trigger, then it's possible for a tuple inserted or
updated through the view to be changed such that it violates the
view's WITH CHECK OPTION constraint.
Before this commit, postgres_fdw handled this case inconsistently. A
RETURNING clause on the INSERT or UPDATE statement targeting the view
would cause the finally-inserted tuple to be read back, and the WITH
CHECK OPTION violation would throw an error. But without a RETURNING
clause, postgres_fdw would not read the final tuple back, and WITH
CHECK OPTION would not throw an error for the violation (or may throw
an error when there is no real violation). AFTER ROW triggers on the
foreign table had a similar effect as a RETURNING clause on the INSERT
or UPDATE statement.
To fix, this commit retrieves the attributes needed to enforce the
WITH CHECK OPTION constraint along with the attributes needed for the
RETURNING clause (if any) from the remote side. Thus, the WITH CHECK
OPTION constraint is always evaluated against the final tuple after
any triggers on the remote side.
This fix may be considered inconsistent with CHECK constraints
declared on foreign tables, which are not enforced locally at all
(because the constraint is on a remote object). The discussion
concluded that this difference is reasonable, because the WITH CHECK
OPTION is a constraint on the local view (not any remote object);
therefore it only makes sense to enforce its WITH CHECK OPTION
constraint locally.
Author: Etsuro Fujita
Reviewed-by: Arthur Zakirov, Stephen Frost
Discussion: https://www.postgresql.org/message-id/7eb58fab-fd3b-781b-ac33-f7cfec96021f%40lab.ntt.co.jp
Without these fixes, changes to the inserted tuple made by remote
triggers are ignored when building local RETURNING tuples.
In the core code, call ExecInitRoutingInfo at a later point from
within ExecInitPartitionInfo so that the FDW callback gets invoked
after the returning list has been built. But move CheckValidResultRel
out of ExecInitRoutingInfo so that it can happen at an earlier stage.
In postgres_fdw, refactor assorted deparsing functions to work with
the RTE rather than the PlannerInfo, which saves us having to
construct a fake PlannerInfo in cases where we don't have a real one.
Then, we can pass down a constructed RTE that yields the correct
deparse result when no real one exists. Unfortunately, this
necessitates a hack that understands how the core code manages RT
indexes for update tuple routing, which is ugly, but we don't have a
better idea right now.
Original report, analysis, and patch by Etsuro Fujita. Heavily
refactored by me. Then worked over some more by Amit Langote.
Discussion: http://postgr.es/m/5AD4882B.10002@lab.ntt.co.jp
Commit 0bf3ae88af330496517722e391e7c975e6bad219 allowed direct
foreign table modification; instead of fetching each row, updating
it locally, and then pushing the modification back to the remote
side, we would instead do all the work on the remote server via a
single remote UPDATE or DELETE command. However, that commit only
enabled this optimization when join tree consisted only of the
target table.
This change allows the same optimization when an UPDATE statement
has a FROM clause or a DELETE statement has a USING clause. This
works much like ordinary foreign join pushdown, in that the tables
must be on the same remote server, relevant parts of the query
must be pushdown-safe, and so forth.
Etsuro Fujita, reviewed by Ashutosh Bapat, Rushabh Lathia, and me.
Some formatting corrections by me.
Discussion: http://postgr.es/m/5A57193A.2080003@lab.ntt.co.jp
Discussion: http://postgr.es/m/b9cee735-62f8-6c07-7528-6364ce9347d0@lab.ntt.co.jp
Change pg_bsd_indent to follow upstream rules for placement of comments
to the right of code, and remove pgindent hack that caused comments
following #endif to not obey the general rule.
Commit e3860ffa4dd0dad0dd9eea4be9cc1412373a8c89 wasn't actually using
the published version of pg_bsd_indent, but a hacked-up version that
tried to minimize the amount of movement of comments to the right of
code. The situation of interest is where such a comment has to be
moved to the right of its default placement at column 33 because there's
code there. BSD indent has always moved right in units of tab stops
in such cases --- but in the previous incarnation, indent was working
in 8-space tab stops, while now it knows we use 4-space tabs. So the
net result is that in about half the cases, such comments are placed
one tab stop left of before. This is better all around: it leaves
more room on the line for comment text, and it means that in such
cases the comment uniformly starts at the next 4-space tab stop after
the code, rather than sometimes one and sometimes two tabs after.
Also, ensure that comments following #endif are indented the same
as comments following other preprocessor commands such as #else.
That inconsistency turns out to have been self-inflicted damage
from a poorly-thought-through post-indent "fixup" in pgindent.
This patch is much less interesting than the first round of indent
changes, but also bulkier, so I thought it best to separate the effects.
Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org
Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
Commit 0bf3ae88a encountered a need to pass the finally chosen remote qual
conditions forward from postgresGetForeignPlan to postgresPlanDirectModify.
It solved that by sticking them into the plan node's fdw_private list,
which in hindsight was a pretty bad idea. In the first place, there's no
use for those qual trees either in EXPLAIN or execution; indeed they could
never safely be used for any post-planning purposes, because they would not
get processed by setrefs.c. So they're just dead weight to carry around in
the finished plan tree, plus being an attractive nuisance for somebody who
might get the idea that they could be used that way. Secondly, because
those qual trees (sometimes) contained RestrictInfos, they created a
plan-transmission hazard for parallel query, which is how come we noticed a
problem. We dealt with that symptom in commit 28b047875, but really a more
straightforward and more efficient fix is to pass the data through in a new
field of struct PgFdwRelationInfo. So do it that way. (There's no need
to revert 28b047875, as it has sufficient reason to live anyway.)
Per fuzz testing by Andreas Seltenreich.
Discussion: https://postgr.es/m/87tw5x4vcu.fsf@credativ.de
Clauses in the lists retained by postgres_fdw during planning were
sometimes bare boolean clauses, sometimes RestrictInfos, and sometimes
a mixture of the two in the same list. The comment about that situation
didn't come close to telling the full truth, either. Aside from being
confusing, this had a couple of bad practical consequences:
* waste of planning cycles due to inability to cache per-clause selectivity
and cost estimates;
* sometimes, RestrictInfos would sneak into the fdw_private list of a
finished Plan node, causing failures if, for example, we tried to ship
the Plan tree to a parallel worker.
(It may well be that it's a bug in the parallel-query logic that we
would ever try to ship such a plan to a parallel worker, but in any
case this deserves to be cleaned up.)
To fix, rearrange so that clause lists in PgFdwRelationInfo are always
lists of RestrictInfos, and then strip the RestrictInfos at the last
minute when making a Plan node. In passing do a bit of refactoring and
comment cleanup in postgresGetForeignPlan and foreign_join_ok.
Although the messiness here dates back at least to 9.6, there's no evidence
that it causes anything worse than wasted planning cycles in 9.6, so no
back-patch for now.
Per fuzz testing by Andreas Seltenreich.
Tom Lane and Ashutosh Bapat
Discussion: https://postgr.es/m/87tw5x4vcu.fsf@credativ.de
The previous deparsing logic wasn't smart enough to produce subqueries
when deparsing; make it smart enough to do that. However, we only do
it that way when necessary, because it generates more complicated SQL
which will be harder for any humans reading the queries to understand.
Etsuro Fujita, reviewed by Ashutosh Bapat
Discussion: http://postgr.es/m/c449261a-b033-dc02-9254-2fe5b7044795@lab.ntt.co.jp
Now that the upper planner uses paths, and now that we have proper hooks
to inject paths into the upper planning process, it's possible for
foreign data wrappers to arrange to push aggregates to the remote side
instead of fetching all of the rows and aggregating them locally. This
figures to be a massive win for performance, so teach postgres_fdw to
do it.
Jeevan Chalke and Ashutosh Bapat. Reviewed by Ashutosh Bapat with
additional testing by Prabhat Sahu. Various mostly cosmetic changes
by me.
This fixes a problem which is not new, but with the advent of direct
foreign table modification in 0bf3ae88af330496517722e391e7c975e6bad219,
it's somewhat more likely to be annoying than previously. So,
arrange for a local query cancelation to propagate to the remote side.
Michael Paquier, reviewed by Etsuro Fujita. Original report by
Thom Brown.
postgres_fdw can now sent an UPDATE or DELETE statement directly to
the foreign server in simple cases, rather than sending a SELECT FOR
UPDATE statement and then updating or deleting rows one-by-one.
Etsuro Fujita, reviewed by Rushabh Lathia, Shigeru Hanada, Kyotaro
Horiguchi, Albe Laurenz, Thom Brown, and me.
If we've got a relatively straightforward join between two tables,
this pushes that join down to the remote server instead of fetching
the rows for each table and performing the join locally. Some cases
are not handled yet, such as SEMI and ANTI joins. Also, we don't
yet attempt to create presorted join paths or parameterized join
paths even though these options do get tried for a base relation
scan. Nevertheless, this seems likely to be a very significant win
in many practical cases.
Shigeru Hanada and Ashutosh Bapat, reviewed by Robert Haas, with
additional review at various points by Tom Lane, Etsuro Fujita,
KaiGai Kohei, and Jeevan Chalke.
The default fetch size of 100 rows might not be right in every
environment, so allow users to configure it.
Corey Huinker, reviewed by Kyotaro Horiguchi, Andres Freund, and me.
The code that generates a complete SQL query for a given foreign relation
was repeated in two places, and they didn't quite agree: the EXPLAIN case
left out the locking clause. Centralize the code so we get the same
behavior everywhere, and adjust calling conventions and which functions
are static vs. extern accordingly . Centralize the code so we get the same
behavior everywhere, and adjust calling conventions and which functions
are static vs. extern accordingly.
Ashutosh Bapat, reviewed and slightly adjusted by me.
The upcoming patch to allow join pushdown in postgres_fdw needs to use
this code multiple times, which requires moving it to deparse.c. That
seems like a good idea anyway, so do that now both on general principle
and to simplify the future patch.
Inspired by a patch by Shigeru Hanada and Ashutosh Bapat, but I did
it a little differently than what that patch did.
Previously, postgres_fdw's connection cache was keyed by user OID and
server OID, but this can lead to multiple connections when it's not
really necessary. In particular, if all relevant users are mapped to
the public user mapping, then their connection options are certainly
the same, so one connection can be used for all of them.
While we're cleaning things up here, drop the "server" argument to
GetConnection(), which isn't really needed. This saves a few cycles
because callers no longer have to look this up; the function itself
does, but only when establishing a new connection, not when reusing
an existing one.
Ashutosh Bapat, with a few small changes by me.
The user can whitelist specified extension(s) in the foreign server's
options, whereupon we will treat immutable functions and operators of those
extensions as candidates to be sent for remote execution.
Whitelisting an extension in this way basically promises that the extension
exists on the remote server and behaves compatibly with the local instance.
We have no way to prove that formally, so we have to rely on the user to
get it right. But this seems like something that people can usually get
right in practice.
We might in future allow functions and operators to be whitelisted
individually, but extension granularity is a very convenient special case,
so it got done first.
The patch as-committed lacks any regression tests, which is unfortunate,
but introducing dependencies on other extensions for testing purposes
would break "make installcheck" scenarios, which is worse. I have some
ideas about klugy ways around that, but it seems like material for a
separate patch. For the moment, leave the problem open.
Paul Ramsey, hacked up a bit more by me
If the join problem's entire ORDER BY clause can be pushed to the
remote server, consider a path that adds this ORDER BY clause. If
use_remote_estimate is on, we cost this path using an additional
remote EXPLAIN. If not, we just estimate that the path costs 20%
more, which is intended to be large enough that we won't request a
remote sort when it's not helpful, but small enough that we'll have
the remote side do the sort when in doubt. In some cases, the remote
sort might actually be free, because the remote query plan might
happen to produce output that is ordered the way we need, but without
remote estimates we have no way of knowing that.
It might also be useful to request sorted output from the remote side
if it enables an efficient merge join, but this patch doesn't attempt
to handle that case.
Ashutosh Bapat with revisions by me. Also reviewed by Fabrízio de Royes
Mello and Jeevan Chalke.
The newly added ON CONFLICT clause allows to specify an alternative to
raising a unique or exclusion constraint violation error when inserting.
ON CONFLICT refers to constraints that can either be specified using a
inference clause (by specifying the columns of a unique constraint) or
by naming a unique or exclusion constraint. DO NOTHING avoids the
constraint violation, without touching the pre-existing row. DO UPDATE
SET ... [WHERE ...] updates the pre-existing tuple, and has access to
both the tuple proposed for insertion and the existing tuple; the
optional WHERE clause can be used to prevent an update from being
executed. The UPDATE SET and WHERE clauses have access to the tuple
proposed for insertion using the "magic" EXCLUDED alias, and to the
pre-existing tuple using the table name or its alias.
This feature is often referred to as upsert.
This is implemented using a new infrastructure called "speculative
insertion". It is an optimistic variant of regular insertion that first
does a pre-check for existing tuples and then attempts an insert. If a
violating tuple was inserted concurrently, the speculatively inserted
tuple is deleted and a new attempt is made. If the pre-check finds a
matching tuple the alternative DO NOTHING or DO UPDATE action is taken.
If the insertion succeeds without detecting a conflict, the tuple is
deemed inserted.
To handle the possible ambiguity between the excluded alias and a table
named excluded, and for convenience with long relation names, INSERT
INTO now can alias its target table.
Bumps catversion as stored rules change.
Author: Peter Geoghegan, with significant contributions from Heikki
Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes.
Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs,
Dean Rasheed, Stephen Frost and many others.
This command provides an automated way to create foreign table definitions
that match remote tables, thereby reducing tedium and chances for error.
In this patch, we provide the necessary core-server infrastructure and
implement the feature fully in the postgres_fdw foreign-data wrapper.
Other wrappers will throw a "feature not supported" error until/unless
they are updated.
Ronan Dunklau and Michael Paquier, additional work by me
The previous coding supposed that it could consider just a single join
condition in any one parameterized path for the foreign table. But in
reality, the parameterized-path machinery forces all join clauses that are
"movable to" the foreign table to be evaluated at that node; including
clauses that we might not consider safe to send across. Such cases would
result in an Assert failure in an assert-enabled build, and otherwise in
sending an unsafe clause to the foreign server, which might result in
errors or silently-wrong answers. A lesser problem was that the
cost/rowcount estimates generated for the parameterized path failed to
account for any additional join quals that get assigned to the scan.
To fix, rewrite postgresGetForeignPaths so that it correctly collects all
the movable quals for any one outer relation when generating parameterized
paths; we'll now generate just one path per outer relation not one per join
qual. Also fix bogus assumptions in postgresGetForeignPlan and
estimate_path_cost_size that only safe-to-send join quals will be
presented.
Based on complaint from Etsuro Fujita that the path costs were being
miscalculated, though this is significantly different from his proposed
patch.
postgres_fdw tended to say "unknown error" if it tried to execute a command
on an already-dead connection, because some paths in libpq just return a
null PGresult for such cases. Out-of-memory might result in that, too.
To fix, pass the PGconn to pgfdw_report_error, and look at its
PQerrorMessage() string if we can't get anything out of the PGresult.
Also, fix the transaction-exit logic to reliably drop a dead connection.
It was attempting to do that already, but it assumed that only connection
cache entries with xact_depth > 0 needed to be examined. The folly in that
is that if we fail while issuing START TRANSACTION, we'll not have bumped
xact_depth. (At least for the case I was testing, this fix masks the
other problem; but it still seems like a good idea to have the PGconn
fallback logic.)
Per investigation of bug #9087 from Craig Lucas. Backpatch to 9.3 where
this code was introduced.