The newly added ON CONFLICT clause allows to specify an alternative to
raising a unique or exclusion constraint violation error when inserting.
ON CONFLICT refers to constraints that can either be specified using a
inference clause (by specifying the columns of a unique constraint) or
by naming a unique or exclusion constraint. DO NOTHING avoids the
constraint violation, without touching the pre-existing row. DO UPDATE
SET ... [WHERE ...] updates the pre-existing tuple, and has access to
both the tuple proposed for insertion and the existing tuple; the
optional WHERE clause can be used to prevent an update from being
executed. The UPDATE SET and WHERE clauses have access to the tuple
proposed for insertion using the "magic" EXCLUDED alias, and to the
pre-existing tuple using the table name or its alias.
This feature is often referred to as upsert.
This is implemented using a new infrastructure called "speculative
insertion". It is an optimistic variant of regular insertion that first
does a pre-check for existing tuples and then attempts an insert. If a
violating tuple was inserted concurrently, the speculatively inserted
tuple is deleted and a new attempt is made. If the pre-check finds a
matching tuple the alternative DO NOTHING or DO UPDATE action is taken.
If the insertion succeeds without detecting a conflict, the tuple is
deemed inserted.
To handle the possible ambiguity between the excluded alias and a table
named excluded, and for convenience with long relation names, INSERT
INTO now can alias its target table.
Bumps catversion as stored rules change.
Author: Peter Geoghegan, with significant contributions from Heikki
Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes.
Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs,
Dean Rasheed, Stephen Frost and many others.
Even though the main benefit of the Lehman and Yao algorithm for
btrees is that no locks need be held between page reads in an
index search, we were holding a buffer pin on each leaf page after
it was read until we were ready to read the next one. The reason
was so that we could treat this as a weak lock to create an
"interlock" with vacuum's deletion of heap line pointers, even
though our README file pointed out that this was not necessary for
a scan using an MVCC snapshot.
The main goal of this patch is to reduce the blocking of vacuum
processes by in-progress btree index scans (including a cursor
which is idle), but the code rearrangement also allows for one
less buffer content lock to be taken when a forward scan steps from
one page to the next, which results in a small but consistent
performance improvement in many workloads.
This patch leaves behavior unchanged for some cases, which can be
addressed separately so that each case can be evaluated on its own
merits. These unchanged cases are when a scan uses a non-MVCC
snapshot, an index-only scan, and a scan of a btree index for which
modifications are not WAL-logged. If later patches allow all of
these cases to drop the buffer pin after reading a leaf page, then
the btree vacuum process can be simplified; it will no longer need
the "super-exclusive" lock to delete tuples from a page.
Reviewed by Heikki Linnakangas and Kyotaro Horiguchi
While building error messages to return to the user,
BuildIndexValueDescription, ExecBuildSlotValueDescription and
ri_ReportViolation would happily include the entire key or entire row in
the result returned to the user, even if the user didn't have access to
view all of the columns being included.
Instead, include only those columns which the user is providing or which
the user has select rights on. If the user does not have any rights
to view the table or any of the columns involved then no detail is
provided and a NULL value is returned from BuildIndexValueDescription
and ExecBuildSlotValueDescription. Note that, for key cases, the user
must have access to all of the columns for the key to be shown; a
partial key will not be returned.
Further, in master only, do not return any data for cases where row
security is enabled on the relation and row security should be applied
for the user. This required a bit of refactoring and moving of things
around related to RLS- note the addition of utils/misc/rls.c.
Back-patch all the way, as column-level privileges are now in all
supported versions.
This has been assigned CVE-2014-8161, but since the issue and the patch
have already been publicized on pgsql-hackers, there's no point in trying
to hide this commit.
This commit extends the SortSupport infrastructure to allow operator
classes the option to provide abbreviated representations of Datums;
in the case of text, we abbreviate by taking the first few characters
of the strxfrm() blob. If the abbreviated comparison is insufficent
to resolve the comparison, we fall back on the normal comparator.
This can be much faster than the old way of doing sorting if the
first few bytes of the string are usually sufficient to resolve the
comparison.
There is the potential for a performance regression if all of the
strings to be sorted are identical for the first 8+ characters and
differ only in later positions; therefore, the SortSupport machinery
now provides an infrastructure to abort the use of abbreviation if
it appears that abbreviation is producing comparatively few distinct
keys. HyperLogLog, a streaming cardinality estimator, is included in
this commit and used to make that determination for text.
Peter Geoghegan, reviewed by me.
This gives an overview of what Lehman & Yao's paper is all about, so that
you can understand the rest of the README without having to read the paper.
Per discussion with Peter Geoghegan and others.
It's a false positive - the variable is only used when 'onleft' is true,
and it is initialized in that case. But the compiler doesn't necessarily
see that.
Each WAL record now carries information about the modified relation and
block(s) in a standardized format. That makes it easier to write tools that
need that information, like pg_rewind, prefetching the blocks to speed up
recovery, etc.
There's a whole new API for building WAL records, replacing the XLogRecData
chains used previously. The new API consists of XLogRegister* functions,
which are called for each buffer and chunk of data that is added to the
record. The new API also gives more control over when a full-page image is
written, by passing flags to the XLogRegisterBuffer function.
This also simplifies the XLogReadBufferForRedo() calls. The function can dig
the relation and block number from the WAL record, so they no longer need to
be passed as arguments.
For the convenience of redo routines, XLogReader now disects each WAL record
after reading it, copying the main data part and the per-block data into
MAXALIGNed buffers. The data chunks are not aligned within the WAL record,
but the redo routines can assume that the pointers returned by XLogRecGet*
functions are. Redo routines are now passed the XLogReaderState, which
contains the record in the already-disected format, instead of the plain
XLogRecord.
The new record format also makes the fixed size XLogRecord header smaller,
by removing the xl_len field. The length of the "main data" portion is now
stored at the end of the WAL record, and there's a separate header after
XLogRecord for it. The alignment padding at the end of XLogRecord is also
removed. This compansates for the fact that the new format would otherwise
be more bulky than the old format.
Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera,
Fujii Masao.
For <, <=, > and >= strategies, mark the first scan key
as already matched if scanning in an appropriate direction.
If index tuple contains no nulls we can skip the first
re-check for each tuple.
Author: Rajeev Rastogi
Reviewer: Haribabu Kommi
Rework of the code and comments by Simon Riggs
There was some confusion on how to record the case that the operation
unlinks the last non-leaf page in the branch being deleted.
_bt_unlink_halfdead_page set the "topdead" field in the WAL record to
the leaf page, but the redo routine assumed that it would be an invalid
block number in that case. This commit fixes _bt_unlink_halfdead_page to
do what the redo routine expected.
This code is new in 9.4, so backpatch there.
The initial patch for RLS mistakenly included headers associated with
the executor and planner bits in rewrite/rowsecurity.h. Per policy and
general good sense, executor headers should not be included in planner
headers or vice versa.
The include of execnodes.h was a mistaken holdover from previous
versions, while the include of relation.h was used for Relation's
definition, which should have been coming from utils/relcache.h. This
patch cleans these issues up, adds comments to the RowSecurityPolicy
struct and the RowSecurityConfigType enum, and changes Relation->rsdesc
to Relation->rd_rsdesc to follow Relation field naming convention.
Additionally, utils/rel.h was including rewrite/rowsecurity.h, which
wasn't a great idea since that was pulling in things not really needed
in utils/rel.h (which gets included in quite a few places). Instead,
use 'struct RowSecurityDesc' for the rd_rsdesc field and add comments
explaining why.
Lastly, add an include into access/nbtree/nbtsort.c for
utils/sortsupport.h, which was evidently missed due to the above mess.
Pointed out by Tom in 16970.1415838651@sss.pgh.pa.us; note that the
concerns regarding a similar situation in the custom-path commit still
need to be addressed.
xlog.c is huge, this makes it a little bit smaller, which is nice. Functions
related to putting together the WAL record are in xloginsert.c, and the
lower level stuff for managing WAL buffers and such are in xlog.c.
Also move the definition of XLogRecord to a separate header file. This
causes churn in the #includes of all the files that write WAL records, and
redo routines, but it avoids pulling in xlog.h into most places.
Reviewed by Michael Paquier, Alvaro Herrera, Andres Freund and Amit Kapila.
Every redo routine uses the same idiom to determine what to do to a page:
check if there's a backup block for it, and if not read, the buffer if the
block exists, and check its LSN. Refactor that into a common function,
XLogReadBufferForRedo, making all the redo routines shorter and more
readable.
This has no user-visible effect, and makes no changes to the WAL format.
Reviewed by Andres Freund, Alvaro Herrera, Michael Paquier.
log_newpage is used by many indexams, in addition to heap, but for
historical reasons it's always been part of the heapam rmgr. Starting with
9.3, we have another WAL record type for logging an image of a page,
XLOG_FPI. Simplify things by moving log_newpage and log_newpage_buffer to
xlog.c, and switch to using the XLOG_FPI record type.
Bump the WAL version number because the code to replay the old HEAP_NEWPAGE
records is removed.
The previous code, perhaps out of concern for avoid memory leaks, formed
the tuple in one memory context and then copied it to another memory
context. However, this doesn't appear to be necessary, since
index_form_tuple and the functions it calls take precautions against
leaking memory. In my testing, building the tuple directly inside the
sort context shaves several percent off the index build time.
Rearrange things so we do that.
Patch by me. Review by Amit Kapila, Tom Lane, Andres Freund.
The new page deletion code didn't cope with the case the target page's
right sibling was marked half-dead. It failed a sanity check which checked
that the downlinks in the parent page match the lower level, because a
half-dead page has no downlink. To cope, check for that condition, and
just give up on the deletion if it happens. The vacuum will finish the
deletion of the half-dead page when it gets there, and on the next vacuum
after that the empty can be deleted.
Reported by Jeff Janes.
I got the backup block numbers off-by-one in the commit that changed the
way incomplete-splits are handled. I blame the comments, which said
"backup block 1" and "backup block 2", even though the backup blocks
are numbered starting from 0, in the macros and functions used in replay.
Fix the comments and the code.
Per Jeff Janes' bug report about corruption caused by torn page writes.
The incorrect code is new in git master, but backpatch the comment change
down to 9.0, where the numbering in the redo-side macros was changed.
When marking a branch as half-dead, a pointer to the top of the branch is
stored in the leaf block's hi-key. During normal operation, the high key
was left in place, and the block number was just stored in the ctid field
of the high key tuple, but in WAL replay, the high key was recreated as a
truncated tuple with zero columns. For the sake of easier debugging, also
truncate the tuple in normal operation, so that the page is identical
after WAL replay. Also, rename the 'downlink' field in the WAL record to
'topparent', as that seems like a more descriptive name. And make sure
it's set to invalid when unlinking the leaf page.
Forgot to update LSN of left sibling's page, when creating a new root.
I fixed this for regular insertions and page splits earlier, but missed
new root creation.
Inserting a downlink to an internal page clears the incomplete-split flag
of the child's left sibling, so the left sibling's LSN also needs to be
updated.
With this in place, a session blocking behind another one because of
tuple locks will get a context line mentioning the relation name, tuple
TID, and operation being done on tuple. For example:
LOG: process 11367 still waiting for ShareLock on transaction 717 after 1000.108 ms
DETAIL: Process holding the lock: 11366. Wait queue: 11367.
CONTEXT: while updating tuple (0,2) in relation "foo"
STATEMENT: UPDATE foo SET value = 3;
Most usefully, the new line is displayed by log entries due to
log_lock_waits, although of course it will be printed by any other log
message as well.
Author: Christian Kruse, some tweaks by Álvaro Herrera
Reviewed-by: Amit Kapila, Andres Freund, Tom Lane, Robert Haas
Splitting a page consists of two separate steps: splitting the child page,
and inserting the downlink for the new right page to the parent. Previously,
we handled the case that you crash in between those steps with a cleanup
routine after the WAL recovery had finished, which finished the incomplete
split. However, that doesn't help if the page split is interrupted but the
database doesn't crash, so that you don't perform WAL recovery. That could
happen for example if you run out of disk space.
Remove the end-of-recovery cleanup step. Instead, when a page is split, the
left page is marked with a new INCOMPLETE_SPLIT flag, and when the downlink
is inserted to the parent, the flag is cleared again. If an insertion sees
a page with the flag set, it knows that the split was interrupted for some
reason, and inserts the missing downlink before proceeding.
I used the same approach to fix GIN and GiST split algorithms earlier. This
was the last WAL cleanup routine, so we could get rid of that whole
machinery now, but I'll leave that for a separate patch.
Reviewed by Peter Geoghegan.
In short, we don't allow a page to be deleted if it's the rightmost child
of its parent, but that situation can change after we check for it.
Problem
-------
We check that the page to be deleted is not the rightmost child of its
parent, and then lock its left sibling, the page itself, its right sibling,
and the parent, in that order. However, if the parent page is split after
the check but before acquiring the locks, the target page might become the
rightmost child, if the split happens at the right place. That leads to an
error in vacuum (I reproduced this by setting a breakpoint in debugger):
ERROR: failed to delete rightmost child 41 of block 3 in index "foo_pkey"
We currently re-check that the page is still the rightmost child, and throw
the above error if it's not. We could easily just give up rather than throw
an error, but that approach doesn't scale to half-dead pages. To recap,
although we don't normally allow deleting the rightmost child, if the page
is the *only* child of its parent, we delete the child page and mark the
parent page as half-dead in one atomic operation. But before we do that, we
check that the parent can later be deleted, by checking that it in turn is
not the rightmost child of the grandparent (potentially recursing all the
way up to the root). But the same situation can arise there - the
grandparent can be split while we're not holding the locks. We end up with
a half-dead page that we cannot delete.
To make things worse, the keyspace of the deleted page has already been
transferred to its right sibling. As the README points out, the keyspace at
the grandparent level is "out-of-whack" until the half-dead page is deleted,
and if enough tuples with keys in the transferred keyspace are inserted, the
page might get split and a downlink might be inserted into the grandparent
that is out-of-order. That might not cause any serious problem if it's
transient (as the README ponders), but is surely bad if it stays that way.
Solution
--------
This patch changes the page deletion algorithm to avoid that problem. After
checking that the topmost page in the chain of to-be-deleted pages is not
the rightmost child of its parent, and then deleting the pages from bottom
up, unlink the pages from top to bottom. This way, the intermediate stages
are similar to the intermediate stages in page splitting, and there is no
transient stage where the keyspace is "out-of-whack". The topmost page in
the to-be-deleted chain doesn't have a downlink pointing to it, like a page
split before the downlink has been inserted.
This also allows us to get rid of the cleanup step after WAL recovery, if we
crash during page deletion. The deletion will be continued at next VACUUM,
but the tree is consistent for searches and insertions at every step.
This bug is old, all supported versions are affected, but this patch is too
big to back-patch (and changes the WAL record formats of related records).
We have not heard any reports of the bug from users, so clearly it's not
easy to bump into. Maybe backpatch later, after this has had some field
testing.
Reviewed by Kevin Grittner and Peter Geoghegan.
These flushes were added in my commit d2896a9ed, which added the btree
logic that keeps a cached copy of the index metapage data in index relcache
entries. The idea was to ensure that other backends would promptly update
their cached copies after a change. However, this is not really necessary,
since _bt_getroot() has adequate defenses against believing a stale root
page link, and _bt_getrootheight() doesn't have to be 100% right.
Moreover, if it were necessary, a relcache flush would be an unreliable way
to do it, since the sinval mechanism believes that relcache flush requests
represent transactional updates, and therefore discards them on transaction
rollback. Therefore, we might as well drop these flush requests and save
the time to rebuild the whole relcache entry after a metapage change.
If we ever try to support in-place truncation of btree indexes, it might
be necessary to revisit this issue so that _bt_getroot() can't get caught
by trying to follow a metapage link to a page that no longer exists.
A possible solution to that is to make use of an smgr, rather than
relcache, inval request to force other backends to discard their cached
metapages. But for the moment this is not worth pursuing.
Since C99, it's been standard for printf and friends to accept a "z" size
modifier, meaning "whatever size size_t has". Up to now we've generally
dealt with printing size_t values by explicitly casting them to unsigned
long and using the "l" modifier; but this is really the wrong thing on
platforms where pointers are wider than longs (such as Win64). So let's
start using "z" instead. To ensure we can do that on all platforms, teach
src/port/snprintf.c to understand "z", and add a configure test to force
use of that implementation when the platform's version doesn't handle "z".
Having done that, modify a bunch of places that were using the
unsigned-long hack to use "z" instead. This patch doesn't pretend to have
gotten everyplace that could benefit, but it catches many of them. I made
an effort in particular to ensure that all uses of the same error message
text were updated together, so as not to increase the number of
translatable strings.
It's possible that this change will result in format-string warnings from
pre-C99 compilers. We might have to reconsider if there are any popular
compilers that will warn about this; but let's start by seeing what the
buildfarm thinks.
Andres Freund, with a little additional work by me
In ordinary operation, VACUUM must be careful to take a cleanup lock on
each leaf page of a btree index; this ensures that no indexscans could
still be "in flight" to heap tuples due to be deleted. (Because of
possible index-tuple motion due to concurrent page splits, it's not enough
to lock only the pages we're deleting index tuples from.) In Hot Standby,
the WAL replay process must likewise lock every leaf page. There were
several bugs in the code for that:
* The replay scan might come across unused, all-zero pages in the index.
While btree_xlog_vacuum itself did the right thing (ie, nothing) with
such pages, xlogutils.c supposed that such pages must be corrupt and
would throw an error. This accounts for various reports of replication
failures with "PANIC: WAL contains references to invalid pages". To
fix, add a ReadBufferMode value that instructs XLogReadBufferExtended
not to complain when we're doing this.
* btree_xlog_vacuum performed the extra locking if standbyState ==
STANDBY_SNAPSHOT_READY, but that's not the correct test: we won't open up
for hot standby queries until the database has reached consistency, and
we don't want to do the extra locking till then either, for fear of reading
corrupted pages (which bufmgr.c would complain about). Fix by exporting a
new function from xlog.c that will report whether we're actually in hot
standby replay mode.
* To ensure full coverage of the index in the replay scan, btvacuumscan
would emit a dummy WAL record for the last page of the index, if no
vacuuming work had been done on that page. However, if the last page
of the index is all-zero, that would result in corruption of said page,
since the functions called on it weren't prepared to handle that case.
There's no need to lock any such pages, so change the logic to target
the last normal leaf page instead.
The first two of these bugs were diagnosed by Andres Freund, the other one
by me. Fixes based on ideas from Heikki Linnakangas and myself.
This has been wrong since Hot Standby was introduced, so back-patch to 9.0.
SnapshotNow scans have the undesirable property that, in the face of
concurrent updates, the scan can fail to see either the old or the new
versions of the row. In many cases, we work around this by requiring
DDL operations to hold AccessExclusiveLock on the object being
modified; in some cases, the existing locking is inadequate and random
failures occur as a result. This commit doesn't change anything
related to locking, but will hopefully pave the way to allowing lock
strength reductions in the future.
The major issue has held us back from making this change in the past
is that taking an MVCC snapshot is significantly more expensive than
using a static special snapshot such as SnapshotNow. However, testing
of various worst-case scenarios reveals that this problem is not
severe except under fairly extreme workloads. To mitigate those
problems, we avoid retaking the MVCC snapshot for each new scan;
instead, we take a new snapshot only when invalidation messages have
been processed. The catcache machinery already requires that
invalidation messages be sent before releasing the related heavyweight
lock; else other backends might rely on locally-cached data rather
than scanning the catalog at all. Thus, making snapshot reuse
dependent on the same guarantees shouldn't break anything that wasn't
already subtly broken.
Patch by me. Review by Michael Paquier and Andres Freund.
MarkBufferDirtyHint() writes WAL, and should know if it's got a
standard buffer or not. Currently, the only callers where buffer_std
is false are related to the FSM.
In passing, rename XLOG_HINT to XLOG_FPI, which is more descriptive.
Back-patch to 9.3.
Checksums are set immediately prior to flush out of shared buffers
and checked when pages are read in again. Hint bit setting will
require full page write when block is dirtied, which causes various
infrastructure changes. Extensive comments, docs and README.
WARNING message thrown if checksum fails on non-all zeroes page;
ERROR thrown but can be disabled with ignore_checksum_failure = on.
Feature enabled by an initdb option, since transition from option off
to option on is long and complex and has not yet been implemented.
Default is not to use checksums.
Checksum used is WAL CRC-32 truncated to 16-bits.
Simon Riggs, Jeff Davis, Greg Smith
Wide input and assistance from many community members. Thank you.
Remove use of PageSetTLI() from all page manipulation functions
and adjust README to indicate change in the way we make changes
to pages. Repurpose those bytes into the pd_checksum field and
explain how that works in comments about page header.
Refactoring ahead of actual feature patch which would make use
of the checksum field, arriving later.
Jeff Davis, with comments and doc changes by Simon Riggs
Direction suggested by Robert Haas; many others providing
review comments.
This patch addresses the problem that applications currently have to
extract object names from possibly-localized textual error messages,
if they want to know for example which index caused a UNIQUE_VIOLATION
failure. It adds new error message fields to the wire protocol, which
can carry the name of a table, table column, data type, or constraint
associated with the error. (Since the protocol spec has always instructed
clients to ignore unrecognized field types, this should not create any
compatibility problem.)
Support for providing these new fields has been added to just a limited set
of error reports (mainly, those in the "integrity constraint violation"
SQLSTATE class), but we will doubtless add them to more calls in future.
Pavel Stehule, reviewed and extensively revised by Peter Geoghegan, with
additional hacking by Tom Lane.