Make nbtree treat all index tuples as having a heap TID attribute.
Index searches can distinguish duplicates by heap TID, since heap TID is
always guaranteed to be unique. This general approach has numerous
benefits for performance, and is prerequisite to teaching VACUUM to
perform "retail index tuple deletion".
Naively adding a new attribute to every pivot tuple has unacceptable
overhead (it bloats internal pages), so suffix truncation of pivot
tuples is added. This will usually truncate away the "extra" heap TID
attribute from pivot tuples during a leaf page split, and may also
truncate away additional user attributes. This can increase fan-out,
especially in a multi-column index. Truncation can only occur at the
attribute granularity, which isn't particularly effective, but works
well enough for now. A future patch may add support for truncating
"within" text attributes by generating truncated key values using new
opclass infrastructure.
Only new indexes (BTREE_VERSION 4 indexes) will have insertions that
treat heap TID as a tiebreaker attribute, or will have pivot tuples
undergo suffix truncation during a leaf page split (on-disk
compatibility with versions 2 and 3 is preserved). Upgrades to version
4 cannot be performed on-the-fly, unlike upgrades from version 2 to
version 3. contrib/amcheck continues to work with version 2 and 3
indexes, while also enforcing stricter invariants when verifying version
4 indexes. These stricter invariants are the same invariants described
by "3.1.12 Sequencing" from the Lehman and Yao paper.
A later patch will enhance the logic used by nbtree to pick a split
point. This patch is likely to negatively impact performance without
smarter choices around the precise point to split leaf pages at. Making
these two mostly-distinct sets of enhancements into distinct commits
seems like it might clarify their design, even though neither commit is
particularly useful on its own.
The maximum allowed size of new tuples is reduced by an amount equal to
the space required to store an extra MAXALIGN()'d TID in a new high key
during leaf page splits. The user-facing definition of the "1/3 of a
page" restriction is already imprecise, and so does not need to be
revised. However, there should be a compatibility note in the v12
release notes.
Author: Peter Geoghegan
Reviewed-By: Heikki Linnakangas, Alexander Korotkov
Discussion: https://postgr.es/m/CAH2-WzkVb0Kom=R+88fDFb=JSxZMFvbHVC6Mn9LJ2n=X=kS-Uw@mail.gmail.com
Use dedicated struct to represent nbtree insertion scan keys. Having a
dedicated struct makes the difference between search type scankeys and
insertion scankeys a lot clearer, and simplifies the signature of
several related functions. This is based on a suggestion by Andrey
Lepikhov.
Streamline how unique index insertions cache binary search progress.
Cache the state of in-progress binary searches within _bt_check_unique()
for later instead of having callers avoid repeating the binary search in
an ad-hoc manner. This makes it easy to add a new optimization:
_bt_check_unique() now falls out of its loop immediately in the common
case where it's already clear that there couldn't possibly be a
duplicate.
The new _bt_check_unique() scheme makes it a lot easier to manage cached
binary search effort afterwards, from within _bt_findinsertloc(). This
is needed for the upcoming patch to make nbtree tuples unique by
treating heap TID as a final tiebreaker column. Unique key binary
searches need to restore lower and upper bounds. They cannot simply
continue to use the >= lower bound as the offset to insert at, because
the heap TID tiebreaker column must be used in comparisons for the
restored binary search (unlike the original _bt_check_unique() binary
search, where scankey's heap TID column must be omitted).
Author: Peter Geoghegan, Heikki Linnakangas
Reviewed-By: Heikki Linnakangas, Andrey Lepikhov
Discussion: https://postgr.es/m/CAH2-WzmE6AhUdk9NdWBf4K3HjWXZBX3+umC7mH7+WDrKcRtsOw@mail.gmail.com
Commit 6f6a6d8b1 introduced a delay of up to 2 seconds if we're trying
to request a checkpoint but the checkpointer hasn't started yet (or,
much less likely, our kill() call fails). However buildfarm experience
shows that that's not quite enough for slow or heavily-loaded machines.
There's no good reason to assume that the checkpointer won't start
eventually, so we may as well make the timeout much longer, say 60 sec.
However, if the caller didn't say CHECKPOINT_WAIT, it seems like a bad
idea to be waiting at all, much less for as long as 60 sec. We can
remove the need for that, and make this whole thing more robust, by
adjusting the code so that the existence of a pending checkpoint
request is clear from the contents of shared memory, and making sure
that the checkpointer process will notice it at startup even if it did
not get a signal. In this way there's no need for a non-CHECKPOINT_WAIT
call to wait at all; if it can't send the signal, it can nonetheless
assume that the checkpointer will eventually service the request.
A potential downside of this change is that "kill -INT" on the checkpointer
process is no longer enough to trigger a checkpoint, should anyone be
relying on something so hacky. But there's no obvious reason to do it
like that rather than issuing a plain old CHECKPOINT command, so we'll
assume that nobody is. There doesn't seem to be a way to preserve this
undocumented quasi-feature without introducing race conditions.
Since a principal reason for messing with this is to prevent intermittent
buildfarm failures, back-patch to all supported branches.
Discussion: https://postgr.es/m/27830.1552752475@sss.pgh.pa.us
Many places need both, so this allows a few functions to take one
fewer parameter. More importantly, as soon as we add a VACUUM
option that takes a non-Boolean parameter, we need to replace
'int options' with a struct, and it seems better to think
of adding more fields to VacuumParams rather than passing around
both VacuumParams and a separate struct as well.
Patch by me, reviewed by Masahiko Sawada
Discussion: http://postgr.es/m/CA+Tgmob6g6-s50fyv8E8he7APfwCYYJ4z0wbZC2yZeSz=26CYQ@mail.gmail.com
Previously, the SERIALIZABLE isolation level prevented parallel query
from being used. Allow the two features to be used together by
sharing the leader's SERIALIZABLEXACT with parallel workers.
An extra per-SERIALIZABLEXACT LWLock is introduced to make it safe to
share, and new logic is introduced to coordinate the early release
of the SERIALIZABLEXACT required for the SXACT_FLAG_RO_SAFE
optimization, as follows:
The first backend to observe the SXACT_FLAG_RO_SAFE flag (set by
some other transaction) will 'partially release' the SERIALIZABLEXACT,
meaning that the conflicts and locks it holds are released, but the
SERIALIZABLEXACT itself will remain active because other backends
might still have a pointer to it.
Whenever any backend notices the SXACT_FLAG_RO_SAFE flag, it clears
its own MySerializableXact variable and frees local resources so that
it can skip SSI checks for the rest of the transaction. In the
special case of the leader process, it transfers the SERIALIZABLEXACT
to a new variable SavedSerializableXact, so that it can be completely
released at the end of the transaction after all workers have exited.
Remove the serializable_okay flag added to CreateParallelContext() by
commit 9da0cc35, because it's now redundant.
Author: Thomas Munro
Reviewed-by: Haribabu Kommi, Robert Haas, Masahiko Sawada, Kevin Grittner
Discussion: https://postgr.es/m/CAEepm=0gXGYhtrVDWOTHS8SQQy_=S9xo+8oCxGLWZAOoeJ=yzQ@mail.gmail.com
Commit a6417078c missed updating some comments in transam.h about
reservation of high OIDs for development purposes. Also tamp down
an over-optimistic comment there about how easy it'd be to change
FirstNormalObjectId.
Earlier, commit 09568ec3d failed to update bki.sgml for the split
between genbki.pl-assigned OIDs and those assigned during initdb.
Also fix genbki.pl so that it will complain if it overruns
that split. It's possible that doing so would have no very bad
consequences, but that's no excuse for not detecting it.
Too allow table accesses to be not directly dependent on heap, several
new abstractions are needed. Specifically:
1) Heap scans need to be generalized into table scans. Do this by
introducing TableScanDesc, which will be the "base class" for
individual AMs. This contains the AM independent fields from
HeapScanDesc.
The previous heap_{beginscan,rescan,endscan} et al. have been
replaced with a table_ version.
There's no direct replacement for heap_getnext(), as that returned
a HeapTuple, which is undesirable for a other AMs. Instead there's
table_scan_getnextslot(). But note that heap_getnext() lives on,
it's still used widely to access catalog tables.
This is achieved by new scan_begin, scan_end, scan_rescan,
scan_getnextslot callbacks.
2) The portion of parallel scans that's shared between backends need
to be able to do so without the user doing per-AM work. To achieve
that new parallelscan_{estimate, initialize, reinitialize}
callbacks are introduced, which operate on a new
ParallelTableScanDesc, which again can be subclassed by AMs.
As it is likely that several AMs are going to be block oriented,
block oriented callbacks that can be shared between such AMs are
provided and used by heap. table_block_parallelscan_{estimate,
intiialize, reinitialize} as callbacks, and
table_block_parallelscan_{nextpage, init} for use in AMs. These
operate on a ParallelBlockTableScanDesc.
3) Index scans need to be able to access tables to return a tuple, and
there needs to be state across individual accesses to the heap to
store state like buffers. That's now handled by introducing a
sort-of-scan IndexFetchTable, which again is intended to be
subclassed by individual AMs (for heap IndexFetchHeap).
The relevant callbacks for an AM are index_fetch_{end, begin,
reset} to create the necessary state, and index_fetch_tuple to
retrieve an indexed tuple. Note that index_fetch_tuple
implementations need to be smarter than just blindly fetching the
tuples for AMs that have optimizations similar to heap's HOT - the
currently alive tuple in the update chain needs to be fetched if
appropriate.
Similar to table_scan_getnextslot(), it's undesirable to continue
to return HeapTuples. Thus index_fetch_heap (might want to rename
that later) now accepts a slot as an argument. Core code doesn't
have a lot of call sites performing index scans without going
through the systable_* API (in contrast to loads of heap_getnext
calls and working directly with HeapTuples).
Index scans now store the result of a search in
IndexScanDesc->xs_heaptid, rather than xs_ctup->t_self. As the
target is not generally a HeapTuple anymore that seems cleaner.
To be able to sensible adapt code to use the above, two further
callbacks have been introduced:
a) slot_callbacks returns a TupleTableSlotOps* suitable for creating
slots capable of holding a tuple of the AMs
type. table_slot_callbacks() and table_slot_create() are based
upon that, but have additional logic to deal with views, foreign
tables, etc.
While this change could have been done separately, nearly all the
call sites that needed to be adapted for the rest of this commit
also would have been needed to be adapted for
table_slot_callbacks(), making separation not worthwhile.
b) tuple_satisfies_snapshot checks whether the tuple in a slot is
currently visible according to a snapshot. That's required as a few
places now don't have a buffer + HeapTuple around, but a
slot (which in heap's case internally has that information).
Additionally a few infrastructure changes were needed:
I) SysScanDesc, as used by systable_{beginscan, getnext} et al. now
internally uses a slot to keep track of tuples. While
systable_getnext() still returns HeapTuples, and will so for the
foreseeable future, the index API (see 1) above) now only deals with
slots.
The remainder, and largest part, of this commit is then adjusting all
scans in postgres to use the new APIs.
Author: Andres Freund, Haribabu Kommi, Alvaro Herrera
Discussion:
https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.dehttps://postgr.es/m/20160812231527.GA690404@alvherre.pgsql
... as well as its implementation from backend/access/hash/hashfunc.c to
backend/utils/hash/hashfn.c.
access/hash is the place for the hash index AM, not really appropriate
for generic facilities, which is what hash_any is; having things the old
way meant that anything using hash_any had to include the AM's include
file, pointlessly polluting its namespace with unrelated, unnecessary
cruft.
Also move the HTEqual strategy number to access/stratnum.h from
access/hash.h.
To avoid breaking third-party extension code, add an #include
"utils/hashutils.h" to access/hash.h. (An easily removed line by
committers who enjoy their asbestos suits to protect them from angry
extension authors.)
Discussion: https://postgr.es/m/201901251935.ser5e4h6djt2@alvherre.pgsql
Similarly to B-tree, GiST index access method gets support of INCLUDE
attributes. These attributes aren't used for tree navigation and aren't
present in non-leaf pages. But they are present in leaf pages and can be
fetched during index-only scan.
The point of having INCLUDE attributes in GiST indexes is slightly different
from the point of having them in B-tree. The main point of INCLUDE attributes
in B-tree is to define UNIQUE constraint over part of attributes enabled for
index-only scan. In GiST the main point of INCLUDE attributes is to use
index-only scan for attributes, whose data types don't have GiST opclasses.
Discussion: https://postgr.es/m/73A1A452-AD5F-40D4-BD61-978622FF75C1%40yandex-team.ru
Author: Andrey Borodin, with small changes by me
Reviewed-by: Andreas Karlsson
This introduces the concept of table access methods, i.e. CREATE
ACCESS METHOD ... TYPE TABLE and
CREATE TABLE ... USING (storage-engine).
No table access functionality is delegated to table AMs as of this
commit, that'll be done in following commits.
Subsequent commits will incrementally abstract table access
functionality to be routed through table access methods. That change
is too large to be reviewed & committed at once, so it'll be done
incrementally.
Docs will be updated at the end, as adding them incrementally would
likely make them less coherent, and definitely is a lot more work,
without a lot of benefit.
Table access methods are specified similar to index access methods,
i.e. pg_am.amhandler returns, as INTERNAL, a pointer to a struct with
callbacks. In contrast to index AMs that struct needs to live as long
as a backend, typically that's achieved by just returning a pointer to
a constant struct.
Psql's \d+ now displays a table's access method. That can be disabled
with HIDE_TABLEAM=true, which is mainly useful so regression tests can
be run against different AMs. It's quite possible that this behaviour
still needs to be fine tuned.
For now it's not allowed to set a table AM for a partitioned table, as
we've not resolved how partitions would inherit that. Disallowing
allows us to introduce, if we decide that's the way forward, such a
behaviour without a compatibility break.
Catversion bumped, to add the heap table AM and references to it.
Author: Haribabu Kommi, Andres Freund, Alvaro Herrera, Dimitri Golgov and others
Discussion:
https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.dehttps://postgr.es/m/20160812231527.GA690404@alvherre.pgsqlhttps://postgr.es/m/20190107235616.6lur25ph22u5u5av@alap3.anarazel.dehttps://postgr.es/m/20190304234700.w5tmhducs5wxgzls@alap3.anarazel.de
_bt_getstackbuf() is called at exactly two points following commit
efada2b8e9 (one call site is concerned with page splits, while the
other is concerned with page deletion). The parent buffer returned by
_bt_getstackbuf() is write-locked in both cases. Remove the 'access'
argument and make _bt_getstackbuf() assume that callers require a
write-lock.
When preparing a transaction in two-phase commit, a dummy PGPROC entry
holding the GID used for the transaction is registered, which gets
released once COMMIT PREPARED is run. Prior releasing its shared memory
state, all the locks taken in the prepared transaction are released
using a dedicated set of callbacks (pgstat and multixact having similar
callbacks), which may cause the locks to be released before the GID is
set free.
Hence, there is a small window where lock conflicts could happen, for
example:
- Transaction A releases its locks, still holding its GID in shared
memory.
- Transaction B held a lock which conflicted with locks of transaction
A.
- Transaction B continues its processing, reusing the same GID as
transaction A.
- Transaction B fails because of a conflicting GID, already in use by
transaction A.
This commit changes the shared memory state release so as post-commit
callbacks and predicate lock cleanup happen consistently with the shared
memory state cleanup for the dummy PGPROC entry. The race window is
small and 2PC had this issue from the start, so no backpatch is done.
On top if that fixes discussed involved ABI breakages, which are not
welcome in stable branches.
Reported-by: Oleksii Kliukin, Ildar Musin
Diagnosed-by: Oleksii Kliukin, Ildar Musin
Author: Michael Paquier
Reviewed-by: Masahiko Sawada, Oleksii Kliukin
Discussion: https://postgr.es/m/BF9B38A4-2BFF-46E8-BA87-A2D00A8047A6@hintbits.com
Since its introduction, max_wal_senders is counted as part of
max_connections when it comes to define how many connection slots can be
used for replication connections with a WAL sender context. This can
lead to confusion for some users, as it could be possible to block a
base backup or replication from happening because other backend sessions
are already taken for other purposes by an application, and
superuser-only connection slots are not a correct solution to handle
that case.
This commit makes max_wal_senders independent of max_connections for its
handling of PGPROC entries in ProcGlobal, meaning that connection slots
for WAL senders are handled using their own free queue, like autovacuum
workers and bgworkers.
One compatibility issue that this change creates is that a standby now
requires to have a value of max_wal_senders at least equal to its
primary. So, if a standby created enforces the value of
max_wal_senders to be lower than that, then this could break failovers.
Normally this should not be an issue though, as any settings of a
standby are inherited from its primary as postgresql.conf gets normally
copied as part of a base backup, so parameters would be consistent.
Author: Alexander Kukushkin
Reviewed-by: Kyotaro Horiguchi, Petr Jelínek, Masahiko Sawada, Oleksii
Kliukin
Discussion: https://postgr.es/m/CAFh8B=nBzHQeYAu0b8fjK-AF1X4+_p6GRtwG+cCgs6Vci2uRuQ@mail.gmail.com
Previously heap_getattr() returned NULL for attributes with a fast
default value (c.f. 16828d5c02), as it had no handling whatsoever
for that case.
A previous fix, 7636e5c60f, attempted to fix issues caused by this
oversight, but just expanding OLD tuples for triggers doesn't actually
solve the underlying issue.
One known consequence of this bug is that the check for HOT updates
can return the wrong result, when a previously fast-default'ed column
is set to NULL. Which in turn means that an index over a column with
fast default'ed columns might be corrupt if the underlying column(s)
allow NULLs.
Fix by handling fast default columns in heap_getattr(), remove now
superfluous expansion in GetTupleForTrigger().
Author: Andres Freund
Discussion: https://postgr.es/m/20190201162404.onngi77f26baem4g@alap3.anarazel.de
Backpatch: 11, where fast defaults were introduced
The old name of this file was never a very good indication of what it
was for. Now that there's also access/relation.h, we have a potential
confusion hazard as well, so let's rename it to something more apropos.
Per discussion, "pathnodes.h" is reasonable, since a good fraction of
the file is Path node definitions.
While at it, tweak a couple of other headers that were gratuitously
importing relation.h into modules that don't need it.
Discussion: https://postgr.es/m/7719.1548688728@sss.pgh.pa.us
There were two flags used to track the access to temporary tables and
to the temporary namespace of a session which are used to restrict
PREPARE TRANSACTION, however the first control flag is a concept
included in the second. This removes the flag for temporary table
tracking, keeping around only the one at namespace level.
Author: Michael Paquier
Reviewed-by: Álvaro Herrera
Discussion: https://postgr.es/m/20190118053126.GH1883@paquier.xyz
Given these routines are heap specific, and that there will be more
generic visibility support in via table AM, it makes sense to move the
prototypes to heapam.h (routines like HeapTupleSatisfiesVacuum will
not be exposed in a generic fashion, because they are too storage
specific).
Similarly, the code in tqual.c is specific to heap, so moving it into
access/heap/ makes sense.
Author: Andres Freund
Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
access/heapam contains functions that are very storage specific (say
heap_insert() and a lot of lower level functions), and fairly generic
infrastructure like relation_open(), heap_open() etc. In the upcoming
pluggable storage work we're introducing a layer between table
accesses in general and heapam, to allow for different storage
methods. For a bit cleaner separation it thus seems advantageous to
move generic functions like the aforementioned to their own headers.
access/relation.h will contain relation_open() etc, and access/table.h
will contain table_open() (formerly known as heap_open()). I've decided
for table.h not to include relation.h, but we might change that at a
later stage.
relation.h already exists in another directory, but the other
plausible name (rel.h) also conflicts. It'd be nice if there were a
non-conflicting name, but nobody came up with a suggestion. It's
possible that the appropriate way to address the naming conflict would
be to rename nodes/relation.h, which isn't particularly well named.
To avoid breaking a lot of extensions that just use heap_open() etc,
table.h has macros mapping the old names to the new ones, and heapam.h
includes relation, table.h. That also allows to keep the
bulk renaming of existing callers in a separate commit.
Author: Andres Freund
Discussion: https://postgr.es/m/20190111000539.xbv7s6w7ilcvm7dp@alap3.anarazel.de
Attempting to use a temporary table within a two-phase transaction is
forbidden for ages. However, there have been uncovered grounds for
a couple of other object types and commands which work on temporary
objects with two-phase commit. In short, trying to create, lock or drop
an object on a temporary schema should not be authorized within a
two-phase transaction, as it would cause its state to create
dependencies with other sessions, causing all sorts of side effects with
the existing session or other sessions spawned later on trying to use
the same temporary schema name.
Regression tests are added to cover all the grounds found, the original
report mentioned function creation, but monitoring closer there are many
other patterns with LOCK, DROP or CREATE EXTENSION which are involved.
One of the symptoms resulting in combining both is that the session
which used the temporary schema is not able to shut down completely,
waiting for being able to drop the temporary schema, something that it
cannot complete because of the two-phase transaction involved with
temporary objects. In this case the client is able to disconnect but
the session remains alive on the backend-side, potentially blocking
connection backend slots from being used. Other problems reported could
also involve server crashes.
This is back-patched down to v10, which is where 9b013dc has introduced
MyXactFlags, something that this patch relies on.
Reported-by: Alexey Bashtanov
Author: Michael Paquier
Reviewed-by: Masahiko Sawada
Discussion: https://postgr.es/m/5d910e2e-0db8-ec06-dd5f-baec420513c3@imap.cc
Backpatch-through: 10
This reverts commit c203d6cf8 and some follow-on fixes, completing the
task begun in commit 5d28c9bd7. If that feature is ever resurrected,
the code will look quite a bit different from this, so it seems best
to start from a clean slate.
The v11 branch is not touched; in that branch, the recheck_on_update
storage option remains present, but nonfunctional and undocumented.
Discussion: https://postgr.es/m/20190114223409.3tcvejfhlvbucrv5@alap3.anarazel.de
This is the genam.h equivalent of 4c850ecec6 (which removed
heapam.h from a lot of other headers). There's still a few header
includes of genam.h, but not from central headers anymore.
As a few headers are not indirectly included anymore, execnodes.h and
relscan.h need a few additional includes. Some of the depended on
types were replacable by using the underlying structs, but e.g. for
Snapshot in execnodes.h that'd have gotten more invasive than
reasonable in this commit.
Like the aforementioned commit 4c850ecec6, this requires adding new
genam.h includes to a number of backend files, which likely is also
required in a few external projects.
Author: Andres Freund
Discussion: https://postgr.es/m/20190114000701.y4ttcb74jpskkcfb@alap3.anarazel.de
We usually don't change the name of structs between the struct name
itself and the name of the typedef. Additionally, structs that are
usually used via a typedef that hides being a pointer, are commonly
suffixed Data. Change tupdesc code to follow those convention.
This is triggered by a future patch that intends to forward declare
TupleDescData in another header - keeping with the naming scheme makes
that easier to understand.
Author: Andres Freund
Discussion: https://postgr.es/m/20190114000701.y4ttcb74jpskkcfb@alap3.anarazel.de
heapam.h previously was included in a number of widely used
headers (e.g. execnodes.h, indirectly in executor.h, ...). That's
problematic on its own, as heapam.h contains a lot of low-level
details that don't need to be exposed that widely, but becomes more
problematic with the upcoming introduction of pluggable table storage
- it seems inappropriate for heapam.h to be included that widely
afterwards.
heapam.h was largely only included in other headers to get the
HeapScanDesc typedef (which was defined in heapam.h, even though
HeapScanDescData is defined in relscan.h). The better solution here
seems to be to just use the underlying struct (forward declared where
necessary). Similar for BulkInsertState.
Another problem was that LockTupleMode was used in executor.h - parts
of the file tried to cope without heapam.h, but due to the fact that
it indirectly included it, several subsequent violations of that goal
were not not noticed. We could just reuse the approach of declaring
parameters as int, but it seems nicer to move LockTupleMode to
lockoptions.h - that's not a perfect location, but also doesn't seem
bad.
As a number of files relied on implicitly included heapam.h, a
significant number of files grew an explicit include. It's quite
probably that a few external projects will need to do the same.
Author: Andres Freund
Reviewed-By: Alvaro Herrera
Discussion: https://postgr.es/m/20190114000701.y4ttcb74jpskkcfb@alap3.anarazel.de
According to README we acquire predicate locks on entry tree leafs and posting
tree roots. However, when ginFindLeafPage() is going to lock leaf in exclusive
mode, then it checks root for conflicts regardless whether it's a entry or
posting tree. Assuming that we never place predicate lock on entry tree root
(excluding corner case when root is leaf), this check is redundant. This
commit removes this check. Now, root conflict checking is controlled by
separate argument of ginFindLeafPage().
Discussion: https://postgr.es/m/CAPpHfdv7rrDyy%3DMgsaK-L9kk0AH7az0B-mdC3w3p0FSb9uoyEg%40mail.gmail.com
Author: Alexander Korotkov
Backpatch-through: 11
013ebc0a7b implements so-called GiST microvacuum. That is gistgettuple() marks
index tuples as dead when kill_prior_tuple is set. Later, when new tuple
insertion claims page space, those dead index tuples are physically deleted
from page. When this deletion is replayed on standby, it might conflict with
read-only queries. But 013ebc0a7b doesn't handle this. That may lead to
disappearance of some tuples from read-only snapshots on standby.
This commit implements resolving of conflicts between replay of GiST microvacuum
and standby queries. On the master we implement new WAL record type
XLOG_GIST_DELETE, which comprises necessary information. On stable releases
we've to be tricky to keep WAL compatibility. Information required for conflict
processing is just appended to data of XLOG_GIST_PAGE_UPDATE record. So,
PostgreSQL version, which doesn't know about conflict processing, will just
ignore that.
Reported-by: Andres Freund
Diagnosed-by: Andres Freund
Discussion: https://postgr.es/m/20181212224524.scafnlyjindmrbe6%40alap3.anarazel.de
Author: Alexander Korotkov
Backpatch-through: 9.6
The changes I made in 578b229718 assigned oids below
FirstBootstrapObjectId to objects in include/catalog/*.dat files that
did not have an oid assigned, starting at the max oid explicitly
assigned. Tom criticized that for mainly two reasons:
1) It's not clear which values are manually and which explicitly
assigned.
2) The space below FirstBootstrapObjectId gets pretty crowded, and
some PostgreSQL forks have used oids >= 9000 for their own objects,
to avoid conflicting.
Thus create a new range for objects not assigned explicit oids, but
assigned by genbki.pl. For now 1-9999 is for explicitly assigned oids,
FirstGenbkiObjectId (10000) to FirstBootstrapObjectId (1200) -1 is for
genbki.pl assigned oids, and < FirstNormalObjectId (16384) is for oids
assigned during bootstrap. It's possible that we'll have to adjust
these boundaries, but there's some headroom for now.
Add a note suggesting that oids in forks should be assigned in the
9000-9999 range.
Catversion bump for obvious reasons.
Per complaint from Tom Lane.
Author: Andres Freund
Discussion: https://postgr.es/m/16845.1544393682@sss.pgh.pa.us
When GIN vacuum deletes a posting tree page, it assumes that no concurrent
searchers can access it, thanks to ginStepRight() locking two pages at once.
However, since 9.4 searches can skip parts of posting trees descending from the
root. That leads to the risk that page is deleted and reclaimed before
concurrent search can access it.
This commit prevents the risk of above by waiting for every transaction, which
might wait to reference this page, to finish. Due to binary compatibility
we can't change GinPageOpaqueData to store corresponding transaction id.
Instead we reuse page header pd_prune_xid field, which is unused in index pages.
Discussion: https://postgr.es/m/31a702a.14dd.166c1366ac1.Coremail.chjischj%40163.com
Author: Andrey Borodin, Alexander Korotkov
Reviewed-by: Alexander Korotkov
Backpatch-through: 9.4
Skipping over the "hole" in full page images in the XLOG code was
described as being a form of compression, but this got a bit confusing
since we now have PGLZ-based compression happening, so adjust the
wording to discuss "removing" the "hole" and keeping the talk about
compression to where we're talking about using PGLZ-based compression of
the full page images.
Reviewed-By: Kyotaro Horiguchi
Discussion: https://postgr.es/m/20181127234341.GM3415@tamriel.snowman.net
recovery.conf settings are now set in postgresql.conf (or other GUC
sources). Currently, all the affected settings are PGC_POSTMASTER;
this could be refined in the future case by case.
Recovery is now initiated by a file recovery.signal. Standby mode is
initiated by a file standby.signal. The standby_mode setting is
gone. If a recovery.conf file is found, an error is issued.
The trigger_file setting has been renamed to promote_trigger_file as
part of the move.
The documentation chapter "Recovery Configuration" has been integrated
into "Server Configuration".
pg_basebackup -R now appends settings to postgresql.auto.conf and
creates a standby.signal file.
Author: Fujii Masao <masao.fujii@gmail.com>
Author: Simon Riggs <simon@2ndquadrant.com>
Author: Abhijit Menon-Sen <ams@2ndquadrant.com>
Author: Sergei Kornilov <sk@zsrv.org>
Discussion: https://www.postgresql.org/message-id/flat/607741529606767@web3g.yandex.ru/
Previously tables declared WITH OIDS, including a significant fraction
of the catalog tables, stored the oid column not as a normal column,
but as part of the tuple header.
This special column was not shown by default, which was somewhat odd,
as it's often (consider e.g. pg_class.oid) one of the more important
parts of a row. Neither pg_dump nor COPY included the contents of the
oid column by default.
The fact that the oid column was not an ordinary column necessitated a
significant amount of special case code to support oid columns. That
already was painful for the existing, but upcoming work aiming to make
table storage pluggable, would have required expanding and duplicating
that "specialness" significantly.
WITH OIDS has been deprecated since 2005 (commit ff02d0a05280e0).
Remove it.
Removing includes:
- CREATE TABLE and ALTER TABLE syntax for declaring the table to be
WITH OIDS has been removed (WITH (oids[ = true]) will error out)
- pg_dump does not support dumping tables declared WITH OIDS and will
issue a warning when dumping one (and ignore the oid column).
- restoring an pg_dump archive with pg_restore will warn when
restoring a table with oid contents (and ignore the oid column)
- COPY will refuse to load binary dump that includes oids.
- pg_upgrade will error out when encountering tables declared WITH
OIDS, they have to be altered to remove the oid column first.
- Functionality to access the oid of the last inserted row (like
plpgsql's RESULT_OID, spi's SPI_lastoid, ...) has been removed.
The syntax for declaring a table WITHOUT OIDS (or WITH (oids = false)
for CREATE TABLE) is still supported. While that requires a bit of
support code, it seems unnecessary to break applications / dumps that
do not use oids, and are explicit about not using them.
The biggest user of WITH OID columns was postgres' catalog. This
commit changes all 'magic' oid columns to be columns that are normally
declared and stored. To reduce unnecessary query breakage all the
newly added columns are still named 'oid', even if a table's column
naming scheme would indicate 'reloid' or such. This obviously
requires adapting a lot code, mostly replacing oid access via
HeapTupleGetOid() with access to the underlying Form_pg_*->oid column.
The bootstrap process now assigns oids for all oid columns in
genbki.pl that do not have an explicit value (starting at the largest
oid previously used), only oids assigned later by oids will be above
FirstBootstrapObjectId. As the oid column now is a normal column the
special bootstrap syntax for oids has been removed.
Oids are not automatically assigned during insertion anymore, all
backend code explicitly assigns oids with GetNewOidWithIndex(). For
the rare case that insertions into the catalog via SQL are called for
the new pg_nextoid() function can be used (which only works on catalog
tables).
The fact that oid columns on system tables are now normal columns
means that they will be included in the set of columns expanded
by * (i.e. SELECT * FROM pg_class will now include the table's oid,
previously it did not). It'd not technically be hard to hide oid
column by default, but that'd mean confusing behavior would either
have to be carried forward forever, or it'd cause breakage down the
line.
While it's not unlikely that further adjustments are needed, the
scope/invasiveness of the patch makes it worthwhile to get merge this
now. It's painful to maintain externally, too complicated to commit
after the code code freeze, and a dependency of a number of other
patches.
Catversion bump, for obvious reasons.
Author: Andres Freund, with contributions by John Naylor
Discussion: https://postgr.es/m/20180930034810.ywp2c7awz7opzcfr@alap3.anarazel.de
This commit completes the work prepared in 1a0586de36, splitting the
old TupleTableSlot implementation (which could store buffer, heap,
minimal and virtual slots) into four different slot types. As
described in the aforementioned commit, this is done with the goal of
making tuple table slots extensible, to allow for pluggable table
access methods.
To achieve runtime extensibility for TupleTableSlots, operations on
slots that can differ between types of slots are performed using the
TupleTableSlotOps struct provided at slot creation time. That
includes information from the size of TupleTableSlot struct to be
allocated, initialization, deforming etc. See the struct's definition
for more detailed information about callbacks TupleTableSlotOps.
I decided to rename TTSOpsBufferTuple to TTSOpsBufferHeapTuple and
ExecCopySlotTuple to ExecCopySlotHeapTuple, as that seems more
consistent with other naming introduced in recent patches.
There's plenty optimization potential in the slot implementation, but
according to benchmarking the state after this commit has similar
performance characteristics to before this set of changes, which seems
sufficient.
There's a few changes in execReplication.c that currently need to poke
through the slot abstraction, that'll be repaired once the pluggable
storage patchset provides the necessary infrastructure.
Author: Andres Freund and Ashutosh Bapat, with changes by Amit Khandekar
Discussion: https://postgr.es/m/20181105210039.hh4vvi4vwoq5ba2q@alap3.anarazel.de
The "rb" prefix is used by Ruby, so that our existing code results
in name collisions that break plruby. We discussed ways to prevent
that by adjusting dynamic linker options, but it seems that at best
we'd move the pain to other cases. Renaming to avoid the collision
is the only portable fix anyway. Fortunately, our rbtree code is
not (yet?) widely used --- in core, there's only a single usage
in GIN --- so it seems likely that we can get away with a rename.
I chose to do this basically as s/rb/rbt/g, except for places where
there already was a "t" after "rb". The patch could have been made
smaller by only touching linker-visible symbols, but it would have
resulted in oddly inconsistent-looking code. Better to make it look
like "rbt" was the plan all along.
Back-patch to v10. The rbtree.c code exists back to 9.5, but
rb_iterate() which is the actual immediate source of pain was added
in v10, so it seems like changing the names before that would have
more risk than benefit.
Per report from Pavel Raiskup.
Discussion: https://postgr.es/m/4738198.8KVIIDhgEB@nb.usersys.redhat.com
This function is able to promote a standby with this new SQL-callable
function. Execution access can be granted to non-superusers so that
failover tools can observe the principle of least privilege.
Catalog version is bumped.
Author: Laurenz Albe
Reviewed-by: Michael Paquier, Masahiko Sawada
Discussion: https://postgr.es/m/6e7c79b3ec916cf49742fb8849ed17cd87aed620.camel@cybertec.at
heaptuple.c was never a particular good fit for slot_getattr(),
slot_getsomeattrs() and slot_getmissingattrs(), but in upcoming
changes slots will be made more abstract (allowing slots that contain
different types of tuples), making it clearly the wrong place.
Note that slot_deform_tuple() remains in it's current place, as it
clearly deals with a HeapTuple. getmissingattrs() also remains, but
it's less clear that that's correct - but execTuples.c wouldn't be the
right place.
Author: Ashutosh Bapat.
Discussion: https://postgr.es/m/20180220224318.gw4oe5jadhpmcdnm@alap3.anarazel.de
Repeatedly rewriting a mapped catalog table with VACUUM FULL or
CLUSTER could cause logical decoding to fail with:
ERROR, "could not map filenode \"%s\" to relation OID"
To trigger the problem the rewritten catalog had to have live tuples
with toasted columns.
The problem was triggered as during catalog table rewrites the
heap_insert() check that prevents logical decoding information to be
emitted for system catalogs, failed to treat the new heap's toast table
as a system catalog (because the new heap is not recognized as a
catalog table via RelationIsLogicallyLogged()). The relmapper, in
contrast to the normal catalog contents, does not contain historical
information. After a single rewrite of a mapped table the new relation
is known to the relmapper, but if the table is rewritten twice before
logical decoding occurs, the relfilenode cannot be mapped to a
relation anymore. Which then leads us to error out. This only
happens for toast tables, because the main table contents aren't
re-inserted with heap_insert().
The fix is simple, add a new heap_insert() flag that prevents logical
decoding information from being emitted, and accept during decoding
that there might not be tuple data for toast tables.
Unfortunately that does not fix pre-existing logical decoding
errors. Doing so would require not throwing an error when a filenode
cannot be mapped to a relation during decoding, and that seems too
likely to hide bugs. If it's crucial to fix decoding for an existing
slot, temporarily changing the ERROR in ReorderBufferCommit() to a
WARNING appears to be the best fix.
Author: Andres Freund
Discussion: https://postgr.es/m/20180914021046.oi7dm4ra3ot2g2kt@alap3.anarazel.de
Backpatch: 9.4-, where logical decoding was introduced
Previously, a worker process would establish values for these based on
its own start time. In v10 and up, this can trivially be shown to cause
misbehavior of transaction_timestamp(), timestamp_in(), and related
functions which are (perhaps unwisely?) marked parallel-safe. It seems
likely that other behaviors might diverge from what happens in the parent
as well.
It's not as trivial to demonstrate problems in 9.6 or 9.5, but I'm sure
it's still possible, so back-patch to all branches containing parallel
worker infrastructure.
In HEAD only, mark now() and statement_timestamp() as parallel-safe
(other affected functions already were). While in theory we could
still squeeze that change into v11, it doesn't seem important enough
to force a last-minute catversion bump.
Konstantin Knizhnik, whacked around a bit by me
Discussion: https://postgr.es/m/6406dbd2-5d37-4cb6-6eb2-9c44172c7e7c@postgrespro.ru
Historically we forbade datatype-specific comparison functions from
returning INT_MIN, so that it would be safe to invert the sort order
just by negating the comparison result. However, this was never
really safe for comparison functions that directly return the result
of memcmp(), strcmp(), etc, as POSIX doesn't place any such restriction
on those library functions. Buildfarm results show that at least on
recent Linux on s390x, memcmp() actually does return INT_MIN sometimes,
causing sort failures.
The agreed-on answer is to remove this restriction and fix relevant
call sites to not make such an assumption; code such as "res = -res"
should be replaced by "INVERT_COMPARE_RESULT(res)". The same is needed
in a few places that just directly negated the result of memcmp or
strcmp.
To help find places having this problem, I've also added a compile option
to nbtcompare.c that causes some of the commonly used comparators to
return INT_MIN/INT_MAX instead of their usual -1/+1. It'd likely be
a good idea to have at least one buildfarm member running with
"-DSTRESS_SORT_INT_MIN". That's far from a complete test of course,
but it should help to prevent fresh introductions of such bugs.
This is a longstanding portability hazard, so back-patch to all supported
branches.
Discussion: https://postgr.es/m/20180928185215.ffoq2xrq5d3pafna@alap3.anarazel.de
It's inefficient to use a single slot for mapping between tuple
descriptors for multiple tuples, as previously done when using
ConvertPartitionTupleSlot(), as that means the slot's tuple descriptors
change for every tuple.
Previously we also, via ConvertPartitionTupleSlot(), built new tuples
after the mapping even in cases where we, immediately afterwards,
access individual columns again.
Refactor the code so one slot, on demand, is used for each
partition. That avoids having to change the descriptor (and allows to
use the more efficient "fixed" tuple slots). Then use slot->slot
mapping, to avoid unnecessarily forming a tuple.
As the naming between the tuple and slot mapping functions wasn't
consistent, rename them to execute_attr_map_{tuple,slot}. It's likely
that we'll also rename convert_tuples_by_* to denote that these
functions "only" build a map, but that's left for later.
Author: Amit Khandekar and Amit Langote, editorialized by me
Reviewed-By: Amit Langote, Amit Khandekar, Andres Freund
Discussion:
https://postgr.es/m/CAJ3gD9fR0wRNeAE8VqffNTyONS_UfFPRpqxhnD9Q42vZB+Jvpg@mail.gmail.comhttps://postgr.es/m/e4f9d743-cd4b-efb0-7574-da21d86a7f36%40lab.ntt.co.jp
Backpatch: -
Currently, KNN searches were supported only by GiST. SP-GiST also capable to
support them. This commit implements that support. SP-GiST scan stack is
replaced with queue, which serves as stack if no ordering is specified. KNN
support is provided for three SP-GIST opclasses: quad_point_ops, kd_point_ops
and poly_ops (catversion is bumped). Some common parts between GiST and SP-GiST
KNNs are extracted into separate functions.
Discussion: https://postgr.es/m/570825e8-47d0-4732-2bf6-88d67d2d51c8%40postgrespro.ru
Author: Nikita Glukhov, Alexander Korotkov based on GSoC work by Vlad Sterzhanov
Review: Andrey Borodin, Alexander Korotkov
The commit 620b49a1 changed the value of HASH_MAX_BITMAPS with the intent
to allow many non-unique values in hash indexes without worrying to reach
the limit of the number of overflow pages. At that time, this didn't
occur to us that it can overrun the block for smaller block sizes.
Choose the value of HASH_MAX_BITMAPS based on BLCKSZ such that it gives
the same answer as now for the cases where the overrun doesn't occur, and
some other sufficiently-value for the cases where an overrun currently
does occur. This allows us not to change the behavior in any case that
currently works, so there's really no reason for a HASH_VERSION bump.
Author: Dilip Kumar
Reviewed-by: Amit Kapila
Backpatch-through: 10
Discussion: https://postgr.es/m/CAA4eK1LtF4VmU4mx_+i72ff1MdNZ8XaJMGkt2HV8+uSWcn8t4A@mail.gmail.com