Var referencing the subselect output. While this case could possibly be made
to work, it seems not worth expending effort on. Per report from Magnus
Naeslund(f).
comment line where output as too long, and update typedefs for /lib
directory. Also fix case where identifiers were used as variable names
in the backend, but as typedefs in ecpg (favor the backend for
indenting).
Backpatch to 8.1.X.
to a subquery if the outer query is simple enough that the LIMIT can
be reflected directly to the subquery. This didn't use to be very
interesting, because a subquery that couldn't have been flattened into
the upper query was usually not going to be very responsive to
tuple_fraction anyway. But with new code that allows UNION ALL subqueries
to pay attention to tuple_fraction, this is useful to do. In particular
this lets the optimization occur when the UNION ALL is directly inside
a view.
of a relation in a flat 'joininfo' list. The former arrangement grouped
the join clauses according to the set of unjoined relids used in each;
however, profiling on test cases involving lots of joins proves that
that data structure is a net loss. It takes more time to group the
join clauses together than is saved by avoiding duplicate tests later.
It doesn't help any that there are usually not more than one or two
clauses per group ...
other_rel_list with a single array indexed by rangetable index.
This reduces find_base_rel from O(N) to O(1) without any real penalty.
While find_base_rel isn't one of the major bottlenecks in any profile
I've seen so far, it was starting to creep up on the radar screen
for complex queries --- so might as well fix it.
a new PlannerInfo struct, which is passed around instead of the bare
Query in all the planning code. This commit is essentially just a
code-beautification exercise, but it does open the door to making
larger changes to the planner data structures without having to muck
with the widely-known Query struct.
RTE of interest, rather than the whole rangetable list. This makes
the API more understandable and avoids duplicate RTE lookups. This
patch reverts no-longer-needed portions of my patch of 2004-08-19.
to eliminate unnecessary deadlocks. This commit adds SELECT ... FOR SHARE
paralleling SELECT ... FOR UPDATE. The implementation uses a new SLRU
data structure (managed much like pg_subtrans) to represent multiple-
transaction-ID sets. When more than one transaction is holding a shared
lock on a particular row, we create a MultiXactId representing that set
of transactions and store its ID in the row's XMAX. This scheme allows
an effectively unlimited number of row locks, just as we did before,
while not costing any extra overhead except when a shared lock actually
has to be shared. Still TODO: use the regular lock manager to control
the grant order when multiple backends are waiting for a row lock.
Alvaro Herrera and Tom Lane.
node, as this behavior is now better done as a bitmap OR indexscan.
This allows considerable simplification in nodeIndexscan.c itself as
well as several planner modules concerned with indexscan plan generation.
Also we can improve the sharing of code between regular and bitmap
indexscans, since they are now working with nigh-identical Plan nodes.
logic operations during planning. Seems cleaner to create two new Path
node types, instead --- this avoids duplication of cost-estimation code.
Also, create an enable_bitmapscan GUC parameter to control use of bitmap
plans.
scans, using in-memory tuple ID bitmaps as the intermediary. The planner
frontend (path creation and cost estimation) is not there yet, so none
of this code can be executed. I have tested it using some hacked planner
code that is far too ugly to see the light of day, however. Committing
now so that the bulk of the infrastructure changes go in before the tree
drifts under me.
few palloc's. I also chose to eliminate the restype and restypmod fields
entirely, since they are redundant with information stored in the node's
contained expression; re-examining the expression at need seems simpler
and more reliable than trying to keep restype/restypmod up to date.
initdb forced due to change in contents of stored rules.
Formerly, if such a clause contained no aggregate functions we mistakenly
treated it as equivalent to WHERE. Per spec it must cause the query to
be treated as a grouped query of a single group, the same as appearance
of aggregate functions would do. Also, the HAVING filter must execute
after aggregate function computation even if it itself contains no
aggregate functions.
Also performed an initial run through of upgrading our Copyright date to
extend to 2005 ... first run here was very simple ... change everything
where: grep 1996-2004 && the word 'Copyright' ... scanned through the
generated list with 'less' first, and after, to make sure that I only
picked up the right entries ...
from Sebastian Böck. The fix involves being more consistent about
when rangetable entries are copied or modified. Someday we really
need to fix this stuff to not scribble on its input data structures
in the first place...
presence of dropped columns. Document the already-presumed fact that
eref aliases in relation RTEs are supposed to have entries for dropped
columns; cause the user alias structs to have such entries too, so that
there's always a one-to-one mapping to the underlying physical attnums.
Adjust expandRTE() and related code to handle the case where a column
that is part of a JOIN has been dropped. Generalize expandRTE()'s API
so that it can be used in a couple of places that formerly rolled their
own implementation of the same logic. Fix ruleutils.c to suppress
display of aliases for columns that were dropped since the rule was made.
1. Solve the problem of not having TOAST references hiding inside composite
values by establishing the rule that toasting only goes one level deep:
a tuple can contain toasted fields, but a composite-type datum that is
to be inserted into a tuple cannot. Enforcing this in heap_formtuple
is relatively cheap and it avoids a large increase in the cost of running
the tuptoaster during final storage of a row.
2. Fix some interesting problems in expansion of inherited queries that
reference whole-row variables. We never really did this correctly before,
but it's now relatively painless to solve by expanding the parent's
whole-row Var into a RowExpr() selecting the proper columns from the
child.
If you dike out the preventive check in CheckAttributeType(),
composite-type columns now seem to actually work. However, we surely
cannot ship them like this --- without I/O for composite types, you
can't get pg_dump to dump tables containing them. So a little more
work still to do.
In the past, we used a 'Lispy' linked list implementation: a "list" was
merely a pointer to the head node of the list. The problem with that
design is that it makes lappend() and length() linear time. This patch
fixes that problem (and others) by maintaining a count of the list
length and a pointer to the tail node along with each head node pointer.
A "list" is now a pointer to a structure containing some meta-data
about the list; the head and tail pointers in that structure refer
to ListCell structures that maintain the actual linked list of nodes.
The function names of the list API have also been changed to, I hope,
be more logically consistent. By default, the old function names are
still available; they will be disabled-by-default once the rest of
the tree has been updated to use the new API names.
rather than allowing them only in a few special cases as before. In
particular you can now pass a ROW() construct to a function that accepts
a rowtype parameter. Internal generation of RowExprs fixes a number of
corner cases that used to not work very well, such as referencing the
whole-row result of a JOIN or subquery. This represents a further step in
the work I started a month or so back to make rowtype values into
first-class citizens.
for sure...). Rather than relying on the query context of a rangetable
entry to identify what permissions it wants checked, store a full AclMode
mask in each RTE, and check exactly those bits. This allows an RTE
specifying, say, INSERT privilege on a view to be copied into a derived
UPDATE query without changing meaning. Per recent discussion thread.
initdb forced due to change of stored rule representation.
join conditions in which each OR subclause includes a constraint on
the same relation. This implements the other useful side-effect of
conversion to CNF format, without its unpleasant side-effects. As
per pghackers discussion of a few weeks ago.
a join in its subselect. In this situation we *must* build a bushy
plan because there are no valid left-sided or right-sided join trees.
Accordingly, hoary sanity check needs an update. Per report from
Alessandro Depase.
yet, though). Avoid using nth() to fetch tlist entries; provide a
common routine get_tle_by_resno() to search a tlist for a particular
resno. This replaces a couple uses of nth() and a dozen hand-coded
search loops. Also, replace a few uses of nth(length-1, list) with
llast().
node emits only those vars that are actually needed above it in the
plan tree. (There were comments in the code suggesting that this was
done at some point in the dim past, but for a long time we have just
made join nodes emit everything that either input emitted.) Aside from
being marginally more efficient, this fixes the problem noted by Peter
Eisentraut where a join above an IN-implemented-as-join might fail,
because the subplan targetlist constructed in the latter case didn't
meet the expectation of including everything.
Along the way, fix some places that were O(N^2) in the targetlist
length. This is not all the trouble spots for wide queries by any
means, but it's a step forward.
into a UNION that has some type coercions applied to the component
queries, so long as the qual itself does not reference any columns that
have such coercions. Per example from Jonathan Bartlett 24-Apr-03.
refers to a non-DISTINCT output column of a DISTINCT ON subquery, or
if it refers to a function-returning-set, we cannot push it down.
But the old implementation refused to push down *any* quals if the
subquery had any such 'dangerous' outputs. Now we just look at the
output columns actually referenced by each qual expression. More code
than before, but probably no slower since we don't make unnecessary checks.
utility statement (DeclareCursorStmt) with a SELECT query dangling from
it, rather than a SELECT query with a few unusual fields in it. Add
code to determine whether a planned query can safely be run backwards.
If DECLARE CURSOR specifies SCROLL, ensure that the plan can be run
backwards by adding a Materialize plan node if it can't. Without SCROLL,
you get an error if you try to fetch backwards from a cursor that can't
handle it. (There is still some discussion about what the exact
behavior should be, but this is necessary infrastructure in any case.)
Along the way, make EXPLAIN DECLARE CURSOR work.
the outer query. (The implementation is a bit klugy, but it would take
nontrivial restructuring to make it nicer, which this is probably not
worth.) This avoids unnecessary sort steps in examples like
SELECT foo,count(*) FROM (SELECT ... ORDER BY foo,bar) sub GROUP BY foo
which means there is now a reasonable technique for controlling the
order of inputs to custom aggregates, even in the grouping case.
necessarily following the JOIN syntax to develop the query plan. The old
behavior is still available by setting GUC variable JOIN_COLLAPSE_LIMIT
to 1. Also create a GUC variable FROM_COLLAPSE_LIMIT to control the
similar decision about when to collapse sub-SELECT lists into their parent
lists. (This behavior existed already, but the limit was always
GEQO_THRESHOLD/2; now it's separately adjustable.)
There are two implementation techniques: the executor understands a new
JOIN_IN jointype, which emits at most one matching row per left-hand row,
or the result of the IN's sub-select can be fed through a DISTINCT filter
and then joined as an ordinary relation.
Along the way, some minor code cleanup in the optimizer; notably, break
out most of the jointree-rearrangement preprocessing in planner.c and
put it in a new file prep/prepjointree.c.