We've supported parallel aggregation since e06a38965. At the time, we
didn't quite get around to also adding parallel DISTINCT. So, let's do
that now.
This is implemented by introducing a two-phase DISTINCT. Phase 1 is
performed on parallel workers, rows are made distinct there either by
hashing or by sort/unique. The results from the parallel workers are
combined and the final distinct phase is performed serially to get rid of
any duplicate rows that appear due to combining rows for each of the
parallel workers.
Author: David Rowley
Reviewed-by: Zhihong Yu
Discussion: https://postgr.es/m/CAApHDvrjRxVKwQN0he79xS+9wyotFXL=RmoWqGGO2N45Farpgw@mail.gmail.com
For partitioned tables with large numbers of partitions where queries are
able to prune all but a very small number of partitions, the time spent in
the planner looping over RelOptInfo.part_rels checking for non-NULL
RelOptInfos could become a large portion of the overall planning time.
Here we add a Bitmapset that records the non-pruned partitions. This
allows us to more efficiently skip the pruned partitions by looping over
the Bitmapset.
This will cause a very slight slow down in cases where no or not many
partitions could be pruned, however, those cases are already slow to plan
anyway and the overhead of looping over the Bitmapset would be
unmeasurable when compared with the other tasks such as path creation for
a large number of partitions.
Reviewed-by: Amit Langote, Zhihong Yu
Discussion: https://postgr.es/m/CAApHDvqnPx6JnUuPwaf5ao38zczrAb9mxt9gj4U1EKFfd4AqLA@mail.gmail.com
The point of introducing the hash_mem_multiplier GUC was to let users
reproduce the old behavior of hash aggregation, i.e. that it could use
more than work_mem at need. However, the implementation failed to get
the job done on Win64, where work_mem is clamped to 2GB to protect
various places that calculate memory sizes using "long int". As
written, the same clamp was applied to hash_mem. This resulted in
severe performance regressions for queries requiring a bit more than
2GB for hash aggregation, as they now spill to disk and there's no
way to stop that.
Getting rid of the work_mem restriction seems like a good idea, but
it's a big job and could not conceivably be back-patched. However,
there's only a fairly small number of places that are concerned with
the hash_mem value, and it turns out to be possible to remove the
restriction there without too much code churn or any ABI breaks.
So, let's do that for now to fix the regression, and leave the
larger task for another day.
This patch does introduce a bit more infrastructure that should help
with the larger task, namely pg_bitutils.h support for working with
size_t values.
Per gripe from Laurent Hasson. Back-patch to v13 where the
behavior change came in.
Discussion: https://postgr.es/m/997817.1627074924@sss.pgh.pa.us
Discussion: https://postgr.es/m/MN2PR15MB25601E80A9B6D1BA6F592B1985E39@MN2PR15MB2560.namprd15.prod.outlook.com
As of v14, pg_depend contains almost 7000 "pin" entries recording
the OIDs of built-in objects. This is a fair amount of bloat for
every database, and it adds time to pg_depend lookups as well as
initdb. We can get rid of all of those entries in favor of an OID
range check, i.e. "OIDs below FirstUnpinnedObjectId are pinned".
(template1 and the public schema are exceptions. Those exceptions
are now wired into IsPinnedObject() instead of initdb's code for
filling pg_depend, but it's the same amount of cruft either way.)
The contents of pg_shdepend are modified likewise.
Discussion: https://postgr.es/m/3737988.1618451008@sss.pgh.pa.us
"Result Cache" was never a great name for this node, but nobody managed
to come up with another name that anyone liked enough. That was until
David Johnston mentioned "Node Memoization", which Tom Lane revised to
just "Memoize". People seem to like "Memoize", so let's do the rename.
Reviewed-by: Justin Pryzby
Discussion: https://postgr.es/m/20210708165145.GG1176@momjian.us
Backpatch-through: 14, where Result Cache was introduced
Similar to 50e17ad28, which allowed hash tables to be used for IN clauses
with a set of constants, here we add the same feature for NOT IN clauses.
NOT IN evaluates the same as: WHERE a <> v1 AND a <> v2 AND a <> v3.
Obviously, if we're using a hash table we must be exactly equivalent to
that and return the same result taking into account that either side of
the condition could contain a NULL. This requires a little bit of
special handling to make work with the hash table version.
When processing NOT IN, the ScalarArrayOpExpr's operator will be the <>
operator. To be able to build and lookup a hash table we must use the
<>'s negator operator. The planner checks if that exists and is hashable
and sets the relevant fields in ScalarArrayOpExpr to instruct the executor
to use hashing.
Author: David Rowley, James Coleman
Reviewed-by: James Coleman, Zhihong Yu
Discussion: https://postgr.es/m/CAApHDvoF1mum_FRk6D621edcB6KSHBi2+GAgWmioj5AhOu2vwQ@mail.gmail.com
Previously, all CustomScan providers had to support projections,
but there may be cases where this is inconvenient. Add a flag
bit to say if it's supported.
Important item for the release notes: this is non-backwards-compatible
since the default is now to assume that CustomScan providers can't
project, instead of assuming that they can. It's fail-soft, but could
result in visible performance penalties due to adding unnecessary
Result nodes.
Sven Klemm, reviewed by Aleksander Alekseev; some cosmetic fiddling
by me.
Discussion: https://postgr.es/m/CAMCrgp1kyakOz6c8aKhNDJXjhQ1dEjEnp+6KNT3KxPrjNtsrDg@mail.gmail.com
create_projection_plan contains a hidden assumption (here made
explicit by an Assert) that a projection-capable Path will yield a
projection-capable Plan. Unfortunately, that assumption is violated
only a few lines away, by create_projection_plan itself. This means
that two stacked ProjectionPaths can yield an outcome where we try to
jam the upper path's tlist into a non-projection-capable child node,
resulting in an invalid plan.
There isn't any good reason to have stacked ProjectionPaths; indeed the
whole concept is faulty, since the set of Vars/Aggs/etc needed by the
upper one wouldn't necessarily be available in the output of the lower
one, nor could the lower one create such values if they weren't
available from its input. Hence, we can fix this by adjusting
create_projection_path to strip any top-level ProjectionPath from the
subpath it's given. (This amounts to saying "oh, we changed our
minds about what we need to project here".)
The test case added here only fails in v13 and HEAD; before that, we
don't attempt to shove the Sort into the parallel part of the plan,
for reasons that aren't entirely clear to me. However, all the
directly-related code looks generally the same as far back as v11,
where the hazard was introduced (by d7c19e62a). So I've got no faith
that the same type of bug doesn't exist in v11 and v12, given the
right test case. Hence, back-patch the code changes, but not the
irrelevant test case, into those branches.
Per report from Bas Poot.
Discussion: https://postgr.es/m/534fca83789c4a378c7de379e9067d4f@politie.nl
Result Cache, added in 9eacee2e6 neglected to properly adjust the plan
references in setrefs.c. This could lead to the following error during
EXPLAIN:
ERROR: cannot decompile join alias var in plan tree
Fix that.
Bug: 17030
Reported-by: Hans Buschmann
Discussion: https://postgr.es/m/17030-5844aecae42fe223@postgresql.org
Also "make reformat-dat-files".
The only change worthy of note is that pgindent messed up the formatting
of launcher.c's struct LogicalRepWorkerId, which led me to notice that
that struct wasn't used at all anymore, so I just took it out.
It's unusual to have any resjunk columns in an ON CONFLICT ... UPDATE
list, but it can happen when MULTIEXPR_SUBLINK SubPlans are present.
If it happens, the ON CONFLICT UPDATE code path would end up storing
tuples that include the values of the extra resjunk columns. That's
fairly harmless in the short run, but if new columns are added to
the table then the values would become accessible, possibly leading
to malfunctions if they don't match the datatypes of the new columns.
This had escaped notice through a confluence of missing sanity checks,
including
* There's no cross-check that a tuple presented to heap_insert or
heap_update matches the table rowtype. While it's difficult to
check that fully at reasonable cost, we can easily add assertions
that there aren't too many columns.
* The output-column-assignment cases in execExprInterp.c lacked
any sanity checks on the output column numbers, which seems like
an oversight considering there are plenty of assertion checks on
input column numbers. Add assertions there too.
* We failed to apply nodeModifyTable's ExecCheckPlanOutput() to
the ON CONFLICT UPDATE tlist. That wouldn't have caught this
specific error, since that function is chartered to ignore resjunk
columns; but it sure seems like a bad omission now that we've seen
this bug.
In HEAD, the right way to fix this is to make the processing of
ON CONFLICT UPDATE tlists work the same as regular UPDATE tlists
now do, that is don't add "SET x = x" entries, and use
ExecBuildUpdateProjection to evaluate the tlist and combine it with
old values of the not-set columns. This adds a little complication
to ExecBuildUpdateProjection, but allows removal of a comparable
amount of now-dead code from the planner.
In the back branches, the most expedient solution seems to be to
(a) use an output slot for the ON CONFLICT UPDATE projection that
actually matches the target table, and then (b) invent a variant of
ExecBuildProjectionInfo that can be told to not store values resulting
from resjunk columns, so it doesn't try to store into nonexistent
columns of the output slot. (We can't simply ignore the resjunk columns
altogether; they have to be evaluated for MULTIEXPR_SUBLINK to work.)
This works back to v10. In 9.6, projections work much differently and
we can't cheaply give them such an option. The 9.6 version of this
patch works by inserting a JunkFilter when it's necessary to get rid
of resjunk columns.
In addition, v11 and up have the reverse problem when trying to
perform ON CONFLICT UPDATE on a partitioned table. Through a
further oversight, adjust_partition_tlist() discarded resjunk columns
when re-ordering the ON CONFLICT UPDATE tlist to match a partition.
This accidentally prevented the storing-bogus-tuples problem, but
at the cost that MULTIEXPR_SUBLINK cases didn't work, typically
crashing if more than one row has to be updated. Fix by preserving
resjunk columns in that routine. (I failed to resist the temptation
to add more assertions there too, and to do some minor code
beautification.)
Per report from Andres Freund. Back-patch to all supported branches.
Security: CVE-2021-32028
An oversight introduced by the incremental-sort patches caused
"could not find pathkey item to sort" errors in some situations
where a sort key involves an aggregate or window function.
The basic problem here is that find_em_expr_usable_for_sorting_rel
isn't properly modeling what prepare_sort_from_pathkeys will do
later. Rather than hoping we can keep those functions in sync,
let's refactor so that they actually share the code for
identifying a suitable sort expression.
With this refactoring, tlist.c's tlist_member_ignore_relabel
is unused. I removed it in HEAD but left it in place in v13,
in case any extensions are using it.
Per report from Luc Vlaming. Back-patch to v13 where the
problem arose.
James Coleman and Tom Lane
Discussion: https://postgr.es/m/91f3ec99-85a4-fa55-ea74-33f85a5c651f@swarm64.com
ScalarArrayOpExprs with "useOr=true" and a set of Consts on the righthand
side have traditionally been evaluated by using a linear search over the
array. When these arrays contain large numbers of elements then this
linear search could become a significant part of execution time.
Here we add a new method of evaluating ScalarArrayOpExpr expressions to
allow them to be evaluated by first building a hash table containing each
element, then on subsequent evaluations, we just probe that hash table to
determine if there is a match.
The planner is in charge of determining when this optimization is possible
and it enables it by setting hashfuncid in the ScalarArrayOpExpr. The
executor will only perform the hash table evaluation when the hashfuncid
is set.
This means that not all cases are optimized. For example CHECK constraints
containing an IN clause won't go through the planner, so won't get the
hashfuncid set. We could maybe do something about that at some later
date. The reason we're not doing it now is from fear that we may slow
down cases where the expression is evaluated only once. Those cases can
be common, for example, a single row INSERT to a table with a CHECK
constraint containing an IN clause.
In the planner, we enable this when there are suitable hash functions for
the ScalarArrayOpExpr's operator and only when there is at least
MIN_ARRAY_SIZE_FOR_HASHED_SAOP elements in the array. The threshold is
currently set to 9.
Author: James Coleman, David Rowley
Reviewed-by: David Rowley, Tomas Vondra, Heikki Linnakangas
Discussion: https://postgr.es/m/CAAaqYe8x62+=wn0zvNKCj55tPpg-JBHzhZFFc6ANovdqFw7-dA@mail.gmail.com
Here we add a new executor node type named "Result Cache". The planner
can include this node type in the plan to have the executor cache the
results from the inner side of parameterized nested loop joins. This
allows caching of tuples for sets of parameters so that in the event that
the node sees the same parameter values again, it can just return the
cached tuples instead of rescanning the inner side of the join all over
again. Internally, result cache uses a hash table in order to quickly
find tuples that have been previously cached.
For certain data sets, this can significantly improve the performance of
joins. The best cases for using this new node type are for join problems
where a large portion of the tuples from the inner side of the join have
no join partner on the outer side of the join. In such cases, hash join
would have to hash values that are never looked up, thus bloating the hash
table and possibly causing it to multi-batch. Merge joins would have to
skip over all of the unmatched rows. If we use a nested loop join with a
result cache, then we only cache tuples that have at least one join
partner on the outer side of the join. The benefits of using a
parameterized nested loop with a result cache increase when there are
fewer distinct values being looked up and the number of lookups of each
value is large. Also, hash probes to lookup the cache can be much faster
than the hash probe in a hash join as it's common that the result cache's
hash table is much smaller than the hash join's due to result cache only
caching useful tuples rather than all tuples from the inner side of the
join. This variation in hash probe performance is more significant when
the hash join's hash table no longer fits into the CPU's L3 cache, but the
result cache's hash table does. The apparent "random" access of hash
buckets with each hash probe can cause a poor L3 cache hit ratio for large
hash tables. Smaller hash tables generally perform better.
The hash table used for the cache limits itself to not exceeding work_mem
* hash_mem_multiplier in size. We maintain a dlist of keys for this cache
and when we're adding new tuples and realize we've exceeded the memory
budget, we evict cache entries starting with the least recently used ones
until we have enough memory to add the new tuples to the cache.
For parameterized nested loop joins, we now consider using one of these
result cache nodes in between the nested loop node and its inner node. We
determine when this might be useful based on cost, which is primarily
driven off of what the expected cache hit ratio will be. Estimating the
cache hit ratio relies on having good distinct estimates on the nested
loop's parameters.
For now, the planner will only consider using a result cache for
parameterized nested loop joins. This works for both normal joins and
also for LATERAL type joins to subqueries. It is possible to use this new
node for other uses in the future. For example, to cache results from
correlated subqueries. However, that's not done here due to some
difficulties obtaining a distinct estimation on the outer plan to
calculate the estimated cache hit ratio. Currently we plan the inner plan
before planning the outer plan so there is no good way to know if a result
cache would be useful or not since we can't estimate the number of times
the subplan will be called until the outer plan is generated.
The functionality being added here is newly introducing a dependency on
the return value of estimate_num_groups() during the join search.
Previously, during the join search, we only ever needed to perform
selectivity estimations. With this commit, we need to use
estimate_num_groups() in order to estimate what the hit ratio on the
result cache will be. In simple terms, if we expect 10 distinct values
and we expect 1000 outer rows, then we'll estimate the hit ratio to be
99%. Since cache hits are very cheap compared to scanning the underlying
nodes on the inner side of the nested loop join, then this will
significantly reduce the planner's cost for the join. However, it's
fairly easy to see here that things will go bad when estimate_num_groups()
incorrectly returns a value that's significantly lower than the actual
number of distinct values. If this happens then that may cause us to make
use of a nested loop join with a result cache instead of some other join
type, such as a merge or hash join. Our distinct estimations have been
known to be a source of trouble in the past, so the extra reliance on them
here could cause the planner to choose slower plans than it did previous
to having this feature. Distinct estimations are also fairly hard to
estimate accurately when several tables have been joined already or when a
WHERE clause filters out a set of values that are correlated to the
expressions we're estimating the number of distinct value for.
For now, the costing we perform during query planning for result caches
does put quite a bit of faith in the distinct estimations being accurate.
When these are accurate then we should generally see faster execution
times for plans containing a result cache. However, in the real world, we
may find that we need to either change the costings to put less trust in
the distinct estimations being accurate or perhaps even disable this
feature by default. There's always an element of risk when we teach the
query planner to do new tricks that it decides to use that new trick at
the wrong time and causes a regression. Users may opt to get the old
behavior by turning the feature off using the enable_resultcache GUC.
Currently, this is enabled by default. It remains to be seen if we'll
maintain that setting for the release.
Additionally, the name "Result Cache" is the best name I could think of
for this new node at the time I started writing the patch. Nobody seems
to strongly dislike the name. A few people did suggest other names but no
other name seemed to dominate in the brief discussion that there was about
names. Let's allow the beta period to see if the current name pleases
enough people. If there's some consensus on a better name, then we can
change it before the release. Please see the 2nd discussion link below
for the discussion on the "Result Cache" name.
Author: David Rowley
Reviewed-by: Andy Fan, Justin Pryzby, Zhihong Yu, Hou Zhijie
Tested-By: Konstantin Knizhnik
Discussion: https://postgr.es/m/CAApHDvrPcQyQdWERGYWx8J%2B2DLUNgXu%2BfOSbQ1UscxrunyXyrQ%40mail.gmail.com
Discussion: https://postgr.es/m/CAApHDvq=yQXr5kqhRviT2RhNKwToaWr9JAN5t+5_PzhuRJ3wvg@mail.gmail.com
This removes "Add Result Cache executor node". It seems that something
weird is going on with the tracking of cache hits and misses as
highlighted by many buildfarm animals. It's not yet clear what the
problem is as other parts of the plan indicate that the cache did work
correctly, it's just the hits and misses that were being reported as 0.
This is especially a bad time to have the buildfarm so broken, so
reverting before too many more animals go red.
Discussion: https://postgr.es/m/CAApHDvq_hydhfovm4=izgWs+C5HqEeRScjMbOgbpC-jRAeK3Yw@mail.gmail.com
Here we add a new executor node type named "Result Cache". The planner
can include this node type in the plan to have the executor cache the
results from the inner side of parameterized nested loop joins. This
allows caching of tuples for sets of parameters so that in the event that
the node sees the same parameter values again, it can just return the
cached tuples instead of rescanning the inner side of the join all over
again. Internally, result cache uses a hash table in order to quickly
find tuples that have been previously cached.
For certain data sets, this can significantly improve the performance of
joins. The best cases for using this new node type are for join problems
where a large portion of the tuples from the inner side of the join have
no join partner on the outer side of the join. In such cases, hash join
would have to hash values that are never looked up, thus bloating the hash
table and possibly causing it to multi-batch. Merge joins would have to
skip over all of the unmatched rows. If we use a nested loop join with a
result cache, then we only cache tuples that have at least one join
partner on the outer side of the join. The benefits of using a
parameterized nested loop with a result cache increase when there are
fewer distinct values being looked up and the number of lookups of each
value is large. Also, hash probes to lookup the cache can be much faster
than the hash probe in a hash join as it's common that the result cache's
hash table is much smaller than the hash join's due to result cache only
caching useful tuples rather than all tuples from the inner side of the
join. This variation in hash probe performance is more significant when
the hash join's hash table no longer fits into the CPU's L3 cache, but the
result cache's hash table does. The apparent "random" access of hash
buckets with each hash probe can cause a poor L3 cache hit ratio for large
hash tables. Smaller hash tables generally perform better.
The hash table used for the cache limits itself to not exceeding work_mem
* hash_mem_multiplier in size. We maintain a dlist of keys for this cache
and when we're adding new tuples and realize we've exceeded the memory
budget, we evict cache entries starting with the least recently used ones
until we have enough memory to add the new tuples to the cache.
For parameterized nested loop joins, we now consider using one of these
result cache nodes in between the nested loop node and its inner node. We
determine when this might be useful based on cost, which is primarily
driven off of what the expected cache hit ratio will be. Estimating the
cache hit ratio relies on having good distinct estimates on the nested
loop's parameters.
For now, the planner will only consider using a result cache for
parameterized nested loop joins. This works for both normal joins and
also for LATERAL type joins to subqueries. It is possible to use this new
node for other uses in the future. For example, to cache results from
correlated subqueries. However, that's not done here due to some
difficulties obtaining a distinct estimation on the outer plan to
calculate the estimated cache hit ratio. Currently we plan the inner plan
before planning the outer plan so there is no good way to know if a result
cache would be useful or not since we can't estimate the number of times
the subplan will be called until the outer plan is generated.
The functionality being added here is newly introducing a dependency on
the return value of estimate_num_groups() during the join search.
Previously, during the join search, we only ever needed to perform
selectivity estimations. With this commit, we need to use
estimate_num_groups() in order to estimate what the hit ratio on the
result cache will be. In simple terms, if we expect 10 distinct values
and we expect 1000 outer rows, then we'll estimate the hit ratio to be
99%. Since cache hits are very cheap compared to scanning the underlying
nodes on the inner side of the nested loop join, then this will
significantly reduce the planner's cost for the join. However, it's
fairly easy to see here that things will go bad when estimate_num_groups()
incorrectly returns a value that's significantly lower than the actual
number of distinct values. If this happens then that may cause us to make
use of a nested loop join with a result cache instead of some other join
type, such as a merge or hash join. Our distinct estimations have been
known to be a source of trouble in the past, so the extra reliance on them
here could cause the planner to choose slower plans than it did previous
to having this feature. Distinct estimations are also fairly hard to
estimate accurately when several tables have been joined already or when a
WHERE clause filters out a set of values that are correlated to the
expressions we're estimating the number of distinct value for.
For now, the costing we perform during query planning for result caches
does put quite a bit of faith in the distinct estimations being accurate.
When these are accurate then we should generally see faster execution
times for plans containing a result cache. However, in the real world, we
may find that we need to either change the costings to put less trust in
the distinct estimations being accurate or perhaps even disable this
feature by default. There's always an element of risk when we teach the
query planner to do new tricks that it decides to use that new trick at
the wrong time and causes a regression. Users may opt to get the old
behavior by turning the feature off using the enable_resultcache GUC.
Currently, this is enabled by default. It remains to be seen if we'll
maintain that setting for the release.
Additionally, the name "Result Cache" is the best name I could think of
for this new node at the time I started writing the patch. Nobody seems
to strongly dislike the name. A few people did suggest other names but no
other name seemed to dominate in the brief discussion that there was about
names. Let's allow the beta period to see if the current name pleases
enough people. If there's some consensus on a better name, then we can
change it before the release. Please see the 2nd discussion link below
for the discussion on the "Result Cache" name.
Author: David Rowley
Reviewed-by: Andy Fan, Justin Pryzby, Zhihong Yu
Tested-By: Konstantin Knizhnik
Discussion: https://postgr.es/m/CAApHDvrPcQyQdWERGYWx8J%2B2DLUNgXu%2BfOSbQ1UscxrunyXyrQ%40mail.gmail.com
Discussion: https://postgr.es/m/CAApHDvq=yQXr5kqhRviT2RhNKwToaWr9JAN5t+5_PzhuRJ3wvg@mail.gmail.com
This patch makes two closely related sets of changes:
1. For UPDATE, the subplan of the ModifyTable node now only delivers
the new values of the changed columns (i.e., the expressions computed
in the query's SET clause) plus row identity information such as CTID.
ModifyTable must re-fetch the original tuple to merge in the old
values of any unchanged columns. The core advantage of this is that
the changed columns are uniform across all tables of an inherited or
partitioned target relation, whereas the other columns might not be.
A secondary advantage, when the UPDATE involves joins, is that less
data needs to pass through the plan tree. The disadvantage of course
is an extra fetch of each tuple to be updated. However, that seems to
be very nearly free in context; even worst-case tests don't show it to
add more than a couple percent to the total query cost. At some point
it might be interesting to combine the re-fetch with the tuple access
that ModifyTable must do anyway to mark the old tuple dead; but that
would require a good deal of refactoring and it seems it wouldn't buy
all that much, so this patch doesn't attempt it.
2. For inherited UPDATE/DELETE, instead of generating a separate
subplan for each target relation, we now generate a single subplan
that is just exactly like a SELECT's plan, then stick ModifyTable
on top of that. To let ModifyTable know which target relation a
given incoming row refers to, a tableoid junk column is added to
the row identity information. This gets rid of the horrid hack
that was inheritance_planner(), eliminating O(N^2) planning cost
and memory consumption in cases where there were many unprunable
target relations.
Point 2 of course requires point 1, so that there is a uniform
definition of the non-junk columns to be returned by the subplan.
We can't insist on uniform definition of the row identity junk
columns however, if we want to keep the ability to have both
plain and foreign tables in a partitioning hierarchy. Since
it wouldn't scale very far to have every child table have its
own row identity column, this patch includes provisions to merge
similar row identity columns into one column of the subplan result.
In particular, we can merge the whole-row Vars typically used as
row identity by FDWs into one column by pretending they are type
RECORD. (It's still okay for the actual composite Datums to be
labeled with the table's rowtype OID, though.)
There is more that can be done to file down residual inefficiencies
in this patch, but it seems to be committable now.
FDW authors should note several API changes:
* The argument list for AddForeignUpdateTargets() has changed, and so
has the method it must use for adding junk columns to the query. Call
add_row_identity_var() instead of manipulating the parse tree directly.
You might want to reconsider exactly what you're adding, too.
* PlanDirectModify() must now work a little harder to find the
ForeignScan plan node; if the foreign table is part of a partitioning
hierarchy then the ForeignScan might not be the direct child of
ModifyTable. See postgres_fdw for sample code.
* To check whether a relation is a target relation, it's no
longer sufficient to compare its relid to root->parse->resultRelation.
Instead, check it against all_result_relids or leaf_result_relids,
as appropriate.
Amit Langote and Tom Lane
Discussion: https://postgr.es/m/CA+HiwqHpHdqdDn48yCEhynnniahH78rwcrv1rEX65-fsZGBOLQ@mail.gmail.com
This implements asynchronous execution, which runs multiple parts of a
non-parallel-aware Append concurrently rather than serially to improve
performance when possible. Currently, the only node type that can be
run concurrently is a ForeignScan that is an immediate child of such an
Append. In the case where such ForeignScans access data on different
remote servers, this would run those ForeignScans concurrently, and
overlap the remote operations to be performed simultaneously, so it'll
improve the performance especially when the operations involve
time-consuming ones such as remote join and remote aggregation.
We may extend this to other node types such as joins or aggregates over
ForeignScans in the future.
This also adds the support for postgres_fdw, which is enabled by the
table-level/server-level option "async_capable". The default is false.
Robert Haas, Kyotaro Horiguchi, Thomas Munro, and myself. This commit
is mostly based on the patch proposed by Robert Haas, but also uses
stuff from the patch proposed by Kyotaro Horiguchi and from the patch
proposed by Thomas Munro. Reviewed by Kyotaro Horiguchi, Konstantin
Knizhnik, Andrey Lepikhov, Movead Li, Thomas Munro, Justin Pryzby, and
others.
Discussion: https://postgr.es/m/CA%2BTgmoaXQEt4tZ03FtQhnzeDEMzBck%2BLrni0UWHVVgOTnA6C1w%40mail.gmail.com
Discussion: https://postgr.es/m/CA%2BhUKGLBRyu0rHrDCMC4%3DRn3252gogyp1SjOgG8SEKKZv%3DFwfQ%40mail.gmail.com
Discussion: https://postgr.es/m/20200228.170650.667613673625155850.horikyota.ntt%40gmail.com
Here we add a new output parameter to estimate_num_groups() to allow it to
inform the caller of additional, possibly useful information about the
estimation.
The new output parameter is a struct that currently contains just a single
field with a set of flags. This was done rather than having the flags as
an output parameter to allow future fields to be added without having to
change the signature of the function at a later date when we want to pass
back further information that might not be suitable to store in the flags
field.
It seems reasonable that one day in the future that the planner would want
to know more about the estimation. For example, how many individual sets
of statistics was the estimation generated from? The planner may want to
take that into account if we ever want to consider risks as well as costs
when generating plans.
For now, there's only 1 flag we set in the flags field. This is to
indicate if the estimation fell back on using the hard-coded constants in
any part of the estimation. Callers may like to change their behavior if
this is set, and this gives them the ability to do so. Callers may pass
the flag pointer as NULL if they have no interest in obtaining any
additional information about the estimate.
We're not adding any actual usages of these flags here. Some follow-up
commits will make use of this feature. Additionally, we're also not
making any changes to add support for clauselist_selectivity() and
clauselist_selectivity_ext(). However, if this is required in the future
then the same struct being added here should be fine to use as a new
output argument for those functions too.
Author: David Rowley
Discussion: https://postgr.es/m/CAApHDvqQqpk=1W-G_ds7A9CsXX3BggWj_7okinzkLVhDubQzjA@mail.gmail.com
Here we aim to reduce duplicate work done by contain_volatile_functions()
by caching whether PathTargets and RestrictInfos contain any volatile
functions the first time contain_volatile_functions() is called for them.
Any future calls for these nodes just use the cached value rather than
going to the trouble of recursively checking the sub-node all over again.
Thanks to Tom Lane for the idea.
Any locations in the code which make changes to a PathTarget or
RestrictInfo which could change the outcome of the volatility check must
change the cached value back to VOLATILITY_UNKNOWN again.
contain_volatile_functions() is the only code in charge of setting the
cache value to either VOLATILITY_VOLATILE or VOLATILITY_NOVOLATILE.
Some existing code does benefit from this additional caching, however,
this change is mainly aimed at an upcoming patch that must check for
volatility during the join search. Repeated volatility checks in that
case can become very expensive when the join search contains more than a
few relations.
Author: David Rowley
Discussion: https://postgr.es/m/3795226.1614059027@sss.pgh.pa.us
To allow inserts in parallel-mode this feature has to ensure that all the
constraints, triggers, etc. are parallel-safe for the partition hierarchy
which is costly and we need to find a better way to do that. Additionally,
we could have used existing cached information in some cases like indexes,
domains, etc. to determine the parallel-safety.
List of commits reverted, in reverse chronological order:
ed62d3737c Doc: Update description for parallel insert reloption.
c8f78b6161 Add a new GUC and a reloption to enable inserts in parallel-mode.
c5be48f092 Improve FK trigger parallel-safety check added by 05c8482f7f.
e2cda3c20a Fix use of relcache TriggerDesc field introduced by commit 05c8482f7f.
e4e87a32cc Fix valgrind issue in commit 05c8482f7f.
05c8482f7f Enable parallel SELECT for "INSERT INTO ... SELECT ...".
Discussion: https://postgr.es/m/E1lMiB9-0001c3-SY@gemulon.postgresql.org
With grouping sets, it's possible that some of the grouping sets are
duplicate. This is especially common with CUBE and ROLLUP clauses. For
example GROUP BY CUBE (a,b), CUBE (b,c) is equivalent to
GROUP BY GROUPING SETS (
(a, b, c),
(a, b, c),
(a, b, c),
(a, b),
(a, b),
(a, b),
(a),
(a),
(a),
(c, a),
(c, a),
(c, a),
(c),
(b, c),
(b),
()
)
Some of the grouping sets are calculated multiple times, which is mostly
unnecessary. This commit implements a new GROUP BY DISTINCT feature, as
defined in the SQL standard, which eliminates the duplicate sets.
Author: Vik Fearing
Reviewed-by: Erik Rijkers, Georgios Kokolatos, Tomas Vondra
Discussion: https://postgr.es/m/bf3805a8-d7d1-ae61-fece-761b7ff41ecc@postgresfriends.org
Parallel SELECT can't be utilized for INSERT in the following cases:
- INSERT statement uses the ON CONFLICT DO UPDATE clause
- Target table has a parallel-unsafe: trigger, index expression or
predicate, column default expression or check constraint
- Target table has a parallel-unsafe domain constraint on any column
- Target table is a partitioned table with a parallel-unsafe partition key
expression or support function
The planner is updated to perform additional parallel-safety checks for
the cases listed above, for determining whether it is safe to run INSERT
in parallel-mode with an underlying parallel SELECT. The planner will
consider using parallel SELECT for "INSERT INTO ... SELECT ...", provided
nothing unsafe is found from the additional parallel-safety checks, or
from the existing parallel-safety checks for SELECT.
While checking parallel-safety, we need to check it for all the partitions
on the table which can be costly especially when we decide not to use a
parallel plan. So, in a separate patch, we will introduce a GUC and or a
reloption to enable/disable parallelism for Insert statements.
Prior to entering parallel-mode for the execution of INSERT with parallel
SELECT, a TransactionId is acquired and assigned to the current
transaction state. This is necessary to prevent the INSERT from attempting
to assign the TransactionId whilst in parallel-mode, which is not allowed.
This approach has a disadvantage in that if the underlying SELECT does not
return any rows, then the TransactionId is not used, however that
shouldn't happen in practice in many cases.
Author: Greg Nancarrow, Amit Langote, Amit Kapila
Reviewed-by: Amit Langote, Hou Zhijie, Takayuki Tsunakawa, Antonin Houska, Bharath Rupireddy, Dilip Kumar, Vignesh C, Zhihong Yu, Amit Kapila
Tested-by: Tang, Haiying
Discussion: https://postgr.es/m/CAJcOf-cXnB5cnMKqWEp2E2z7Mvcd04iLVmV=qpFJrR3AcrTS3g@mail.gmail.com
Discussion: https://postgr.es/m/CAJcOf-fAdj=nDKMsRhQzndm-O13NY4dL6xGcEvdX5Xvbbi0V7g@mail.gmail.com
This adds a new executor node named TID Range Scan. The query planner
will generate paths for TID Range scans when quals are discovered on base
relations which search for ranges on the table's ctid column. These
ranges may be open at either end. For example, WHERE ctid >= '(10,0)';
will return all tuples on page 10 and over.
To support this, two new optional callback functions have been added to
table AM. scan_set_tidrange is used to set the scan range to just the
given range of TIDs. scan_getnextslot_tidrange fetches the next tuple
in the given range.
For AMs were scanning ranges of TIDs would not make sense, these functions
can be set to NULL in the TableAmRoutine. The query planner won't
generate TID Range Scan Paths in that case.
Author: Edmund Horner, David Rowley
Reviewed-by: David Rowley, Tomas Vondra, Tom Lane, Andres Freund, Zhihong Yu
Discussion: https://postgr.es/m/CAMyN-kB-nFTkF=VA_JPwFNo08S0d-Yk0F741S2B7LDmYAi8eyA@mail.gmail.com
It turns out that the calculation of [Merge]AppendPath.partitioned_rels
in allpaths.c is faulty and sometimes omits relevant non-leaf partitions,
allowing an assertion added by commit a929e17e5a to trigger. Rather
than fix that, it seems better to get rid of those fields altogether.
We don't really need the info until create_plan time, and calculating
it once for the selected plan should be cheaper than calculating it
for each append path we consider.
The preceding two commits did away with all use of the partitioned_rels
values; this commit just mechanically removes the fields and the code
that calculated them.
Discussion: https://postgr.es/m/87sg8tqhsl.fsf@aurora.ydns.eu
Discussion: https://postgr.es/m/CAJKUy5gCXDSmFs2c=R+VGgn7FiYcLCsEFEuDNNLGfoha=pBE_g@mail.gmail.com
It turns out that the calculation of [Merge]AppendPath.partitioned_rels
in allpaths.c is faulty and sometimes omits relevant non-leaf partitions,
allowing an assertion added by commit a929e17e5a to trigger. Rather
than fix that, it seems better to get rid of those fields altogether.
We don't really need the info until create_plan time, and calculating
it once for the selected plan should be cheaper than calculating it
for each append path we consider.
This patch undoes a couple of very minor uses of the partitioned_rels
values.
createplan.c was testing for nil-ness to optimize away the preparatory
work for make_partition_pruneinfo(). That is worth doing if the check
is nigh free, but it's not worth going to any great lengths to avoid.
create_append_path() was testing for nil-ness as part of deciding how
to set up ParamPathInfo for an AppendPath. I replaced that with a
check for the appendrel's parent rel being partitioned. That's not
quite the same thing but should cover most cases. If we note any
interesting loss of optimizations, we can dumb this down to just
always use the more expensive method when the parent is a baserel.
Discussion: https://postgr.es/m/87sg8tqhsl.fsf@aurora.ydns.eu
Discussion: https://postgr.es/m/CAJKUy5gCXDSmFs2c=R+VGgn7FiYcLCsEFEuDNNLGfoha=pBE_g@mail.gmail.com
Previously, pull_varnos() took the relids of a PlaceHolderVar as being
equal to the relids in its contents, but that fails to account for the
possibility that we have to postpone evaluation of the PHV due to outer
joins. This could result in a malformed plan. The known cases end up
triggering the "failed to assign all NestLoopParams to plan nodes"
sanity check in createplan.c, but other symptoms may be possible.
The right value to use is the join level we actually intend to evaluate
the PHV at. We can get that from the ph_eval_at field of the associated
PlaceHolderInfo. However, there are some places that call pull_varnos()
before the PlaceHolderInfos have been created; in that case, fall back
to the conservative assumption that the PHV will be evaluated at its
syntactic level. (In principle this might result in missing some legal
optimization, but I'm not aware of any cases where it's an issue in
practice.) Things are also a bit ticklish for calls occurring during
deconstruct_jointree(), but AFAICS the ph_eval_at fields should have
reached their final values by the time we need them.
The main problem in making this work is that pull_varnos() has no
way to get at the PlaceHolderInfos. We can fix that easily, if a
bit tediously, in HEAD by passing it the planner "root" pointer.
In the back branches that'd cause an unacceptable API/ABI break for
extensions, so leave the existing entry points alone and add new ones
with the additional parameter. (If an old entry point is called and
encounters a PHV, it'll fall back to using the syntactic level,
again possibly missing some valid optimization.)
Back-patch to v12. The computation is surely also wrong before that,
but it appears that we cannot reach a bad plan thanks to join order
restrictions imposed on the subquery that the PlaceHolderVar came from.
The error only became reachable when commit 4be058fe9 allowed trivial
subqueries to be collapsed out completely, eliminating their join order
restrictions.
Per report from Stephan Springl.
Discussion: https://postgr.es/m/171041.1610849523@sss.pgh.pa.us
To build Gather Merge path, the input needs to be sufficiently sorted.
Ensuring this is the responsibility of the code constructing the paths,
but create_gather_merge_plan tried to handle unsorted paths by adding
an explicit Sort. In light of the recent issues related to Incremental
Sort, this is rather fragile. Some of the expressions may be volatile
or parallel unsafe, in which case we can't add the Sort here.
We could do more checks and add the Sort in at least some cases, but
it seems cleaner to just error out and make it clear this is a bug in
code constructing those paths.
Author: James Coleman
Reviewed-by: Tomas Vondra
Discussion: https://postgr.es/m/CAAaqYe8cK3g5CfLC4w7bs%3DhC0mSksZC%3DH5M8LSchj5e5OxpTAg%40mail.gmail.com
Discussion: https://postgr.es/m/CAJGNTeNaxpXgBVcRhJX%2B2vSbq%2BF2kJqGBcvompmpvXb7pq%2BoFA%40mail.gmail.com
This can't work if there's no postmaster, and indeed the code got an
assertion failure trying. There should be a check on IsUnderPostmaster
gating the use of parallelism, as the planner has for ordinary
parallel queries.
Commit 40d964ec9 got this right, so follow its model of checking
IsUnderPostmaster at the same place where we check for
max_parallel_maintenance_workers == 0. In general, new code
implementing parallel utility operations should do the same.
Report and patch by Yulin Pei, cosmetically adjusted by me.
Back-patch to v11 where this code came in.
Discussion: https://postgr.es/m/HK0PR01MB22747D839F77142D7E76A45DF4F50@HK0PR01MB2274.apcprd01.prod.exchangelabs.com
Previously we only tagged on the required information to allow the
executor to perform run-time partition pruning for Append/MergeAppend
nodes belonging to base relations. It was thought that nested
Append/MergeAppend nodes were just about always pulled up into the
top-level Append/MergeAppend and that making the run-time pruning info for
any sub Append/MergeAppend nodes was a waste of time. However, that was
likely badly thought through.
Some examples of cases we're unable to pullup nested Append/MergeAppends
are: 1) Parallel Append nodes with a mix of parallel and non-parallel
paths into a Parallel Append. 2) When planning an ordered Append scan a
sub-partition which is unordered may require a nested MergeAppend path to
ensure sub-partitions don't mix up the order of tuples being fed into the
top-level Append.
Unfortunately, it was not just as simple as removing the lines in
createplan.c which were purposefully not building the run-time pruning
info for anything but RELOPT_BASEREL relations. The code in
add_paths_to_append_rel() was far too sloppy about which partitioned_rels
it included for the Append/MergeAppend paths. The original code there
would always assume accumulate_append_subpath() would pull each sub-Append
and sub-MergeAppend path into the top-level path. While it does not
appear that there were any actual bugs caused by having the additional
partitioned table RT indexes recorded, what it did mean is that later in
planning, when we built the run-time pruning info that we wasted effort
and built PartitionedRelPruneInfos for partitioned tables that we had no
subpaths for the executor to run-time prune.
Here we tighten that up so that partitioned_rels only ever contains the RT
index for partitioned tables which actually have subpaths in the given
Append/MergeAppend. We can now Assert that every PartitionedRelPruneInfo
has a non-empty present_parts. That should allow us to catch any weird
corner cases that have been missed.
In passing, it seems there is no longer a good reason to have the
AppendPath and MergeAppendPath's partitioned_rel fields a List of IntList.
We can simply have a List of Relids instead. This is more compact in
memory and faster to add new members to. We still know which is the root
level partition as these always have a lower relid than their children.
Previously this field was used for more things, but run-time partition
pruning now remains the only user of it and it has no need for a List of
IntLists.
Here we also get rid of the RelOptInfo partitioned_child_rels field. This
is what was previously used to (sometimes incorrectly) set the
Append/MergeAppend path's partitioned_rels field. That was the only usage
of that field, so we can happily just remove it.
I also couldn't resist changing some nearby code to make use of the newly
added for_each_from macro so we can skip the first element in the list
without checking if the current item was the first one on each
iteration.
A bug report from Andreas Kretschmer prompted all this work, however,
after some consideration, I'm not personally classing this as a bug fix.
So no backpatch. In Andreas' test case, it just wasn't that clear that
there was a nested Append since the top-level Append just had a single
sub-path which was pulled up a level, per 8edd0e794.
Author: David Rowley
Reviewed-by: Amit Langote
Discussion: https://postgr.es/m/flat/CAApHDvqSchs%2BubdybcfFaSPB%2B%2BEA7kqMaoqajtP0GtZvzOOR3g%40mail.gmail.com
It's unsafe to do this at parse time because addition of generated
columns to a table would not invalidate stored rules containing
UPDATEs on the table ... but there might now be dependent generated
columns that were not there when the rule was made. This also fixes
an oversight that rewriteTargetView failed to update extraUpdatedCols
when transforming an UPDATE on an updatable view. (Since the new
calculation is downstream of that, rewriteTargetView doesn't actually
need to do anything; but before, there was a demonstrable bug there.)
In v13 and HEAD, this leads to easily-visible bugs because (since
commit c6679e4fc) we won't recalculate generated columns that aren't
listed in extraUpdatedCols. In v12 this bitmap is mostly just used
for trigger-firing decisions, so you'd only notice a problem if a
trigger cared whether a generated column had been updated.
I'd complained about this back in May, but then forgot about it
until bug #16671 from Michael Paul Killian revived the issue.
Back-patch to v12 where this field was introduced. If existing
stored rules contain any extraUpdatedCols values, they'll be
ignored because the rewriter will overwrite them, so the bug will
be fixed even for existing rules. (But note that if someone were
to update to 13.1 or 12.5, store some rules with UPDATEs on tables
having generated columns, and then downgrade to a prior minor version,
they might observe issues similar to what this patch fixes. That
seems unlikely enough to not be worth going to a lot of effort to fix.)
Discussion: https://postgr.es/m/10206.1588964727@sss.pgh.pa.us
Discussion: https://postgr.es/m/16671-2fa55851859fb166@postgresql.org
get_foreign_key_join_selectivity() looks for join clauses that equate
the two sides of the FK constraint. However, if we have a query like
"WHERE fktab.a = pktab.a and fktab.a = 1", it won't find any such join
clause, because equivclass.c replaces the given clauses with "fktab.a
= 1 and pktab.a = 1", which can be enforced at the scan level, leaving
nothing to be done for column "a" at the join level.
We can fix that expectation without much trouble, but then a new problem
arises: applying the foreign-key-based selectivity rule produces a
rowcount underestimate, because we're effectively double-counting the
selectivity of the "fktab.a = 1" clause. So we have to cancel that
selectivity out of the estimate.
To fix, refactor process_implied_equality() so that it can pass back the
new RestrictInfo to its callers in equivclass.c, allowing the generated
"fktab.a = 1" clause to be saved in the EquivalenceClass's ec_derives
list. Then it's not much trouble to dig out the relevant RestrictInfo
when we need to adjust an FK selectivity estimate. (While at it, we
can also remove the expensive use of initialize_mergeclause_eclasses()
to set up the new RestrictInfo's left_ec and right_ec pointers.
The equivclass.c code can set those basically for free.)
This seems like clearly a bug fix, but I'm hesitant to back-patch it,
first because there's some API/ABI risk for extensions and second because
we're usually loath to destabilize plan choices in stable branches.
Per report from Sigrid Ehrenreich.
Discussion: https://postgr.es/m/1019549.1603770457@sss.pgh.pa.us
Discussion: https://postgr.es/m/AM6PR02MB5287A0ADD936C1FA80973E72AB190@AM6PR02MB5287.eurprd02.prod.outlook.com
FDWs that can perform an UPDATE/DELETE remotely using the "direct modify"
set of APIs need to access the ResultRelInfo of the target table. That's
currently available in EState.es_result_relation_info, but the next
commit will remove that field.
This commit adds a new resultRelation field in ForeignScan, to store the
target relation's RT index, and the corresponding ResultRelInfo in
ForeignScanState. The FDW's PlanDirectModify callback is expected to set
'resultRelation' along with 'operation'. The core code doesn't need them
for anything, they are for the convenience of FDW's Begin- and
IterateDirectModify callbacks.
Authors: Amit Langote, Etsuro Fujita
Discussion: https://www.postgresql.org/message-id/CA%2BHiwqGEmiib8FLiHMhKB%2BCH5dRgHSLc5N5wnvc4kym%2BZYpQEQ%40mail.gmail.com
Instead of allocating all the ResultRelInfos upfront in one big array,
allocate them in ExecInitModifyTable(). es_result_relations is now an
array of ResultRelInfo pointers, rather than an array of structs, and it
is indexed by the RT index.
This simplifies things: we get rid of the separate concept of a "result
rel index", and don't need to set it in setrefs.c anymore. This also
allows follow-up optimizations (not included in this commit yet) to skip
initializing ResultRelInfos for target relations that were not needed at
runtime, and removal of the es_result_relation_info pointer.
The EState arrays of regular result rels and root result rels are merged
into one array. Similarly, the resultRelations and rootResultRelations
lists in PlannedStmt are merged into one. It's not actually clear to me
why they were kept separate in the first place, but now that the
es_result_relations array is indexed by RT index, it certainly seems
pointless.
The PlannedStmt->resultRelations list is now only needed for
ExecRelationIsTargetRelation(). One visible effect of this change is that
ExecRelationIsTargetRelation() will now return 'true' also for the
partition root, if a partitioned table is updated. That seems like a good
thing, although the function isn't used in core code, and I don't see any
reason for an FDW to call it on a partition root.
Author: Amit Langote
Discussion: https://www.postgresql.org/message-id/CA%2BHiwqGEmiib8FLiHMhKB%2BCH5dRgHSLc5N5wnvc4kym%2BZYpQEQ%40mail.gmail.com
We have a dozen or so places that need to iterate over all but the
first cell of a List. Prior to v13 this was typically written as
for_each_cell(lc, lnext(list_head(list)))
Commit 1cff1b95a changed these to
for_each_cell(lc, list, list_second_cell(list))
This patch introduces a new macro for_each_from() which expresses
the start point as a list index, allowing these to be written as
for_each_from(lc, list, 1)
This is marginally more efficient, since ForEachState.i can be
initialized directly instead of backing into it from a ListCell
address. It also seems clearer and less typo-prone.
Some of the remaining uses of for_each_cell() look like they could
profitably be changed to for_each_from(), but here I confined myself
to changing uses of list_second_cell().
Also, fix for_each_cell_setup() and for_both_cell_setup() to
const-ify their arguments; that's a simple oversight in 1cff1b95a.
Back-patch into v13, on the grounds that (1) the const-ification
is a minor bug fix, and (2) it's better for back-patching purposes
if we only have two ways to write these loops rather than three.
In HEAD, also remove list_third_cell() and list_fourth_cell(),
which were also introduced in 1cff1b95a, and are unused as of
cc99baa43. It seems unlikely that any third-party code would
have started to use them already; anyone who has can be directed
to list_nth_cell instead.
Discussion: https://postgr.es/m/CAApHDvpo1zj9KhEpU2cCRZfSM3Q6XGdhzuAS2v79PH7WJBkYVA@mail.gmail.com
When commit bd3daddaf introduced AlternativeSubPlans, I had some
ambitions towards allowing the choice of subplan to change during
execution. That has not happened, or even been thought about, in the
ensuing twelve years; so it seems like a failed experiment. So let's
rip that out and resolve the choice of subplan at the end of planning
(in setrefs.c) rather than during executor startup. This has a number
of positive benefits:
* Removal of a few hundred lines of executor code, since
AlternativeSubPlans need no longer be supported there.
* Removal of executor-startup overhead (particularly, initialization
of subplans that won't be used).
* Removal of incidental costs of having a larger plan tree, such as
tree-scanning and copying costs in the plancache; not to mention
setrefs.c's own costs of processing the discarded subplans.
* EXPLAIN no longer has to print a weird (and undocumented)
representation of an AlternativeSubPlan choice; it sees only the
subplan actually used. This should mean less confusion for users.
* Since setrefs.c knows which subexpression of a plan node it's
working on at any instant, it's possible to adjust the estimated
number of executions of the subplan based on that. For example,
we should usually estimate more executions of a qual expression
than a targetlist expression. The implementation used here is
pretty simplistic, because we don't want to expend a lot of cycles
on the issue; but it's better than ignoring the point entirely,
as the executor had to.
That last point might possibly result in shifting the choice
between hashed and non-hashed EXISTS subplans in a few cases,
but in general this patch isn't meant to change planner choices.
Since we're doing the resolution so late, it's really impossible
to change any plan choices outside the AlternativeSubPlan itself.
Patch by me; thanks to David Rowley for review.
Discussion: https://postgr.es/m/1992952.1592785225@sss.pgh.pa.us
nodeSubplan.c expects that the testexpr for a hashable ANY SubPlan
has the form of one or more OpExprs whose LHS is an expression of the
outer query's, while the RHS is an expression over Params representing
output columns of the subquery. However, the planner only went as far
as verifying that the clauses were all binary OpExprs. This works
99.99% of the time, because the clauses have the right shape when
emitted by the parser --- but it's possible for function inlining to
break that, as reported by PegoraroF10. To fix, teach the planner
to check that the LHS and RHS contain the right things, or more
accurately don't contain the wrong things. Given that this has been
broken for years without anyone noticing, it seems sufficient to just
give up hashing when it happens, rather than go to the trouble of
commuting the clauses back again (which wouldn't necessarily work
anyway).
While poking at that, I also noticed that nodeSubplan.c had a baked-in
assumption that the number of hash clauses is identical to the number
of subquery output columns. Again, that's fine as far as parser output
goes, but it's not hard to break it via function inlining. There seems
little reason for that assumption though --- AFAICS, the only thing
it's buying us is not having to store the number of hash clauses
explicitly. Adding code to the planner to reject such cases would take
more code than getting nodeSubplan.c to cope, so I fixed it that way.
This has been broken for as long as we've had hashable SubPlans,
so back-patch to all supported branches.
Discussion: https://postgr.es/m/1549209182255-0.post@n3.nabble.com
Add a GUC that acts as a multiplier on work_mem. It gets applied when
sizing executor node hash tables that were previously size constrained
using work_mem alone.
The new GUC can be used to preferentially give hash-based nodes more
memory than the generic work_mem limit. It is intended to enable admin
tuning of the executor's memory usage. Overall system throughput and
system responsiveness can be improved by giving hash-based executor
nodes more memory (especially over sort-based alternatives, which are
often much less sensitive to being memory constrained).
The default value for hash_mem_multiplier is 1.0, which is also the
minimum valid value. This means that hash-based nodes continue to apply
work_mem in the traditional way by default.
hash_mem_multiplier is generally useful. However, it is being added now
due to concerns about hash aggregate performance stability for users
that upgrade to Postgres 13 (which added disk-based hash aggregation in
commit 1f39bce0). While the old hash aggregate behavior risked
out-of-memory errors, it is nevertheless likely that many users actually
benefited. Hash agg's previous indifference to work_mem during query
execution was not just faster; it also accidentally made aggregation
resilient to grouping estimate problems (at least in cases where this
didn't create destabilizing memory pressure).
hash_mem_multiplier can provide a certain kind of continuity with the
behavior of Postgres 12 hash aggregates in cases where the planner
incorrectly estimates that all groups (plus related allocations) will
fit in work_mem/hash_mem. This seems necessary because hash-based
aggregation is usually much slower when only a small fraction of all
groups can fit. Even when it isn't possible to totally avoid hash
aggregates that spill, giving hash aggregation more memory will reliably
improve performance (the same cannot be said for external sort
operations, which appear to be almost unaffected by memory availability
provided it's at least possible to get a single merge pass).
The PostgreSQL 13 release notes should advise users that increasing
hash_mem_multiplier can help with performance regressions associated
with hash aggregation. That can be taken care of by a later commit.
Author: Peter Geoghegan
Reviewed-By: Álvaro Herrera, Jeff Davis
Discussion: https://postgr.es/m/20200625203629.7m6yvut7eqblgmfo@alap3.anarazel.de
Discussion: https://postgr.es/m/CAH2-WzmD%2Bi1pG6rc1%2BCjc4V6EaFJ_qSuKCCHVnH%3DoruqD-zqow%40mail.gmail.com
Backpatch: 13-, where disk-based hash aggregation was introduced.
Note: This GUC was originally named enable_hashagg_disk when it appeared
in commit 1f39bce0, which added disk-based hash aggregation. It was
subsequently renamed in commit 92c58fd9.
Author: Peter Geoghegan
Reviewed-By: Jeff Davis, Álvaro Herrera
Discussion: https://postgr.es/m/9d9d1e1252a52ea1bad84ea40dbebfd54e672a0f.camel%40j-davis.com
Backpatch: 13-, where disk-based hash aggregation was introduced.
This representation saves 8 bytes per tuple compared to HeapTuple, and
avoids the need to allocate, copy and free on the receiving side.
Gather can emit the returned MinimalTuple directly, but GatherMerge now
needs to make an explicit copy because it buffers multiple tuples at a
time. That should be no worse than before.
Reviewed-by: Soumyadeep Chakraborty <soumyadeep2007@gmail.com>
Discussion: https://postgr.es/m/CA%2BhUKG%2B8T_ggoUTAE-U%3DA%2BOcPc4%3DB0nPPHcSfffuQhvXXjML6w%40mail.gmail.com