There are common use-cases in which the compress and/or decompress
functions can be omitted, with the result being that we make no
data transformation when storing or retrieving index values.
Previously, you had to provide a no-op function anyway, but this
patch allows such opclass support functions to be omitted.
Furthermore, if the compress function is omitted, then the core code
knows that the stored representation is the same as the original data.
This means we can allow index-only scans without requiring a fetch
function to be provided either. Previously you had to provide a
no-op fetch function if you wanted IOS to work.
This reportedly provides a small performance benefit in such cases,
but IMO the real reason for doing it is just to reduce the amount of
useless boilerplate code that has to be written for GiST opclasses.
Andrey Borodin, reviewed by Dmitriy Sarafannikov
Discussion: https://postgr.es/m/CAJEAwVELVx9gYscpE=Be6iJxvdW5unZ_LkcAaVNSeOwvdwtD=A@mail.gmail.com
Don't move parenthesized lines to the left, even if that means they
flow past the right margin.
By default, BSD indent lines up statement continuation lines that are
within parentheses so that they start just to the right of the preceding
left parenthesis. However, traditionally, if that resulted in the
continuation line extending to the right of the desired right margin,
then indent would push it left just far enough to not overrun the margin,
if it could do so without making the continuation line start to the left of
the current statement indent. That makes for a weird mix of indentations
unless one has been completely rigid about never violating the 80-column
limit.
This behavior has been pretty universally panned by Postgres developers.
Hence, disable it with indent's new -lpl switch, so that parenthesized
lines are always lined up with the preceding left paren.
This patch is much less interesting than the first round of indent
changes, but also bulkier, so I thought it best to separate the effects.
Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org
Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
Change pg_bsd_indent to follow upstream rules for placement of comments
to the right of code, and remove pgindent hack that caused comments
following #endif to not obey the general rule.
Commit e3860ffa4dd0dad0dd9eea4be9cc1412373a8c89 wasn't actually using
the published version of pg_bsd_indent, but a hacked-up version that
tried to minimize the amount of movement of comments to the right of
code. The situation of interest is where such a comment has to be
moved to the right of its default placement at column 33 because there's
code there. BSD indent has always moved right in units of tab stops
in such cases --- but in the previous incarnation, indent was working
in 8-space tab stops, while now it knows we use 4-space tabs. So the
net result is that in about half the cases, such comments are placed
one tab stop left of before. This is better all around: it leaves
more room on the line for comment text, and it means that in such
cases the comment uniformly starts at the next 4-space tab stop after
the code, rather than sometimes one and sometimes two tabs after.
Also, ensure that comments following #endif are indented the same
as comments following other preprocessor commands such as #else.
That inconsistency turns out to have been self-inflicted damage
from a poorly-thought-through post-indent "fixup" in pgindent.
This patch is much less interesting than the first round of indent
changes, but also bulkier, so I thought it best to separate the effects.
Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org
Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
In combination with 569174f1be92be93f5366212cc46960d28a5c5cd, which
taught the btree AM how to perform parallel index scans, this allows
parallel index scan plans on btree indexes. This infrastructure
should be general enough to support parallel index scans for other
index AMs as well, if someone updates them to support parallel
scans.
Amit Kapila, reviewed and tested by Anastasia Lubennikova, Tushar
Ahuja, and Haribabu Kommi, and me.
It's always been possible for index AMs to cache data across successive
amgettuple calls within a single SQL command: the IndexScanDesc.opaque
field is meant for precisely that. However, no comparable facility
exists for amortizing setup work across successive aminsert calls.
This patch adds such a feature and teaches GIN, GIST, and BRIN to use it
to amortize catalog lookups they'd previously been doing on every call.
(The other standard index AMs keep everything they need in the relcache,
so there's little to improve there.)
For GIN, the overall improvement in a statement that inserts many rows
can be as much as 10%, though it seems a bit less for the other two.
In addition, this makes a really significant difference in runtime
for CLOBBER_CACHE_ALWAYS tests, since in those builds the repeated
catalog lookups are vastly more expensive.
The reason this has been hard up to now is that the aminsert function is
not passed any useful place to cache per-statement data. What I chose to
do is to add suitable fields to struct IndexInfo and pass that to aminsert.
That's not widening the index AM API very much because IndexInfo is already
within the ken of ambuild; in fact, by passing the same info to aminsert
as to ambuild, this is really removing an inconsistency in the AM API.
Discussion: https://postgr.es/m/27568.1486508680@sss.pgh.pa.us
This patch doesn't actually make any index AM parallel-aware, but it
provides the necessary functions at the AM layer to do so.
Rahila Syed, Amit Kapila, Robert Haas
Gen_fmgrtab.pl creates a new file fmgrprotos.h, which contains
prototypes for all functions registered in pg_proc.h. This avoids
having to manually maintain these prototypes across a random variety of
header files. It also automatically enforces a correct function
signature, and since there are warnings about missing prototypes, it
will detect functions that are defined but not registered in
pg_proc.h (or otherwise used).
Reviewed-by: Pavel Stehule <pavel.stehule@gmail.com>
PageIndexTupleOverwrite performs approximately the same function as
PageIndexTupleDelete (or PageIndexDeleteNoCompact) followed by PageAddItem
targeting the same item pointer offset. But in the case where the new
tuple is the same size as the old, it avoids shuffling other data around on
the page, because the new tuple is placed where the old one was rather than
being appended to the end of the page. This has been shown to provide a
substantial speedup for some GiST use-cases.
Also, this change allows some API simplifications: we can get rid of
the rather klugy and error-prone PAI_ALLOW_FAR_OFFSET flag for
PageAddItemExtended, since that was used only to cover a corner case
for BRIN that's better expressed by using PageIndexTupleOverwrite.
Note that this patch causes a rather subtle WAL incompatibility: the
physical page content change represented by certain WAL records is now
different than it was before, because while the tuples have the same
itempointer line numbers, the tuples themselves are in different places.
I have not bumped the WAL version number because I think it doesn't matter
unless you are trying to do bitwise comparisons of original and replayed
pages, and in any case we're early in a devel cycle and there will probably
be more WAL changes before v10 gets out the door.
There is probably room to make use of PageIndexTupleOverwrite in SP-GiST
and GIN too, but that is left for a future patch.
Andrey Borodin, reviewed by Anastasia Lubennikova, whacked around a bit
by me
Discussion: <CAJEAwVGQjGGOj6mMSgMwGvtFd5Kwe6VFAxY=uEPZWMDjzbn4VQ@mail.gmail.com>
I found that half a dozen (nearly 5%) of our AllocSetContextCreate calls
had typos in the context-sizing parameters. While none of these led to
especially significant problems, they did create minor inefficiencies,
and it's now clear that expecting people to copy-and-paste those calls
accurately is not a great idea. Let's reduce the risk of future errors
by introducing single macros that encapsulate the common use-cases.
Three such macros are enough to cover all but two special-purpose contexts;
those two calls can be left as-is, I think.
While this patch doesn't in itself improve matters for third-party
extensions, it doesn't break anything for them either, and they can
gradually adopt the simplified notation over time.
In passing, change TopMemoryContext to use the default allocation
parameters. Formerly it could only be extended 8K at a time. That was
probably reasonable when this code was written; but nowadays we create
many more contexts than we did then, so that it's not unusual to have a
couple hundred K in TopMemoryContext, even without considering various
dubious code that sticks other things there. There seems no good reason
not to let it use growing blocks like most other contexts.
Back-patch to 9.6, mostly because that's still close enough to HEAD that
it's easy to do so, and keeping the branches in sync can be expected to
avoid some future back-patching pain. The bugs fixed by these changes
don't seem to be significant enough to justify fixing them further back.
Discussion: <21072.1472321324@sss.pgh.pa.us>
Per discussion, we should provide such functions to replace the lost
ability to discover AM properties by inspecting pg_am (cf commit
65c5fcd35). The added functionality is also meant to displace any code
that was looking directly at pg_index.indoption, since we'd rather not
believe that the bit meanings in that field are part of any client API
contract.
As future-proofing, define the SQL API to not assume that properties that
are currently AM-wide or index-wide will remain so unless they logically
must be; instead, expose them only when inquiring about a specific index
or even specific index column. Also provide the ability for an index
AM to override the behavior.
In passing, document pg_am.amtype, overlooked in commit 473b93287.
Andrew Gierth, with kibitzing by me and others
Discussion: <87mvl5on7n.fsf@news-spur.riddles.org.uk>
The reverted changes were intended to force a choice of whether any
newly-added BufferGetPage() calls needed to be accompanied by a
test of the snapshot age, to support the "snapshot too old"
feature. Such an accompanying test is needed in about 7% of the
cases, where the page is being used as part of a scan rather than
positioning for other purposes (such as DML or vacuuming). The
additional effort required for back-patching, and the doubt whether
the intended benefit would really be there, have indicated it is
best just to rely on developers to do the right thing based on
comments and existing usage, as we do with many other conventions.
This change should have little or no effect on generated executable
code.
Motivated by the back-patching pain of Tom Lane and Robert Haas
This patch is a no-op patch which is intended to reduce the chances
of failures of omission once the functional part of the "snapshot
too old" patch goes in. It adds parameters for snapshot, relation,
and an enum to specify whether the snapshot age check needs to be
done for the page at this point. This initial patch passes NULL
for the first two new parameters and BGP_NO_SNAPSHOT_TEST for the
third. The follow-on patch will change the places where the test
needs to be made.
Now indexes (but only B-tree for now) can contain "extra" column(s) which
doesn't participate in index structure, they are just stored in leaf
tuples. It allows to use index only scan by using single index instead
of two or more indexes.
Author: Anastasia Lubennikova with minor editorializing by me
Reviewers: David Rowley, Peter Geoghegan, Jeff Janes
This patch reduces pg_am to just two columns, a name and a handler
function. All the data formerly obtained from pg_am is now provided
in a C struct returned by the handler function. This is similar to
the designs we've adopted for FDWs and tablesample methods. There
are multiple advantages. For one, the index AM's support functions
are now simple C functions, making them faster to call and much less
error-prone, since the C compiler can now check function signatures.
For another, this will make it far more practical to define index access
methods in installable extensions.
A disadvantage is that SQL-level code can no longer see attributes
of index AMs; in particular, some of the crosschecks in the opr_sanity
regression test are no longer possible from SQL. We've addressed that
by adding a facility for the index AM to perform such checks instead.
(Much more could be done in that line, but for now we're content if the
amvalidate functions more or less replace what opr_sanity used to do.)
We might also want to expose some sort of reporting functionality, but
this patch doesn't do that.
Alexander Korotkov, reviewed by Petr Jelínek, and rather heavily
editorialized on by me.
Commit 013ebc0a7b7ea9c1b1ab7a3d4dd75ea121ea8ba7 introduces microvacuum for
GiST, deletetion of tuple marked LP_DEAD uses IndexPageMultiDelete while
recovery code uses IndexPageTupleDelete in loop. This causes a difference
in offset numbers of tuples to delete. Patch introduces usage of
IndexPageMultiDelete in GiST except gistplacetopage() where only one tuple is
deleted at once. That also slightly improve performance, because
IndexPageMultiDelete is more effective.
Patch changes WAL format, so bump wal page magic.
Bug report from Jeff Janes
Diagnostic and patch by Anastasia Lubennikova and me
Mark index tuple as dead if it's pointed by kill_prior_tuple during
ordinary (search) scan and remove it during insert process if there is no
enough space for new tuple to insert. This improves select performance
because index will not return tuple marked as dead and improves insert
performance because it reduces number of page split.
Anastasia Lubennikova <a.lubennikova@postgrespro.ru> with
minor editorialization by me
This adds a new GiST opclass method, 'fetch', which is used to reconstruct
the original Datum from the value stored in the index. Also, the 'canreturn'
index AM interface function gains a new 'attno' argument. That makes it
possible to use index-only scans on a multi-column index where some of the
opclasses support index-only scans but some do not.
This patch adds support in the box and point opclasses. Other opclasses
can added later as follow-on patches (btree_gist would be particularly
interesting).
Anastasia Lubennikova, with additional fixes and modifications by me.
Each WAL record now carries information about the modified relation and
block(s) in a standardized format. That makes it easier to write tools that
need that information, like pg_rewind, prefetching the blocks to speed up
recovery, etc.
There's a whole new API for building WAL records, replacing the XLogRecData
chains used previously. The new API consists of XLogRegister* functions,
which are called for each buffer and chunk of data that is added to the
record. The new API also gives more control over when a full-page image is
written, by passing flags to the XLogRegisterBuffer function.
This also simplifies the XLogReadBufferForRedo() calls. The function can dig
the relation and block number from the WAL record, so they no longer need to
be passed as arguments.
For the convenience of redo routines, XLogReader now disects each WAL record
after reading it, copying the main data part and the per-block data into
MAXALIGNed buffers. The data chunks are not aligned within the WAL record,
but the redo routines can assume that the pointers returned by XLogRecGet*
functions are. Redo routines are now passed the XLogReaderState, which
contains the record in the already-disected format, instead of the plain
XLogRecord.
The new record format also makes the fixed size XLogRecord header smaller,
by removing the xl_len field. The length of the "main data" portion is now
stored at the end of the WAL record, and there's a separate header after
XLogRecord for it. The alignment padding at the end of XLogRecord is also
removed. This compansates for the fact that the new format would otherwise
be more bulky than the old format.
Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera,
Fujii Masao.
The page splitting code would go into infinite recursion if you try to
insert an index tuple that doesn't fit even on an empty page.
Per analysis and suggested fix by Andrew Gierth. Fixes bug #11555, reported
by Bryan Seitz (analysis happened over IRC). Backpatch to all supported
versions.
log_newpage is used by many indexams, in addition to heap, but for
historical reasons it's always been part of the heapam rmgr. Starting with
9.3, we have another WAL record type for logging an image of a page,
XLOG_FPI. Simplify things by moving log_newpage and log_newpage_buffer to
xlog.c, and switch to using the XLOG_FPI record type.
Bump the WAL version number because the code to replay the old HEAP_NEWPAGE
records is removed.
Memory allocation can fail if you run out of memory, and inside a critical
section that will lead to a PANIC. Use conservatively-sized arrays in stack
instead.
There was previously no explicit limit on the number of pages a GiST split
can produce, it was only limited by the number of LWLocks that can be held
simultaneously (100 at the moment). This patch adds an explicit limit of 75
pages. That should be plenty, a typical split shouldn't produce more than
2-3 page halves.
The bug has been there forever, but only backpatch down to 9.1. The code
was changed significantly in 9.1, and it doesn't seem worth the risk or
trouble to adapt this for 9.0 and 8.4.
Remove use of PageSetTLI() from all page manipulation functions
and adjust README to indicate change in the way we make changes
to pages. Repurpose those bytes into the pd_checksum field and
explain how that works in comments about page header.
Refactoring ahead of actual feature patch which would make use
of the checksum field, arriving later.
Jeff Davis, with comments and doc changes by Simon Riggs
Direction suggested by Robert Haas; many others providing
review comments.
The reason this wasn't supported before was that GiST indexes need an
increasing sequence to detect concurrent page-splits. In a regular WAL-
logged GiST index, the LSN of the page-split record is used for that
purpose, and in a temporary index, we can get away with a backend-local
counter. Neither of those methods works for an unlogged relation.
To provide such an increasing sequence of numbers, create a "fake LSN"
counter that is saved and restored across shutdowns. On recovery, unlogged
relations are blown away, so the counter doesn't need to survive that
either.
Jeevan Chalke, based on discussions with Robert Haas, Tom Lane and me.
Improve comments, rename some variables and functions, slightly simplify
a couple of APIs, in an attempt to make this code readable by people other
than its original author.
Even though this is essentially just cosmetic, back-patch to all active
branches, because otherwise it's going to make back-patching future fixes
in this file very painful.
The patch that turned XLogRecPtr into a uint64 inadvertently changed the
on-disk format of GiST indexes, because the NSN field in the GiST page
opaque is an XLogRecPtr. That breaks pg_upgrade. Revert the format of that
field back to the two-field struct that XLogRecPtr was before. This is the
same we did to LSNs in the page header to avoid changing on-disk format.
Bump catversion, as this invalidates any existing GiST indexes built on
9.3devel.
This gets rid of XLByteLT, XLByteLE, XLByteEQ and XLByteAdvance.
These were useful for brevity when XLogRecPtrs were split in
xlogid/xrecoff; but now that they are simple uint64's, they are just
clutter. The only downside to making this change would be ease of
backporting patches, but that has been negated by other substantive
changes to the involved code anyway. The clarity of simpler expressions
makes the change worthwhile.
Most of the changes are mechanical, but in a couple of places, the patch
author chose to invert the operator sense, making the code flow more
logical (and more in line with preceding comments).
Author: Andres Freund
Eyeballed by Dimitri Fontaine and Alvaro Herrera
We use a hash table to track the parents of inner pages, but when inserting
to a leaf page, the caller of gistbufferinginserttuples() must pass a
correct block number of the leaf's parent page. Before gistProcessItup()
descends to a child page, it checks if the downlink needs to be adjusted to
accommodate the new tuple, and updates the downlink if necessary. However,
updating the downlink might require splitting the page, which might move the
downlink to a page to the right. gistProcessItup() doesn't realize that, so
when it descends to the leaf page, it might pass an out-of-date parent block
number as a result. Fix that by returning the block a tuple was inserted to
from gistbufferinginserttuples().
This fixes the bug reported by Zdeněk Jílovec.
This simplifies code that needs to do arithmetic on XLogRecPtrs.
To avoid changing on-disk format of data pages, the LSN on data pages is
still stored in the old format. That should keep pg_upgrade happy. However,
we have XLogRecPtrs embedded in the control file, and in the structs that
are sent over the replication protocol, so this changes breaks compatibility
of pg_basebackup and server. I didn't do anything about this in this patch,
per discussion on -hackers, the right thing to do would to be to change the
replication protocol to be architecture-independent, so that you could use
a newer version of pg_receivexlog, for example, against an older server
version.
When inserting the downlinks for a split gist page, we used hold the locks
on the child pages until the insertion into the parent - and recursively its
parent if it had to be split too - were all completed. Change that so that
the locks on child pages are released after the insertion in the immediate
parent is done, before recursing further up the tree.
This reduces the number of lwlocks that are held simultaneously. Holding
many locks is bad for concurrency, and in extreme cases you can even hit
the limit of 100 simultaneously held lwlocks in a backend. If you're really
unlucky, you can hit the limit while in a critical section, which brings
down the whole system.
This fixes bug #6629 reported by Tom Forbes. Backpatch to 9.1. The page
splitting code was rewritten in 9.1, and the old code did not have this
problem.
pg_trgm was already doing this unofficially, but the implementation hadn't
been thought through very well and leaked memory. Restructure the core
GiST code so that it actually works, and document it. Ordinarily this
would have required an extra memory context creation/destruction for each
GiST index search, but I was able to avoid that in the normal case of a
non-rescanned search by finessing the handling of the RBTree. It used to
have its own context always, but now shares a context with the
scan-lifespan data structures, unless there is more than one rescan call.
This should make the added overhead unnoticeable in typical cases.
When building a GiST index that doesn't fit in cache, buffers are attached
to some internal nodes in the index. This speeds up the build by avoiding
random I/O that would otherwise be needed to traverse all the way down the
tree to the find right leaf page for tuple.
Alexander Korotkov
GISTInsertStack.childoffnum used to mean "offset of the downlink in this
node, pointing to the child node in the stack". It's now replaced with
downlinkoffnum, which means "offset of the downlink in the parent of this
node". gistFindPath() already used childoffnum with this new meaning, and
had an extra step at the end to pull all the childoffnum values down one
node in the stack, to adjust the stack for the meaning that childoffnum had
elsewhere. That's no longer required.
The reason to do this now is this new representation is more convenient for
the GiST fast build patch that Alexander Korotkov is working on.
While we're at it, replace the linked list used in gistFindPath with a
standard List, and make gistFindPath() static.
Alexander Korotkov, with some changes by me.
First, when following a right-link, we incorrectly marked the current page
as the parent of the right sibling. In reality, the parent of the right page
is the same as the parent of the current page (or some page to the right of
it, gistFindCorrectParent() will sort that out).
Secondly, when we follow a right-link, we must prepend, not append, the right
page to our list of pages to visit. That's because we assume that once we
hit a leaf page in the list, all the rest are leaf pages too, and give up.
To hit these bugs, you need concurrent actions and several unlucky accidents.
Another backend must split the root page, while you're in process of
splitting a lower-level page. Furthermore, while you scan the internal nodes
to re-find the parent, another backend needs to again split some more internal
pages. Even then, the bugs don't necessarily manifest as user-visible errors
or index corruption.
While we're at it, make the error reporting a bit better if gistFindPath()
fails to re-find the parent. It used to be an assertion, but an elog() seems
more appropriate.
Backpatch to all supported branches.