setrefs.c contains logic to discard no-op SubqueryScan nodes, that is,
ones that have no qual to check and copy the input targetlist unchanged.
(Formally it's not very nice to be applying such optimizations so late
in the planner, but there are practical reasons for it; mostly that we
can't unify relids between the subquery and the parent query until we
flatten the rangetable during setrefs.c.) This behavior falsifies our
previous cost estimates, since we would've charged cpu_tuple_cost per
row just to pass data through the node. Most of the time that's little
enough to not matter, but there are cases where this effect visibly
changes the plan compared to what you would've gotten with no
sub-select.
To improve the situation, make the callers of cost_subqueryscan tell
it whether they think the targetlist is trivial. cost_subqueryscan
already has the qual list, so it can check the other half of the
condition easily. It could make its own determination of tlist
triviality too, but doing so would be repetitive (for callers that
may call it several times) or unnecessarily expensive (for callers
that can determine this more cheaply than a general test would do).
This isn't a 100% solution, because createplan.c also does things
that can falsify any earlier estimate of whether the tlist is
trivial. However, it fixes nearly all cases in practice, if results
for the regression tests are anything to go by.
setrefs.c also contains logic to discard no-op Append and MergeAppend
nodes. We did have knowledge of that behavior at costing time, but
somebody failed to update it when a check on parallel-awareness was
added to the setrefs.c logic. Fix that while we're here.
These changes result in two minor changes in query plans shown in
our regression tests. Neither is relevant to the purposes of its
test case AFAICT.
Patch by me; thanks to Richard Guo for review.
Discussion: https://postgr.es/m/2581077.1651703520@sss.pgh.pa.us
Window functions such as row_number() always return a value higher than
the previously returned value for tuples in any given window partition.
Traditionally queries such as;
SELECT * FROM (
SELECT *, row_number() over (order by c) rn
FROM t
) t WHERE rn <= 10;
were executed fairly inefficiently. Neither the query planner nor the
executor knew that once rn made it to 11 that nothing further would match
the outer query's WHERE clause. It would blindly continue until all
tuples were exhausted from the subquery.
Here we implement means to make the above execute more efficiently.
This is done by way of adding a pg_proc.prosupport function to various of
the built-in window functions and adding supporting code to allow the
support function to inform the planner if the window function is
monotonically increasing, monotonically decreasing, both or neither. The
planner is then able to make use of that information and possibly allow
the executor to short-circuit execution by way of adding a "run condition"
to the WindowAgg to allow it to determine if some of its execution work
can be skipped.
This "run condition" is not like a normal filter. These run conditions
are only built using quals comparing values to monotonic window functions.
For monotonic increasing functions, quals making use of the btree
operators for <, <= and = can be used (assuming the window function column
is on the left). You can see here that once such a condition becomes false
that a monotonic increasing function could never make it subsequently true
again. For monotonically decreasing functions the >, >= and = btree
operators for the given type can be used for run conditions.
The best-case situation for this is when there is a single WindowAgg node
without a PARTITION BY clause. Here when the run condition becomes false
the WindowAgg node can simply return NULL. No more tuples will ever match
the run condition. It's a little more complex when there is a PARTITION
BY clause. In this case, we cannot return NULL as we must still process
other partitions. To speed this case up we pull tuples from the outer
plan to check if they're from the same partition and simply discard them
if they are. When we find a tuple belonging to another partition we start
processing as normal again until the run condition becomes false or we run
out of tuples to process.
When there are multiple WindowAgg nodes to evaluate then this complicates
the situation. For intermediate WindowAggs we must ensure we always
return all tuples to the calling node. Any filtering done could lead to
incorrect results in WindowAgg nodes above. For all intermediate nodes,
we can still save some work when the run condition becomes false. We've
no need to evaluate the WindowFuncs anymore. Other WindowAgg nodes cannot
reference the value of these and these tuples will not appear in the final
result anyway. The savings here are small in comparison to what can be
saved in the top-level WingowAgg, but still worthwhile.
Intermediate WindowAgg nodes never filter out tuples, but here we change
WindowAgg so that the top-level WindowAgg filters out tuples that don't
match the intermediate WindowAgg node's run condition. Such filters
appear in the "Filter" clause in EXPLAIN for the top-level WindowAgg node.
Here we add prosupport functions to allow the above to work for;
row_number(), rank(), dense_rank(), count(*) and count(expr). It appears
technically possible to do the same for min() and max(), however, it seems
unlikely to be useful enough, so that's not done here.
Bump catversion
Author: David Rowley
Reviewed-by: Andy Fan, Zhihong Yu
Discussion: https://postgr.es/m/CAApHDvqvp3At8++yF8ij06sdcoo1S_b2YoaT9D4Nf+MObzsrLQ@mail.gmail.com
MERGE performs actions that modify rows in the target table using a
source table or query. MERGE provides a single SQL statement that can
conditionally INSERT/UPDATE/DELETE rows -- a task that would otherwise
require multiple PL statements. For example,
MERGE INTO target AS t
USING source AS s
ON t.tid = s.sid
WHEN MATCHED AND t.balance > s.delta THEN
UPDATE SET balance = t.balance - s.delta
WHEN MATCHED THEN
DELETE
WHEN NOT MATCHED AND s.delta > 0 THEN
INSERT VALUES (s.sid, s.delta)
WHEN NOT MATCHED THEN
DO NOTHING;
MERGE works with regular tables, partitioned tables and inheritance
hierarchies, including column and row security enforcement, as well as
support for row and statement triggers and transition tables therein.
MERGE is optimized for OLTP and is parameterizable, though also useful
for large scale ETL/ELT. MERGE is not intended to be used in preference
to existing single SQL commands for INSERT, UPDATE or DELETE since there
is some overhead. MERGE can be used from PL/pgSQL.
MERGE does not support targetting updatable views or foreign tables, and
RETURNING clauses are not allowed either. These limitations are likely
fixable with sufficient effort. Rewrite rules are also not supported,
but it's not clear that we'd want to support them.
Author: Pavan Deolasee <pavan.deolasee@gmail.com>
Author: Álvaro Herrera <alvherre@alvh.no-ip.org>
Author: Amit Langote <amitlangote09@gmail.com>
Author: Simon Riggs <simon.riggs@enterprisedb.com>
Reviewed-by: Peter Eisentraut <peter.eisentraut@enterprisedb.com>
Reviewed-by: Andres Freund <andres@anarazel.de> (earlier versions)
Reviewed-by: Peter Geoghegan <pg@bowt.ie> (earlier versions)
Reviewed-by: Robert Haas <robertmhaas@gmail.com> (earlier versions)
Reviewed-by: Japin Li <japinli@hotmail.com>
Reviewed-by: Justin Pryzby <pryzby@telsasoft.com>
Reviewed-by: Tomas Vondra <tomas.vondra@enterprisedb.com>
Reviewed-by: Zhihong Yu <zyu@yugabyte.com>
Discussion: https://postgr.es/m/CANP8+jKitBSrB7oTgT9CY2i1ObfOt36z0XMraQc+Xrz8QB0nXA@mail.gmail.com
Discussion: https://postgr.es/m/CAH2-WzkJdBuxj9PO=2QaO9-3h3xGbQPZ34kJH=HukRekwM-GZg@mail.gmail.com
Discussion: https://postgr.es/m/20201231134736.GA25392@alvherre.pgsql
Memoize would always use the hash equality operator for the cache key
types to determine if the current set of parameters were the same as some
previously cached set. Certain types such as floating points where -0.0
and +0.0 differ in their binary representation but are classed as equal by
the hash equality operator may cause problems as unless the join uses the
same operator it's possible that whichever join operator is being used
would be able to distinguish the two values. In which case we may
accidentally return in the incorrect rows out of the cache.
To fix this here we add a binary mode to Memoize to allow it to the
current set of parameters to previously cached values by comparing
bit-by-bit rather than logically using the hash equality operator. This
binary mode is always used for LATERAL joins and it's used for normal
joins when any of the join operators are not hashable.
Reported-by: Tom Lane
Author: David Rowley
Discussion: https://postgr.es/m/3004308.1632952496@sss.pgh.pa.us
Backpatch-through: 14, where Memoize was added
"Result Cache" was never a great name for this node, but nobody managed
to come up with another name that anyone liked enough. That was until
David Johnston mentioned "Node Memoization", which Tom Lane revised to
just "Memoize". People seem to like "Memoize", so let's do the rename.
Reviewed-by: Justin Pryzby
Discussion: https://postgr.es/m/20210708165145.GG1176@momjian.us
Backpatch-through: 14, where Result Cache was introduced
Here we add a new executor node type named "Result Cache". The planner
can include this node type in the plan to have the executor cache the
results from the inner side of parameterized nested loop joins. This
allows caching of tuples for sets of parameters so that in the event that
the node sees the same parameter values again, it can just return the
cached tuples instead of rescanning the inner side of the join all over
again. Internally, result cache uses a hash table in order to quickly
find tuples that have been previously cached.
For certain data sets, this can significantly improve the performance of
joins. The best cases for using this new node type are for join problems
where a large portion of the tuples from the inner side of the join have
no join partner on the outer side of the join. In such cases, hash join
would have to hash values that are never looked up, thus bloating the hash
table and possibly causing it to multi-batch. Merge joins would have to
skip over all of the unmatched rows. If we use a nested loop join with a
result cache, then we only cache tuples that have at least one join
partner on the outer side of the join. The benefits of using a
parameterized nested loop with a result cache increase when there are
fewer distinct values being looked up and the number of lookups of each
value is large. Also, hash probes to lookup the cache can be much faster
than the hash probe in a hash join as it's common that the result cache's
hash table is much smaller than the hash join's due to result cache only
caching useful tuples rather than all tuples from the inner side of the
join. This variation in hash probe performance is more significant when
the hash join's hash table no longer fits into the CPU's L3 cache, but the
result cache's hash table does. The apparent "random" access of hash
buckets with each hash probe can cause a poor L3 cache hit ratio for large
hash tables. Smaller hash tables generally perform better.
The hash table used for the cache limits itself to not exceeding work_mem
* hash_mem_multiplier in size. We maintain a dlist of keys for this cache
and when we're adding new tuples and realize we've exceeded the memory
budget, we evict cache entries starting with the least recently used ones
until we have enough memory to add the new tuples to the cache.
For parameterized nested loop joins, we now consider using one of these
result cache nodes in between the nested loop node and its inner node. We
determine when this might be useful based on cost, which is primarily
driven off of what the expected cache hit ratio will be. Estimating the
cache hit ratio relies on having good distinct estimates on the nested
loop's parameters.
For now, the planner will only consider using a result cache for
parameterized nested loop joins. This works for both normal joins and
also for LATERAL type joins to subqueries. It is possible to use this new
node for other uses in the future. For example, to cache results from
correlated subqueries. However, that's not done here due to some
difficulties obtaining a distinct estimation on the outer plan to
calculate the estimated cache hit ratio. Currently we plan the inner plan
before planning the outer plan so there is no good way to know if a result
cache would be useful or not since we can't estimate the number of times
the subplan will be called until the outer plan is generated.
The functionality being added here is newly introducing a dependency on
the return value of estimate_num_groups() during the join search.
Previously, during the join search, we only ever needed to perform
selectivity estimations. With this commit, we need to use
estimate_num_groups() in order to estimate what the hit ratio on the
result cache will be. In simple terms, if we expect 10 distinct values
and we expect 1000 outer rows, then we'll estimate the hit ratio to be
99%. Since cache hits are very cheap compared to scanning the underlying
nodes on the inner side of the nested loop join, then this will
significantly reduce the planner's cost for the join. However, it's
fairly easy to see here that things will go bad when estimate_num_groups()
incorrectly returns a value that's significantly lower than the actual
number of distinct values. If this happens then that may cause us to make
use of a nested loop join with a result cache instead of some other join
type, such as a merge or hash join. Our distinct estimations have been
known to be a source of trouble in the past, so the extra reliance on them
here could cause the planner to choose slower plans than it did previous
to having this feature. Distinct estimations are also fairly hard to
estimate accurately when several tables have been joined already or when a
WHERE clause filters out a set of values that are correlated to the
expressions we're estimating the number of distinct value for.
For now, the costing we perform during query planning for result caches
does put quite a bit of faith in the distinct estimations being accurate.
When these are accurate then we should generally see faster execution
times for plans containing a result cache. However, in the real world, we
may find that we need to either change the costings to put less trust in
the distinct estimations being accurate or perhaps even disable this
feature by default. There's always an element of risk when we teach the
query planner to do new tricks that it decides to use that new trick at
the wrong time and causes a regression. Users may opt to get the old
behavior by turning the feature off using the enable_resultcache GUC.
Currently, this is enabled by default. It remains to be seen if we'll
maintain that setting for the release.
Additionally, the name "Result Cache" is the best name I could think of
for this new node at the time I started writing the patch. Nobody seems
to strongly dislike the name. A few people did suggest other names but no
other name seemed to dominate in the brief discussion that there was about
names. Let's allow the beta period to see if the current name pleases
enough people. If there's some consensus on a better name, then we can
change it before the release. Please see the 2nd discussion link below
for the discussion on the "Result Cache" name.
Author: David Rowley
Reviewed-by: Andy Fan, Justin Pryzby, Zhihong Yu, Hou Zhijie
Tested-By: Konstantin Knizhnik
Discussion: https://postgr.es/m/CAApHDvrPcQyQdWERGYWx8J%2B2DLUNgXu%2BfOSbQ1UscxrunyXyrQ%40mail.gmail.com
Discussion: https://postgr.es/m/CAApHDvq=yQXr5kqhRviT2RhNKwToaWr9JAN5t+5_PzhuRJ3wvg@mail.gmail.com
This removes "Add Result Cache executor node". It seems that something
weird is going on with the tracking of cache hits and misses as
highlighted by many buildfarm animals. It's not yet clear what the
problem is as other parts of the plan indicate that the cache did work
correctly, it's just the hits and misses that were being reported as 0.
This is especially a bad time to have the buildfarm so broken, so
reverting before too many more animals go red.
Discussion: https://postgr.es/m/CAApHDvq_hydhfovm4=izgWs+C5HqEeRScjMbOgbpC-jRAeK3Yw@mail.gmail.com
Here we add a new executor node type named "Result Cache". The planner
can include this node type in the plan to have the executor cache the
results from the inner side of parameterized nested loop joins. This
allows caching of tuples for sets of parameters so that in the event that
the node sees the same parameter values again, it can just return the
cached tuples instead of rescanning the inner side of the join all over
again. Internally, result cache uses a hash table in order to quickly
find tuples that have been previously cached.
For certain data sets, this can significantly improve the performance of
joins. The best cases for using this new node type are for join problems
where a large portion of the tuples from the inner side of the join have
no join partner on the outer side of the join. In such cases, hash join
would have to hash values that are never looked up, thus bloating the hash
table and possibly causing it to multi-batch. Merge joins would have to
skip over all of the unmatched rows. If we use a nested loop join with a
result cache, then we only cache tuples that have at least one join
partner on the outer side of the join. The benefits of using a
parameterized nested loop with a result cache increase when there are
fewer distinct values being looked up and the number of lookups of each
value is large. Also, hash probes to lookup the cache can be much faster
than the hash probe in a hash join as it's common that the result cache's
hash table is much smaller than the hash join's due to result cache only
caching useful tuples rather than all tuples from the inner side of the
join. This variation in hash probe performance is more significant when
the hash join's hash table no longer fits into the CPU's L3 cache, but the
result cache's hash table does. The apparent "random" access of hash
buckets with each hash probe can cause a poor L3 cache hit ratio for large
hash tables. Smaller hash tables generally perform better.
The hash table used for the cache limits itself to not exceeding work_mem
* hash_mem_multiplier in size. We maintain a dlist of keys for this cache
and when we're adding new tuples and realize we've exceeded the memory
budget, we evict cache entries starting with the least recently used ones
until we have enough memory to add the new tuples to the cache.
For parameterized nested loop joins, we now consider using one of these
result cache nodes in between the nested loop node and its inner node. We
determine when this might be useful based on cost, which is primarily
driven off of what the expected cache hit ratio will be. Estimating the
cache hit ratio relies on having good distinct estimates on the nested
loop's parameters.
For now, the planner will only consider using a result cache for
parameterized nested loop joins. This works for both normal joins and
also for LATERAL type joins to subqueries. It is possible to use this new
node for other uses in the future. For example, to cache results from
correlated subqueries. However, that's not done here due to some
difficulties obtaining a distinct estimation on the outer plan to
calculate the estimated cache hit ratio. Currently we plan the inner plan
before planning the outer plan so there is no good way to know if a result
cache would be useful or not since we can't estimate the number of times
the subplan will be called until the outer plan is generated.
The functionality being added here is newly introducing a dependency on
the return value of estimate_num_groups() during the join search.
Previously, during the join search, we only ever needed to perform
selectivity estimations. With this commit, we need to use
estimate_num_groups() in order to estimate what the hit ratio on the
result cache will be. In simple terms, if we expect 10 distinct values
and we expect 1000 outer rows, then we'll estimate the hit ratio to be
99%. Since cache hits are very cheap compared to scanning the underlying
nodes on the inner side of the nested loop join, then this will
significantly reduce the planner's cost for the join. However, it's
fairly easy to see here that things will go bad when estimate_num_groups()
incorrectly returns a value that's significantly lower than the actual
number of distinct values. If this happens then that may cause us to make
use of a nested loop join with a result cache instead of some other join
type, such as a merge or hash join. Our distinct estimations have been
known to be a source of trouble in the past, so the extra reliance on them
here could cause the planner to choose slower plans than it did previous
to having this feature. Distinct estimations are also fairly hard to
estimate accurately when several tables have been joined already or when a
WHERE clause filters out a set of values that are correlated to the
expressions we're estimating the number of distinct value for.
For now, the costing we perform during query planning for result caches
does put quite a bit of faith in the distinct estimations being accurate.
When these are accurate then we should generally see faster execution
times for plans containing a result cache. However, in the real world, we
may find that we need to either change the costings to put less trust in
the distinct estimations being accurate or perhaps even disable this
feature by default. There's always an element of risk when we teach the
query planner to do new tricks that it decides to use that new trick at
the wrong time and causes a regression. Users may opt to get the old
behavior by turning the feature off using the enable_resultcache GUC.
Currently, this is enabled by default. It remains to be seen if we'll
maintain that setting for the release.
Additionally, the name "Result Cache" is the best name I could think of
for this new node at the time I started writing the patch. Nobody seems
to strongly dislike the name. A few people did suggest other names but no
other name seemed to dominate in the brief discussion that there was about
names. Let's allow the beta period to see if the current name pleases
enough people. If there's some consensus on a better name, then we can
change it before the release. Please see the 2nd discussion link below
for the discussion on the "Result Cache" name.
Author: David Rowley
Reviewed-by: Andy Fan, Justin Pryzby, Zhihong Yu
Tested-By: Konstantin Knizhnik
Discussion: https://postgr.es/m/CAApHDvrPcQyQdWERGYWx8J%2B2DLUNgXu%2BfOSbQ1UscxrunyXyrQ%40mail.gmail.com
Discussion: https://postgr.es/m/CAApHDvq=yQXr5kqhRviT2RhNKwToaWr9JAN5t+5_PzhuRJ3wvg@mail.gmail.com
This patch makes two closely related sets of changes:
1. For UPDATE, the subplan of the ModifyTable node now only delivers
the new values of the changed columns (i.e., the expressions computed
in the query's SET clause) plus row identity information such as CTID.
ModifyTable must re-fetch the original tuple to merge in the old
values of any unchanged columns. The core advantage of this is that
the changed columns are uniform across all tables of an inherited or
partitioned target relation, whereas the other columns might not be.
A secondary advantage, when the UPDATE involves joins, is that less
data needs to pass through the plan tree. The disadvantage of course
is an extra fetch of each tuple to be updated. However, that seems to
be very nearly free in context; even worst-case tests don't show it to
add more than a couple percent to the total query cost. At some point
it might be interesting to combine the re-fetch with the tuple access
that ModifyTable must do anyway to mark the old tuple dead; but that
would require a good deal of refactoring and it seems it wouldn't buy
all that much, so this patch doesn't attempt it.
2. For inherited UPDATE/DELETE, instead of generating a separate
subplan for each target relation, we now generate a single subplan
that is just exactly like a SELECT's plan, then stick ModifyTable
on top of that. To let ModifyTable know which target relation a
given incoming row refers to, a tableoid junk column is added to
the row identity information. This gets rid of the horrid hack
that was inheritance_planner(), eliminating O(N^2) planning cost
and memory consumption in cases where there were many unprunable
target relations.
Point 2 of course requires point 1, so that there is a uniform
definition of the non-junk columns to be returned by the subplan.
We can't insist on uniform definition of the row identity junk
columns however, if we want to keep the ability to have both
plain and foreign tables in a partitioning hierarchy. Since
it wouldn't scale very far to have every child table have its
own row identity column, this patch includes provisions to merge
similar row identity columns into one column of the subplan result.
In particular, we can merge the whole-row Vars typically used as
row identity by FDWs into one column by pretending they are type
RECORD. (It's still okay for the actual composite Datums to be
labeled with the table's rowtype OID, though.)
There is more that can be done to file down residual inefficiencies
in this patch, but it seems to be committable now.
FDW authors should note several API changes:
* The argument list for AddForeignUpdateTargets() has changed, and so
has the method it must use for adding junk columns to the query. Call
add_row_identity_var() instead of manipulating the parse tree directly.
You might want to reconsider exactly what you're adding, too.
* PlanDirectModify() must now work a little harder to find the
ForeignScan plan node; if the foreign table is part of a partitioning
hierarchy then the ForeignScan might not be the direct child of
ModifyTable. See postgres_fdw for sample code.
* To check whether a relation is a target relation, it's no
longer sufficient to compare its relid to root->parse->resultRelation.
Instead, check it against all_result_relids or leaf_result_relids,
as appropriate.
Amit Langote and Tom Lane
Discussion: https://postgr.es/m/CA+HiwqHpHdqdDn48yCEhynnniahH78rwcrv1rEX65-fsZGBOLQ@mail.gmail.com
This adds a new executor node named TID Range Scan. The query planner
will generate paths for TID Range scans when quals are discovered on base
relations which search for ranges on the table's ctid column. These
ranges may be open at either end. For example, WHERE ctid >= '(10,0)';
will return all tuples on page 10 and over.
To support this, two new optional callback functions have been added to
table AM. scan_set_tidrange is used to set the scan range to just the
given range of TIDs. scan_getnextslot_tidrange fetches the next tuple
in the given range.
For AMs were scanning ranges of TIDs would not make sense, these functions
can be set to NULL in the TableAmRoutine. The query planner won't
generate TID Range Scan Paths in that case.
Author: Edmund Horner, David Rowley
Reviewed-by: David Rowley, Tomas Vondra, Tom Lane, Andres Freund, Zhihong Yu
Discussion: https://postgr.es/m/CAMyN-kB-nFTkF=VA_JPwFNo08S0d-Yk0F741S2B7LDmYAi8eyA@mail.gmail.com
It turns out that the calculation of [Merge]AppendPath.partitioned_rels
in allpaths.c is faulty and sometimes omits relevant non-leaf partitions,
allowing an assertion added by commit a929e17e5a to trigger. Rather
than fix that, it seems better to get rid of those fields altogether.
We don't really need the info until create_plan time, and calculating
it once for the selected plan should be cheaper than calculating it
for each append path we consider.
The preceding two commits did away with all use of the partitioned_rels
values; this commit just mechanically removes the fields and the code
that calculated them.
Discussion: https://postgr.es/m/87sg8tqhsl.fsf@aurora.ydns.eu
Discussion: https://postgr.es/m/CAJKUy5gCXDSmFs2c=R+VGgn7FiYcLCsEFEuDNNLGfoha=pBE_g@mail.gmail.com
For debugging purposes, Path nodes are supposed to have outfuncs
support, but this was overlooked in the original incremental sort patch.
While at it, clean up a couple other minor oversights, as well as
bizarre choice of return type for create_incremental_sort_path().
(All the existing callers just cast it to "Path *" immediately, so
they don't care, but some future caller might care.)
outfuncs.c fix by Zhijie Hou, the rest by me
Discussion: https://postgr.es/m/324c4d81d8134117972a5b1f6cdf9560@G08CNEXMBPEKD05.g08.fujitsu.local
Incremental Sort is an optimized variant of multikey sort for cases when
the input is already sorted by a prefix of the requested sort keys. For
example when the relation is already sorted by (key1, key2) and we need
to sort it by (key1, key2, key3) we can simply split the input rows into
groups having equal values in (key1, key2), and only sort/compare the
remaining column key3.
This has a number of benefits:
- Reduced memory consumption, because only a single group (determined by
values in the sorted prefix) needs to be kept in memory. This may also
eliminate the need to spill to disk.
- Lower startup cost, because Incremental Sort produce results after each
prefix group, which is beneficial for plans where startup cost matters
(like for example queries with LIMIT clause).
We consider both Sort and Incremental Sort, and decide based on costing.
The implemented algorithm operates in two different modes:
- Fetching a minimum number of tuples without check of equality on the
prefix keys, and sorting on all columns when safe.
- Fetching all tuples for a single prefix group and then sorting by
comparing only the remaining (non-prefix) keys.
We always start in the first mode, and employ a heuristic to switch into
the second mode if we believe it's beneficial - the goal is to minimize
the number of unnecessary comparions while keeping memory consumption
below work_mem.
This is a very old patch series. The idea was originally proposed by
Alexander Korotkov back in 2013, and then revived in 2017. In 2018 the
patch was taken over by James Coleman, who wrote and rewrote most of the
current code.
There were many reviewers/contributors since 2013 - I've done my best to
pick the most active ones, and listed them in this commit message.
Author: James Coleman, Alexander Korotkov
Reviewed-by: Tomas Vondra, Andreas Karlsson, Marti Raudsepp, Peter Geoghegan, Robert Haas, Thomas Munro, Antonin Houska, Andres Freund, Alexander Kuzmenkov
Discussion: https://postgr.es/m/CAPpHfdscOX5an71nHd8WSUH6GNOCf=V7wgDaTXdDd9=goN-gfA@mail.gmail.com
Discussion: https://postgr.es/m/CAPpHfds1waRZ=NOmueYq0sx1ZSCnt+5QJvizT8ndT2=etZEeAQ@mail.gmail.com
Merge setup_append_rel_array into setup_simple_rel_arrays. There's no
particularly good reason to keep them separate, and it's inconsistent
with the lack of separation in expand_planner_arrays. The only apparent
benefit was that the fast path for trivial queries in query_planner()
doesn't need to set up the append_rel_array; but all we're saving there
is an if-test and NULL assignment, which surely ought to be negligible.
Also improve some obsolete comments.
Discussion: https://postgr.es/m/17220.1565301350@sss.pgh.pa.us
If we need ordered output from a scan of a partitioned table, but
the ordering matches the partition ordering, then we don't need to
use a MergeAppend to combine the pre-ordered per-partition scan
results: a plain Append will produce the same results. This
both saves useless comparison work inside the MergeAppend proper,
and allows us to start returning tuples after istarting up just
the first child node not all of them.
However, all is not peaches and cream, because if some of the
child nodes have high startup costs then there will be big
discontinuities in the tuples-returned-versus-elapsed-time curve.
The planner's cost model cannot handle that (yet, anyway).
If we model the Append's startup cost as being just the first
child's startup cost, we may drastically underestimate the cost
of fetching slightly more tuples than are available from the first
child. Since we've had bad experiences with over-optimistic choices
of "fast start" plans for ORDER BY LIMIT queries, that seems scary.
As a klugy workaround, set the startup cost estimate for an ordered
Append to be the sum of its children's startup costs (as MergeAppend
would). This doesn't really describe reality, but it's less likely
to cause a bad plan choice than an underestimated startup cost would.
In practice, the cases where we really care about this optimization
will have child plans that are IndexScans with zero startup cost,
so that the overly conservative estimate is still just zero.
David Rowley, reviewed by Julien Rouhaud and Antonin Houska
Discussion: https://postgr.es/m/CAKJS1f-hAqhPLRk_RaSFTgYxd=Tz5hA7kQ2h4-DhJufQk8TGuw@mail.gmail.com
Previously, the planner created RangeTblEntry and RelOptInfo structs
for every partition of a partitioned table, even though many of them
might later be deemed uninteresting thanks to partition pruning logic.
This incurred significant overhead when there are many partitions.
Arrange to postpone creation of these data structures until after
we've processed the query enough to identify restriction quals for
the partitioned table, and then apply partition pruning before not
after creation of each partition's data structures. In this way
we need not open the partition relations at all for partitions that
the planner has no real interest in.
For queries that can be proven at plan time to access only a small
number of partitions, this patch improves the practical maximum
number of partitions from under 100 to perhaps a few thousand.
Amit Langote, reviewed at various times by Dilip Kumar, Jesper Pedersen,
Yoshikazu Imai, and David Rowley
Discussion: https://postgr.es/m/9d7c5112-cb99-6a47-d3be-cf1ee6862a1d@lab.ntt.co.jp
Up to now, otherrel RelOptInfos were built at the same time as baserel
RelOptInfos, thanks to recursion in build_simple_rel(). However,
nothing in query_planner's preprocessing cares at all about otherrels,
only baserels, so we don't really need to build them until just before
we enter make_one_rel. This has two benefits:
* create_lateral_join_info did a lot of extra work to propagate
lateral-reference information from parents to the correct children.
But if we delay creation of the children till after that, it's
trivial (and much harder to break, too).
* Since we have all the restriction quals correctly assigned to
parent appendrels by this point, it'll be possible to do plan-time
pruning and never make child RelOptInfos at all for partitions that
can be pruned away. That's not done here, but will be later on.
Amit Langote, reviewed at various times by Dilip Kumar, Jesper Pedersen,
Yoshikazu Imai, and David Rowley
Discussion: https://postgr.es/m/9d7c5112-cb99-6a47-d3be-cf1ee6862a1d@lab.ntt.co.jp
In place of three separate but interrelated lists (indexclauses,
indexquals, and indexqualcols), an IndexPath now has one list
"indexclauses" of IndexClause nodes. This holds basically the same
information as before, but in a more useful format: in particular, there
is now a clear connection between an indexclause (an original restriction
clause from WHERE or JOIN/ON) and the indexquals (directly usable index
conditions) derived from it.
We also change the ground rules a bit by mandating that clause commutation,
if needed, be done up-front so that what is stored in the indexquals list
is always directly usable as an index condition. This gets rid of repeated
re-determination of which side of the clause is the indexkey during costing
and plan generation, as well as repeated lookups of the commutator
operator. To minimize the added up-front cost, the typical case of
commuting a plain OpExpr is handled by a new special-purpose function
commute_restrictinfo(). For RowCompareExprs, generating the new clause
properly commuted to begin with is not really any more complex than before,
it's just different --- and we can save doing that work twice, as the
pretty-klugy original implementation did.
Tracking the connection between original and derived clauses lets us
also track explicitly whether the derived clauses are an exact or lossy
translation of the original. This provides a cheap solution to getting
rid of unnecessary rechecks of boolean index clauses, which previously
seemed like it'd be more expensive than it was worth.
Another pleasant (IMO) side-effect is that EXPLAIN now always shows
index clauses with the indexkey on the left; this seems less confusing.
This commit leaves expand_indexqual_conditions() and some related
functions in a slightly messy state. I didn't bother to change them
any more than minimally necessary to work with the new data structure,
because all that code is going to be refactored out of existence in
a follow-on patch.
Discussion: https://postgr.es/m/22182.1549124950@sss.pgh.pa.us
Up to now postgres_fdw has been using create_foreignscan_path() to
generate not only base-relation paths, but also paths for foreign joins
and foreign upperrels. This is wrong, because create_foreignscan_path()
calls get_baserel_parampathinfo() which will only do the right thing for
baserels. It accidentally fails to fail for unparameterized paths, which
are the only ones postgres_fdw (thought it) was handling, but we really
need different APIs for the baserel and join cases.
In HEAD, the best thing to do seems to be to split up the baserel,
joinrel, and upperrel cases into three functions so that they can
have different APIs. I haven't actually given create_foreign_join_path
a different API in this commit: we should spend a bit of time thinking
about just what we want to do there, since perhaps FDWs would want to
do something different from the build-up-a-join-pairwise approach that
get_joinrel_parampathinfo expects. In the meantime, since postgres_fdw
isn't prepared to generate parameterized joins anyway, just give it a
defense against trying to plan joins with lateral refs.
In addition (and this is what triggered this whole mess) fix bug #15613
from Srinivasan S A, by teaching file_fdw and postgres_fdw that plain
baserel foreign paths still have outer refs if the relation has
lateral_relids. Add some assertions in relnode.c to catch future
occurrences of the same error --- in particular, to catch other FDWs
doing that, but also as backstop against core-code mistakes like the
one fixed by commit bdd9a99aa.
Bug #15613 also needs to be fixed in the back branches, but the
appropriate fix will look quite a bit different there, since we don't
want to assume that existing FDWs get the word right away.
Discussion: https://postgr.es/m/15613-092be1be9576c728@postgresql.org
The old name of this file was never a very good indication of what it
was for. Now that there's also access/relation.h, we have a potential
confusion hazard as well, so let's rename it to something more apropos.
Per discussion, "pathnodes.h" is reasonable, since a good fraction of
the file is Path node definitions.
While at it, tweak a couple of other headers that were gratuitously
importing relation.h into modules that don't need it.
Discussion: https://postgr.es/m/7719.1548688728@sss.pgh.pa.us
The fact that "SELECT expression" has no base relations has long been a
thorn in the side of the planner. It makes it hard to flatten a sub-query
that looks like that, or is a trivial VALUES() item, because the planner
generally uses relid sets to identify sub-relations, and such a sub-query
would have an empty relid set if we flattened it. prepjointree.c contains
some baroque logic that works around this in certain special cases --- but
there is a much better answer. We can replace an empty FROM clause with a
dummy RTE that acts like a table of one row and no columns, and then there
are no such corner cases to worry about. Instead we need some logic to
get rid of useless dummy RTEs, but that's simpler and covers more cases
than what was there before.
For really trivial cases, where the query is just "SELECT expression" and
nothing else, there's a hazard that adding the extra RTE makes for a
noticeable slowdown; even though it's not much processing, there's not
that much for the planner to do overall. However testing says that the
penalty is very small, close to the noise level. In more complex queries,
this is able to find optimizations that we could not find before.
The new RTE type is called RTE_RESULT, since the "scan" plan type it
gives rise to is a Result node (the same plan we produced for a "SELECT
expression" query before). To avoid confusion, rename the old ResultPath
path type to GroupResultPath, reflecting that it's only used in degenerate
grouping cases where we know the query produces just one grouped row.
(It wouldn't work to unify the two cases, because there are different
rules about where the associated quals live during query_planner.)
Note: although this touches readfuncs.c, I don't think a catversion
bump is required, because the added case can't occur in stored rules,
only plans.
Patch by me, reviewed by David Rowley and Mark Dilger
Discussion: https://postgr.es/m/15944.1521127664@sss.pgh.pa.us
In the wake of commit f2343653f, we no longer need some fields that
were used before to control executor lock acquisitions:
* PlannedStmt.nonleafResultRelations can go away entirely.
* partitioned_rels can go away from Append, MergeAppend, and ModifyTable.
However, ModifyTable still needs to know the RT index of the partition
root table if any, which was formerly kept in the first entry of that
list. Add a new field "rootRelation" to remember that. rootRelation is
partly redundant with nominalRelation, in that if it's set it will have
the same value as nominalRelation. However, the latter field has a
different purpose so it seems best to keep them distinct.
Amit Langote, reviewed by David Rowley and Jesper Pedersen,
and whacked around a bit more by me
Discussion: https://postgr.es/m/468c85d9-540e-66a2-1dde-fec2b741e688@lab.ntt.co.jp
nodeWindowAgg.c failed to cope with the possibility that no ordering
columns are defined in the window frame for GROUPS mode or RANGE OFFSET
mode, leading to assertion failures or odd errors, as reported by Masahiko
Sawada and Lukas Eder. In RANGE OFFSET mode, an ordering column is really
required, so add an Assert about that. In GROUPS mode, the code would
work, except that the node initialization code wasn't in sync with the
execution code about when to set up tuplestore read pointers and spare
slots. Fix the latter for consistency's sake (even though I think the
changes described below make the out-of-sync cases unreachable for now).
Per SQL spec, a single ordering column is required for RANGE OFFSET mode,
and at least one ordering column is required for GROUPS mode. The parser
enforced the former but not the latter; add a check for that.
We were able to reach the no-ordering-column cases even with fully spec
compliant queries, though, because the planner would drop partitioning
and ordering columns from the generated plan if they were redundant with
earlier columns according to the redundant-pathkey logic, for instance
"PARTITION BY x ORDER BY y" in the presence of a "WHERE x=y" qual.
While in principle that's an optimization that could save some pointless
comparisons at runtime, it seems unlikely to be meaningful in the real
world. I think this behavior was not so much an intentional optimization
as a side-effect of an ancient decision to construct the plan node's
ordering-column info by reverse-engineering the PathKeys of the input
path. If we give up redundant-column removal then it takes very little
code to generate the plan node info directly from the WindowClause,
ensuring that we have the expected number of ordering columns in all
cases. (If anyone does complain about this, the planner could perhaps
be taught to remove redundant columns only when it's safe to do so,
ie *not* in RANGE OFFSET mode. But I doubt anyone ever will.)
With these changes, the WindowAggPath.winpathkeys field is not used for
anything anymore, so remove it.
The test cases added here are not actually very interesting given the
removal of the redundant-column-removal logic, but they would represent
important corner cases if anyone ever tries to put that back.
Tom Lane and Masahiko Sawada. Back-patch to v11 where RANGE OFFSET
and GROUPS modes were added.
Discussion: https://postgr.es/m/CAD21AoDrWqycq-w_+Bx1cjc+YUhZ11XTj9rfxNiNDojjBx8Fjw@mail.gmail.com
Discussion: https://postgr.es/m/153086788677.17476.8002640580496698831@wrigleys.postgresql.org
find_appinfos_by_relids had quite a large overhead when the number of
items in the append_rel_list was high, as it had to trawl through the
append_rel_list looking for AppendRelInfos belonging to the given
childrelids. Since there can only be a single AppendRelInfo for each
child rel, it seems much better to store an array in PlannerInfo which
indexes these by child relid, making the function O(1) rather than O(N).
This function was only called once inside the planner, so just replace
that call with a lookup to the new array. find_childrel_appendrelinfo
is now unused and thus removed.
This fixes a planner performance regression new to v11 reported by
Thomas Reiss.
Author: David Rowley
Reported-by: Thomas Reiss
Reviewed-by: Ashutosh Bapat
Reviewed-by: Álvaro Herrera
Discussion: https://postgr.es/m/94dd7a4b-5e50-0712-911d-2278e055c622@dalibo.com
This reverts commits d204ef6377,
83454e3c2b and a few more commits thereafter
(complete list at the end) related to MERGE feature.
While the feature was fully functional, with sufficient test coverage and
necessary documentation, it was felt that some parts of the executor and
parse-analyzer can use a different design and it wasn't possible to do that in
the available time. So it was decided to revert the patch for PG11 and retry
again in the future.
Thanks again to all reviewers and bug reporters.
List of commits reverted, in reverse chronological order:
f1464c5380 Improve parse representation for MERGE
ddb4158579 MERGE syntax diagram correction
530e69e59b Allow cpluspluscheck to pass by renaming variable
01b88b4df5 MERGE minor errata
3af7b2b0d4 MERGE fix variable warning in non-assert builds
a5d86181ec MERGE INSERT allows only one VALUES clause
4b2d44031f MERGE post-commit review
4923550c20 Tab completion for MERGE
aa3faa3c7a WITH support in MERGE
83454e3c2b New files for MERGE
d204ef6377 MERGE SQL Command following SQL:2016
Author: Pavan Deolasee
Reviewed-by: Michael Paquier
Existing partition pruning is only able to work at plan time, for query
quals that appear in the parsed query. This is good but limiting, as
there can be parameters that appear later that can be usefully used to
further prune partitions.
This commit adds support for pruning subnodes of Append which cannot
possibly contain any matching tuples, during execution, by evaluating
Params to determine the minimum set of subnodes that can possibly match.
We support more than just simple Params in WHERE clauses. Support
additionally includes:
1. Parameterized Nested Loop Joins: The parameter from the outer side of the
join can be used to determine the minimum set of inner side partitions to
scan.
2. Initplans: Once an initplan has been executed we can then determine which
partitions match the value from the initplan.
Partition pruning is performed in two ways. When Params external to the plan
are found to match the partition key we attempt to prune away unneeded Append
subplans during the initialization of the executor. This allows us to bypass
the initialization of non-matching subplans meaning they won't appear in the
EXPLAIN or EXPLAIN ANALYZE output.
For parameters whose value is only known during the actual execution
then the pruning of these subplans must wait. Subplans which are
eliminated during this stage of pruning are still visible in the EXPLAIN
output. In order to determine if pruning has actually taken place, the
EXPLAIN ANALYZE must be viewed. If a certain Append subplan was never
executed due to the elimination of the partition then the execution
timing area will state "(never executed)". Whereas, if, for example in
the case of parameterized nested loops, the number of loops stated in
the EXPLAIN ANALYZE output for certain subplans may appear lower than
others due to the subplan having been scanned fewer times. This is due
to the list of matching subnodes having to be evaluated whenever a
parameter which was found to match the partition key changes.
This commit required some additional infrastructure that permits the
building of a data structure which is able to perform the translation of
the matching partition IDs, as returned by get_matching_partitions, into
the list index of a subpaths list, as exist in node types such as
Append, MergeAppend and ModifyTable. This allows us to translate a list
of clauses into a Bitmapset of all the subpath indexes which must be
included to satisfy the clause list.
Author: David Rowley, based on an earlier effort by Beena Emerson
Reviewers: Amit Langote, Robert Haas, Amul Sul, Rajkumar Raghuwanshi,
Jesper Pedersen
Discussion: https://postgr.es/m/CAOG9ApE16ac-_VVZVvv0gePSgkg_BwYEV1NBqZFqDR2bBE0X0A@mail.gmail.com
MERGE performs actions that modify rows in the target table
using a source table or query. MERGE provides a single SQL
statement that can conditionally INSERT/UPDATE/DELETE rows
a task that would other require multiple PL statements.
e.g.
MERGE INTO target AS t
USING source AS s
ON t.tid = s.sid
WHEN MATCHED AND t.balance > s.delta THEN
UPDATE SET balance = t.balance - s.delta
WHEN MATCHED THEN
DELETE
WHEN NOT MATCHED AND s.delta > 0 THEN
INSERT VALUES (s.sid, s.delta)
WHEN NOT MATCHED THEN
DO NOTHING;
MERGE works with regular and partitioned tables, including
column and row security enforcement, as well as support for
row, statement and transition triggers.
MERGE is optimized for OLTP and is parameterizable, though
also useful for large scale ETL/ELT. MERGE is not intended
to be used in preference to existing single SQL commands
for INSERT, UPDATE or DELETE since there is some overhead.
MERGE can be used statically from PL/pgSQL.
MERGE does not yet support inheritance, write rules,
RETURNING clauses, updatable views or foreign tables.
MERGE follows SQL Standard per the most recent SQL:2016.
Includes full tests and documentation, including full
isolation tests to demonstrate the concurrent behavior.
This version written from scratch in 2017 by Simon Riggs,
using docs and tests originally written in 2009. Later work
from Pavan Deolasee has been both complex and deep, leaving
the lead author credit now in his hands.
Extensive discussion of concurrency from Peter Geoghegan,
with thanks for the time and effort contributed.
Various issues reported via sqlsmith by Andreas Seltenreich
Authors: Pavan Deolasee, Simon Riggs
Reviewer: Peter Geoghegan, Amit Langote, Tomas Vondra, Simon Riggs
Discussion:
https://postgr.es/m/CANP8+jKitBSrB7oTgT9CY2i1ObfOt36z0XMraQc+Xrz8QB0nXA@mail.gmail.comhttps://postgr.es/m/CAH2-WzkJdBuxj9PO=2QaO9-3h3xGbQPZ34kJH=HukRekwM-GZg@mail.gmail.com
When an UPDATE causes a row to no longer match the partition
constraint, try to move it to a different partition where it does
match the partition constraint. In essence, the UPDATE is split into
a DELETE from the old partition and an INSERT into the new one. This
can lead to surprising behavior in concurrency scenarios because
EvalPlanQual rechecks won't work as they normally did; the known
problems are documented. (There is a pending patch to improve the
situation further, but it needs more review.)
Amit Khandekar, reviewed and tested by Amit Langote, David Rowley,
Rajkumar Raghuwanshi, Dilip Kumar, Amul Sul, Thomas Munro, Álvaro
Herrera, Amit Kapila, and me. A few final revisions by me.
Discussion: http://postgr.es/m/CAJ3gD9do9o2ccQ7j7+tSgiE1REY65XRiMb=yJO3u3QhyP8EEPQ@mail.gmail.com
Introduce parallel-aware hash joins that appear in EXPLAIN plans as Parallel
Hash Join with Parallel Hash. While hash joins could already appear in
parallel queries, they were previously always parallel-oblivious and had a
partial subplan only on the outer side, meaning that the work of the inner
subplan was duplicated in every worker.
After this commit, the planner will consider using a partial subplan on the
inner side too, using the Parallel Hash node to divide the work over the
available CPU cores and combine its results in shared memory. If the join
needs to be split into multiple batches in order to respect work_mem, then
workers process different batches as much as possible and then work together
on the remaining batches.
The advantages of a parallel-aware hash join over a parallel-oblivious hash
join used in a parallel query are that it:
* avoids wasting memory on duplicated hash tables
* avoids wasting disk space on duplicated batch files
* divides the work of building the hash table over the CPUs
One disadvantage is that there is some communication between the participating
CPUs which might outweigh the benefits of parallelism in the case of small
hash tables. This is avoided by the planner's existing reluctance to supply
partial plans for small scans, but it may be necessary to estimate
synchronization costs in future if that situation changes. Another is that
outer batch 0 must be written to disk if multiple batches are required.
A potential future advantage of parallel-aware hash joins is that right and
full outer joins could be supported, since there is a single set of matched
bits for each hashtable, but that is not yet implemented.
A new GUC enable_parallel_hash is defined to control the feature, defaulting
to on.
Author: Thomas Munro
Reviewed-By: Andres Freund, Robert Haas
Tested-By: Rafia Sabih, Prabhat Sahu
Discussion:
https://postgr.es/m/CAEepm=2W=cOkiZxcg6qiFQP-dHUe09aqTrEMM7yJDrHMhDv_RA@mail.gmail.comhttps://postgr.es/m/CAEepm=37HKyJ4U6XOLi=JgfSHM3o6B-GaeO-6hkOmneTDkH+Uw@mail.gmail.com
When we create an Append node, we can spread out the workers over the
subplans instead of piling on to each subplan one at a time, which
should typically be a bit more efficient, both because the startup
cost of any plan executed entirely by one worker is paid only once and
also because of reduced contention. We can also construct Append
plans using a mix of partial and non-partial subplans, which may allow
for parallelism in places that otherwise couldn't support it.
Unfortunately, this patch doesn't handle the important case of
parallelizing UNION ALL by running each branch in a separate worker;
the executor infrastructure is added here, but more planner work is
needed.
Amit Khandekar, Robert Haas, Amul Sul, reviewed and tested by
Ashutosh Bapat, Amit Langote, Rafia Sabih, Amit Kapila, and
Rajkumar Raghuwanshi.
Discussion: http://postgr.es/m/CAJ3gD9dy0K_E8r727heqXoBmWZ83HwLFwdcaSSmBQ1+S+vRuUQ@mail.gmail.com
Instead of joining two partitioned tables in their entirety we can, if
it is an equi-join on the partition keys, join the matching partitions
individually. This involves teaching the planner about "other join"
rels, which are related to regular join rels in the same way that
other member rels are related to baserels. This can use significantly
more CPU time and memory than regular join planning, because there may
now be a set of "other" rels not only for every base relation but also
for every join relation. In most practical cases, this probably
shouldn't be a problem, because (1) it's probably unusual to join many
tables each with many partitions using the partition keys for all
joins and (2) if you do that scenario then you probably have a big
enough machine to handle the increased memory cost of planning and (3)
the resulting plan is highly likely to be better, so what you spend in
planning you'll make up on the execution side. All the same, for now,
turn this feature off by default.
Currently, we can only perform joins between two tables whose
partitioning schemes are absolutely identical. It would be nice to
cope with other scenarios, such as extra partitions on one side or the
other with no match on the other side, but that will have to wait for
a future patch.
Ashutosh Bapat, reviewed and tested by Rajkumar Raghuwanshi, Amit
Langote, Rafia Sabih, Thomas Munro, Dilip Kumar, Antonin Houska, Amit
Khandekar, and by me. A few final adjustments by me.
Discussion: http://postgr.es/m/CAFjFpRfQ8GrQvzp3jA2wnLqrHmaXna-urjm_UY9BqXj=EaDTSA@mail.gmail.com
Discussion: http://postgr.es/m/CAFjFpRcitjfrULr5jfuKWRPsGUX0LQ0k8-yG0Qw2+1LBGNpMdw@mail.gmail.com
Instead of duplicating the logic to search for a matching
ParamPathInfo in multiple places, factor it out into a separate
function.
Pass only the relevant bits of the PartitionKey to
partition_bounds_equal instead of the whole thing, because
partition-wise join will want to call this without having a
PartitionKey available.
Adjust allow_star_schema_join and calc_nestloop_required_outer
to take relevant Relids rather than the entire Path, because
partition-wise join will want to call it with the top-parent
relids to determine whether a child join is allowable.
Ashutosh Bapat. Review and testing of the larger patch set of which
this is a part by Amit Langote, Rajkumar Raghuwanshi, Rafia Sabih,
Thomas Munro, Dilip Kumar, and me.
Discussion: http://postgr.es/m/CA+TgmobQK80vtXjAsPZWWXd7c8u13G86gmuLupN+uUJjA+i4nA@mail.gmail.com
Change pg_bsd_indent to follow upstream rules for placement of comments
to the right of code, and remove pgindent hack that caused comments
following #endif to not obey the general rule.
Commit e3860ffa4d wasn't actually using
the published version of pg_bsd_indent, but a hacked-up version that
tried to minimize the amount of movement of comments to the right of
code. The situation of interest is where such a comment has to be
moved to the right of its default placement at column 33 because there's
code there. BSD indent has always moved right in units of tab stops
in such cases --- but in the previous incarnation, indent was working
in 8-space tab stops, while now it knows we use 4-space tabs. So the
net result is that in about half the cases, such comments are placed
one tab stop left of before. This is better all around: it leaves
more room on the line for comment text, and it means that in such
cases the comment uniformly starts at the next 4-space tab stop after
the code, rather than sometimes one and sometimes two tabs after.
Also, ensure that comments following #endif are indented the same
as comments following other preprocessor commands such as #else.
That inconsistency turns out to have been self-inflicted damage
from a poorly-thought-through post-indent "fixup" in pgindent.
This patch is much less interesting than the first round of indent
changes, but also bulkier, so I thought it best to separate the effects.
Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org
Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
If there can certainly be no more than one matching inner row for a given
outer row, then the executor can move on to the next outer row as soon as
it's found one match; there's no need to continue scanning the inner
relation for this outer row. This saves useless scanning in nestloop
and hash joins. In merge joins, it offers the opportunity to skip
mark/restore processing, because we know we have not advanced past the
first possible match for the next outer row.
Of course, the devil is in the details: the proof of uniqueness must
depend only on joinquals (not otherquals), and if we want to skip
mergejoin mark/restore then it must depend only on merge clauses.
To avoid adding more planning overhead than absolutely necessary,
the present patch errs in the conservative direction: there are cases
where inner_unique or skip_mark_restore processing could be used, but
it will not do so because it's not sure that the uniqueness proof
depended only on "safe" clauses. This could be improved later.
David Rowley, reviewed and rather heavily editorialized on by me
Discussion: https://postgr.es/m/CAApHDvqF6Sw-TK98bW48TdtFJ+3a7D2mFyZ7++=D-RyPsL76gw@mail.gmail.com
Currently, the only type of child relation is an "other member rel",
which is the child of a baserel, but in the future joins and even
upper relations may have child rels. To facilitate that, introduce
macros that test to test for particular RelOptKind values, and use
them in various places where they help to clarify the sense of a test.
(For example, a test may allow RELOPT_OTHER_MEMBER_REL either because
it intends to allow child rels, or because it intends to allow simple
rels.)
Also, remove find_childrel_top_parent, which will not work for a
child rel that is not a baserel. Instead, add a new RelOptInfo
member top_parent_relids to track the same kind of information in a
more generic manner.
Ashutosh Bapat, slightly tweaked by me. Review and testing of the
patch set from which this was taken by Rajkumar Raghuwanshi and Rafia
Sabih.
Discussion: http://postgr.es/m/CA+TgmoagTnF2yqR3PT2rv=om=wJiZ4-A+ATwdnriTGku1CLYxA@mail.gmail.com