This adds collation support for columns and domains, a COLLATE clause
to override it per expression, and B-tree index support.
Peter Eisentraut
reviewed by Pavel Stehule, Itagaki Takahiro, Robert Haas, Noah Misch
relation using the general PARAM_EXEC executor parameter mechanism, rather
than the ad-hoc kluge of passing the outer tuple down through ExecReScan.
The previous method was hard to understand and could never be extended to
handle parameters coming from multiple join levels. This patch doesn't
change the set of possible plans nor have any significant performance effect,
but it's necessary infrastructure for future generalization of the concept
of an inner indexscan plan.
ExecReScan's second parameter is now unused, so it's removed.
a lot of strange behaviors that occurred in join cases. We now identify the
"current" row for every joined relation in UPDATE, DELETE, and SELECT FOR
UPDATE/SHARE queries. If an EvalPlanQual recheck is necessary, we jam the
appropriate row into each scan node in the rechecking plan, forcing it to emit
only that one row. The former behavior could rescan the whole of each joined
relation for each recheck, which was terrible for performance, and what's much
worse could result in duplicated output tuples.
Also, the original implementation of EvalPlanQual could not re-use the recheck
execution tree --- it had to go through a full executor init and shutdown for
every row to be tested. To avoid this overhead, I've associated a special
runtime Param with each LockRows or ModifyTable plan node, and arranged to
make every scan node below such a node depend on that Param. Thus, by
signaling a change in that Param, the EPQ machinery can just rescan the
already-built test plan.
This patch also adds a prohibition on set-returning functions in the
targetlist of SELECT FOR UPDATE/SHARE. This is needed to avoid the
duplicate-output-tuple problem. It seems fairly reasonable since the
other restrictions on SELECT FOR UPDATE are meant to ensure that there
is a unique correspondence between source tuples and result tuples,
which an output SRF destroys as much as anything else does.
mode while callers hold pointers to in-memory tuples. I reported this for
the case of nodeWindowAgg's primary scan tuple, but inspection of the code
shows that all of the calls in nodeWindowAgg and nodeCtescan are at risk.
For the moment, fix it with a rather brute-force approach of copying
whenever one of the at-risk callers requests a tuple. Later we might
think of some sort of reference-count approach to reduce tuple copying.
backwards scan could actually happen. In particular, pass a flag to
materialize-mode SRFs that tells them whether they need to require random
access. In passing, also suppress unneeded backward-scan overhead for a
Portal's holdStore tuplestore. Per my proposal about reducing I/O costs for
tuplestores.
via a tuplestore instead of value-per-call. Refactor a few things to reduce
ensuing code duplication with nodeFunctionscan.c. This represents the
reasonably noncontroversial part of my proposed patch to switch SQL functions
over to returning tuplestores. For the moment, SQL functions still do things
the old way. However, this change enables PL SRFs to be called in targetlists
(observe changes in plperl regression results).
This facility replaces the former mark/restore support but is otherwise
upward-compatible with previous uses. It's expected to be needed for
single evaluation of CTEs and also for window functions, so I'm committing
it separately instead of waiting for either one of those patches to be
finished. Per discussion with Greg Stark and Hitoshi Harada.
Note: I removed nodeFunctionscan's mark/restore support, instead of bothering
to update it for this change, because it was dead code anyway.
"multi_call_ctx" to be a distinct sub-context of the EState's per-query
context, and delete the multi_call_ctx as soon as the SRF finishes
execution. This avoids leaking SRF memory until the end of the current
query, which is particularly egregious when the SRF is scanned
multiple times. This change also fixes a leak of the fields of the
AttInMetadata struct in shutdown_MultiFuncCall().
Also fix a leak of the SRF result TupleDesc when rescanning a
FunctionScan node. The TupleDesc is allocated in the per-query context
for every call to ExecMakeTableFunctionResult(), so we should free it
after calling that function. Since the SRF might choose to return
a non-expendable TupleDesc, we only free the TupleDesc if it is
not being reference-counted.
Backpatch to 8.3 and 8.2 stable branches.
useless substructure for its RangeTblEntry nodes. (I chose to keep using the
same struct node type and just zero out the link fields for unneeded info,
rather than making a separate ExecRangeTblEntry type --- it seemed too
fragile to have two different rangetable representations.)
Along the way, put subplans into a list in the toplevel PlannedStmt node,
and have SubPlan nodes refer to them by list index instead of direct pointers.
Vadim wanted to do that years ago, but I never understood what he was on about
until now. It makes things a *whole* lot more robust, because we can stop
worrying about duplicate processing of subplans during expression tree
traversals. That's been a constant source of bugs, and it's finally gone.
There are some consequent simplifications yet to be made, like not using
a separate EState for subplans in the executor, but I'll tackle that later.
plan nodes, so that the executor does not need to get these items from
the range table at runtime. This will avoid needing to include these
fields in the compact range table I'm expecting to make the executor use.
ps_TupFromTlist in plan nodes that make use of it. This was being done
correctly in join nodes and Result nodes but not in any relation-scan nodes.
Bug would lead to bogus results if a set-returning function appeared in the
targetlist of a subquery that could be rescanned after partial execution,
for example a subquery within EXISTS(). Bug has been around forever :-(
... surprising it wasn't reported before.
tuples with less header overhead than a regular HeapTuple, per my
recent proposal. Teach TupleTableSlot code how to deal with these.
As proof of concept, change tuplestore.c to store MinimalTuples instead
of HeapTuples. Future patches will expand the concept to other places
where it is useful.
by creating a reference-count mechanism, similar to what we did a long time
ago for catcache entries. The back branches have an ugly solution involving
lots of extra copies, but this way is more efficient. Reference counting is
only applied to tupdescs that are actually in caches --- there seems no need
to use it for tupdescs that are generated in the executor, since they'll go
away during plan shutdown by virtue of being in the per-query memory context.
Neil Conway and Tom Lane
The original coding stored the raw parser output (ColumnDef and TypeName
nodes) which was ugly, bulky, and wrong because it failed to create any
dependency on the referenced datatype --- and in fact would not track type
renamings and suchlike. Instead store a list of column type OIDs in the
RTE.
Also fix up general failure of recordDependencyOnExpr to do anything sane
about recording dependencies on datatypes. While there are many cases where
there will be an indirect dependency (eg if an operator returns a datatype,
the dependency on the operator is enough), we do have to record the datatype
as a separate dependency in examples like CoerceToDomain.
initdb forced because of change of stored rules.
bits indicating which optional capabilities can actually be exercised
at runtime. This will allow Sort and Material nodes, and perhaps later
other nodes, to avoid unnecessary overhead in common cases.
This commit just adds the infrastructure and arranges to pass the correct
flag values down to plan nodes; none of the actual optimizations are here
yet. I'm committing this separately in case anyone wants to measure the
added overhead. (It should be negligible.)
Simon Riggs and Tom Lane
aren't doing anything useful (ie, neither selection nor projection).
Also, extend to SubqueryScan the hacks already in place to avoid
unnecessary ExecProject calls when the result would just be the same
tuple the subquery already delivered. This saves some overhead in
UNION and other set operations, as well as avoiding overhead for
unflatten-able subqueries. Per example from Sokolov Yura.
of tuples when passing data up through multiple plan nodes. A slot can now
hold either a normal "physical" HeapTuple, or a "virtual" tuple consisting
of Datum/isnull arrays. Upper plan levels can usually just copy the Datum
arrays, avoiding heap_formtuple() and possible subsequent nocachegetattr()
calls to extract the data again. This work extends Atsushi Ogawa's earlier
patch, which provided the key idea of adding Datum arrays to TupleTableSlots.
(I believe however that something like this was foreseen way back in Berkeley
days --- see the old comment on ExecProject.) A test case involving many
levels of join of fairly wide tables (about 80 columns altogether) showed
about 3x overall speedup, though simple queries will probably not be
helped very much.
I have also duplicated some code in heaptuple.c in order to provide versions
of heap_formtuple and friends that use "bool" arrays to indicate null
attributes, instead of the old convention of "char" arrays containing either
'n' or ' '. This provides a better match to the convention used by
ExecEvalExpr. While I have not made a concerted effort to get rid of uses
of the old routines, I think they should be deprecated and eventually removed.
Also performed an initial run through of upgrading our Copyright date to
extend to 2005 ... first run here was very simple ... change everything
where: grep 1996-2004 && the word 'Copyright' ... scanned through the
generated list with 'less' first, and after, to make sure that I only
picked up the right entries ...
to make life cushy for the JDBC driver. Centralize the decision-making
that affects this by inventing a get_type_func_class() function, rather
than adding special cases in half a dozen places.
when a function that returns a single tuple (not a setof tuple) returns
NULL. This seems to be the most consistent behavior. It would have
taken a bit less code to make it return an empty table (zero rows) but
ISTM a non-SETOF function ought always return exactly one row. Per
bug report from Ivan-Sun1.
In the past, we used a 'Lispy' linked list implementation: a "list" was
merely a pointer to the head node of the list. The problem with that
design is that it makes lappend() and length() linear time. This patch
fixes that problem (and others) by maintaining a count of the list
length and a pointer to the tail node along with each head node pointer.
A "list" is now a pointer to a structure containing some meta-data
about the list; the head and tail pointers in that structure refer
to ListCell structures that maintain the actual linked list of nodes.
The function names of the list API have also been changed to, I hope,
be more logically consistent. By default, the old function names are
still available; they will be disabled-by-default once the rest of
the tree has been updated to use the new API names.
results with tuples as ordinary varlena Datums. This commit does not
in itself do much for us, except eliminate the horrid memory leak
associated with evaluation of whole-row variables. However, it lays the
groundwork for allowing composite types as table columns, and perhaps
some other useful features as well. Per my proposal of a few days ago.
a per-query memory context created by CreateExecutorState --- and destroyed
by FreeExecutorState. This provides a final solution to the longstanding
problem of memory leaked by various ExecEndNode calls.
execution state trees, and ExecEvalExpr takes an expression state tree
not an expression plan tree. The plan tree is now read-only as far as
the executor is concerned. Next step is to begin actually exploiting
this property.
to plan nodes, not vice-versa. All executor state nodes now inherit from
struct PlanState. Copying of plan trees has been simplified by not
storing a list of SubPlans in Plan nodes (eliminating duplicate links).
The executor still needs such a list, but it can build it during
ExecutorStart since it has to scan the plan tree anyway.
No initdb forced since no stored-on-disk structures changed, but you
will need a full recompile because of node-numbering changes.