allocated by plan nodes are not leaked at end of query. This doesn't
really matter for normal queries, but it sure does for queries invoked
repetitively inside SQL functions. Clean up some other grotty code
associated with tupdescs, and fix a few other memory leaks exposed by
tests with simple SQL functions.
1. Distinguish cases where a Datum representing a tuple datatype is an OID
from cases where it is a pointer to TupleTableSlot, and make sure we use
the right typlen in each case.
2. Make fetchatt() and related code support 8-byte by-value datatypes on
machines where Datum is 8 bytes. Centralize knowledge of the available
by-value datatype sizes in two macros in tupmacs.h, so that this will be
easier if we ever have to do it again.
maintained for each cache entry. A cache entry will not be freed until
the matching ReleaseSysCache call has been executed. This eliminates
worries about cache entries getting dropped while still in use. See
my posting to pg-hackers of even date for more info.
joins, and clean things up a good deal at the same time. Append plan node
no longer hacks on rangetable at runtime --- instead, all child tables are
given their own RT entries during planning. Concept of multiple target
tables pushed up into execMain, replacing bug-prone implementation within
nodeAppend. Planner now supports generating Append plans for inheritance
sets either at the top of the plan (the old way) or at the bottom. Expanding
at the bottom is appropriate for tables used as sources, since they may
appear inside an outer join; but we must still expand at the top when the
target of an UPDATE or DELETE is an inheritance set, because we actually need
a different targetlist and junkfilter for each target table in that case.
Fortunately a target table can't be inside an outer join... Bizarre mutual
recursion between union_planner and prepunion.c is gone --- in fact,
union_planner doesn't really have much to do with union queries anymore,
so I renamed it grouping_planner.
right circumstances a hash join executed as a DECLARE CURSOR/FETCH
query would crash the backend. Problem as seen in current sources was
that the hash tables were stored in a context that was a child of
TransactionCommandContext, which got zapped at completion of the FETCH
command --- but cursor cleanup executed at COMMIT expected the tables
to still be valid. I haven't chased down the details as seen in 7.0.*
but I'm sure it's the same general problem.
pass-by-ref data types --- eg, an index on lower(textfield) --- no longer
leak memory during index creation or update. Clean up a lot of redundant
code ... did you know that copy, vacuum, truncate, reindex, extend index,
and bootstrap each basically duplicated the main executor's logic for
extracting information about an index and preparing index entries?
Functional indexes should be a little faster now too, due to removal
of repeated function lookups.
CREATE INDEX 'opt_type' clause is deimplemented by these changes,
but I haven't removed it from the parser yet (need to merge with
Thomas' latest change set first).
memory contexts. Currently, only leaks in expressions executed as
quals or projections are handled. Clean up some old dead cruft in
executor while at it --- unused fields in state nodes, that sort of thing.
are opened in a consistent order by different backends (I ordered them
by index OID because that's easy, but any other consistent order would
do as well). This avoids potential deadlock for index types that we
acquire exclusive locks on ... ie, rtree.
discussion of 5/19/00). pg_index is now searched for indexes of a
relation using an indexscan. Moreover, this is done once and cached
in the relcache entry for the relation, in the form of a list of OIDs
for the indexes. This list is used by the parser and executor to drive
lookups in the pg_index syscache when they want to know the properties
of the indexes. Net result: index information will be fully cached
for repetitive operations such as inserts.
key call sites are changed, but most called functions are still oldstyle.
An exception is that the PL managers are updated (so, for example, NULL
handling now behaves as expected in plperl and plpgsql functions).
NOTE initdb is forced due to added column in pg_proc.
from a constraint condition does not violate the constraint (cf. discussion
on pghackers 12/9/99). Implemented by adding a parameter to ExecQual,
specifying whether to return TRUE or FALSE when the qual result is
really NULL in three-valued boolean logic. Currently, ExecRelCheck is
the only caller that asks for TRUE, but if we find any other places that
have the wrong response to NULL, it'll be easy to fix them.
additional argument specifying the kind of lock to acquire/release (or
'NoLock' to do no lock processing). Ensure that all relations are locked
with some appropriate lock level before being examined --- this ensures
that relevant shared-inval messages have been processed and should prevent
problems caused by concurrent VACUUM. Fix several bugs having to do with
mismatched increment/decrement of relation ref count and mismatched
heap_open/close (which amounts to the same thing). A bogus ref count on
a relation doesn't matter much *unless* a SI Inval message happens to
arrive at the wrong time, which is probably why we got away with this
sloppiness for so long. Repair missing grab of AccessExclusiveLock in
DROP TABLE, ALTER/RENAME TABLE, etc, as noted by Hiroshi.
Recommend 'make clean all' after pulling this update; I modified the
Relation struct layout slightly.
Will post further discussion to pghackers list shortly.
no longer returns buffer pointer, can be gotten from scan;
descriptor; bootstrap can create multi-key indexes;
pg_procname index now is multi-key index; oidint2, oidint4, oidname
are gone (must be removed from regression tests); use System Cache
rather than sequential scan in many places; heap_modifytuple no
longer takes buffer parameter; remove unused buffer parameter in
a few other functions; oid8 is not index-able; remove some use of
single-character variable names; cleanup Buffer variables usage
and scan descriptor looping; cleaned up allocation and freeing of
tuples; 18k lines of diff;
1. Removes the unnecessary "#define AbcRegProcedure 123"'s from
pg_proc.h.
2. Changes those #defines to use the names already defined in
fmgr.h.
3. Forces the make of fmgr.h in backend/Makefile instead of having
it
made as a dependency in access/common/Makefile *hack*hack*hack*
4. Rearranged the #includes to a less helter-skelter arrangement,
also
changing <file.h> to "file.h" to signify a non-system header.
5. Removed "pg_proc.h" from files where its only purpose was for
the
#defines removed in item #1.
6. Added "fmgr.h" to each file changed for completeness sake.
Turns out that #6 was not necessary for some files because fmgr.h
was being included in a roundabout way SIX levels deep by the first
include.
"access/genam.h"
->"access/relscan.h"
->"utils/rel.h"
->"access/strat.h"
->"access/skey.h"
->"fmgr.h"
So adding fmgr.h really didn't add anything to the compile, hopefully
just made it clearer to the programmer.
S Darren.
ExecReScan for nodeAgg, nodeHash, nodeHashjoin, nodeNestloop and nodeResult.
Fixed ExecReScan for nodeMaterial.
Get rid of #ifdef INDEXSCAN_PATCH.
Get rid of ExecMarkPos and ExecRestrPos in nodeNestloop.
varchar length.
Cleans up code so attlen is always length.
Removed varchar() hack added earlier.
Will fix bug in selecting varchar() fields, and varchar() can be
variable length.