Add the target context's name to the errdetail field of "out of memory"
errors in mcxt.c. Per discussion, this seems likely to be useful to
help narrow down the cause of a reported failure, and it costs little.
Also, now that context names are required to be compile-time constants
in all cases, there's little reason to be concerned about security
issues from exposing these names to users. (Because of such concerns,
we are *not* including the context "ident" field.)
In passing, add unlikely() markers to the allocation-failed tests,
just to be sure the compiler is on the right page about that.
Also, in palloc and friends, copy CurrentMemoryContext into a local
variable, as that's almost surely cheaper to reference than a global.
Discussion: https://postgr.es/m/1099.1522285628@sss.pgh.pa.us
Previously, committing or aborting inside a cursor loop was prohibited
because that would close and remove the cursor. To allow that,
automatically convert such cursors to holdable cursors so they survive
commits or rollbacks. Portals now have a new state "auto-held", which
means they have been converted automatically from pinned. An auto-held
portal is kept on transaction commit or rollback, but is still removed
when returning to the main loop on error.
This supports all languages that have cursor loop constructs: PL/pgSQL,
PL/Python, PL/Perl.
Reviewed-by: Ildus Kurbangaliev <i.kurbangaliev@postgrespro.ru>
Originally, we treated memory context names as potentially variable in
all cases, and therefore always copied them into the context header.
Commit 9fa6f00b1 rethought this a little bit and invented a distinction
between fixed and variable names, skipping the copy step for the former.
But we can make things both simpler and more useful by instead allowing
there to be two parts to a context's identification, a fixed "name" and
an optional, variable "ident". The name supplied in the context create
call is now required to be a compile-time-constant string in all cases,
as it is never copied but just pointed to. The "ident" string, if
wanted, is supplied later. This is needed because typically we want
the ident to be stored inside the context so that it's cleaned up
automatically on context deletion; that means it has to be copied into
the context before we can set the pointer.
The cost of this approach is basically just an additional pointer field
in struct MemoryContextData, which isn't much overhead, and is bought
back entirely in the AllocSet case by not needing a headerSize field
anymore, since we no longer have to cope with variable header length.
In addition, we can simplify the internal interfaces for memory context
creation still further, saving a few cycles there. And it's no longer
true that a custom identifier disqualifies a context from participating
in aset.c's freelist scheme, so possibly there's some win on that end.
All the places that were using non-compile-time-constant context names
are adjusted to put the variable info into the "ident" instead. This
allows more effective identification of those contexts in many cases;
for example, subsidary contexts of relcache entries are now identified
by both type (e.g. "index info") and relname, where before you got only
one or the other. Contexts associated with PL function cache entries
are now identified more fully and uniformly, too.
I also arranged for plancache contexts to use the query source string
as their identifier. This is basically free for CachedPlanSources, as
they contained a copy of that string already. We pay an extra pstrdup
to do it for CachedPlans. That could perhaps be avoided, but it would
make things more fragile (since the CachedPlanSource is sometimes
destroyed first). I suspect future improvements in error reporting will
require CachedPlans to have a copy of that string anyway, so it's not
clear that it's worth moving mountains to avoid it now.
This also changes the APIs for context statistics routines so that the
context-specific routines no longer assume that output goes straight
to stderr, nor do they know all details of the output format. This
is useful immediately to reduce code duplication, and it also allows
for external code to do something with stats output that's different
from printing to stderr.
The reason for pushing this now rather than waiting for v12 is that
it rethinks some of the API changes made by commit 9fa6f00b1. Seems
better for extension authors to endure just one round of API changes
not two.
Discussion: https://postgr.es/m/CAB=Je-FdtmFZ9y9REHD7VsSrnCkiBhsA4mdsLKSPauwXtQBeNA@mail.gmail.com
elog(FATAL) would end up calling PortalCleanup(), which would call
executor shutdown code, which could fail and crash, especially under
parallel query. This was introduced by
8561e4840c, which did not want to mark an
active portal as failed by a normal transaction abort anymore. But we
do need to do that for an elog(FATAL) exit. Introduce a variable
shmem_exit_inprogress similar to the existing proc_exit_inprogress, so
we can tell whether we are in the FATAL exit scenario.
Reported-by: Andres Freund <andres@anarazel.de>
In each of the supplied procedural languages (PL/pgSQL, PL/Perl,
PL/Python, PL/Tcl), add language-specific commit and rollback
functions/commands to control transactions in procedures in that
language. Add similar underlying functions to SPI. Some additional
cleanup so that transaction commit or abort doesn't blow away data
structures still used by the procedure call. Add execution context
tracking to CALL and DO statements so that transaction control commands
can only be issued in top-level procedure and block calls, not function
calls or other procedure or block calls.
- SPI
Add a new function SPI_connect_ext() that is like SPI_connect() but
allows passing option flags. The only option flag right now is
SPI_OPT_NONATOMIC. A nonatomic SPI connection can execute transaction
control commands, otherwise it's not allowed. This is meant to be
passed down from CALL and DO statements which themselves know in which
context they are called. A nonatomic SPI connection uses different
memory management. A normal SPI connection allocates its memory in
TopTransactionContext. For nonatomic connections we use PortalContext
instead. As the comment in SPI_connect_ext() (previously SPI_connect())
indicates, one could potentially use PortalContext in all cases, but it
seems safest to leave the existing uses alone, because this stuff is
complicated enough already.
SPI also gets new functions SPI_start_transaction(), SPI_commit(), and
SPI_rollback(), which can be used by PLs to implement their transaction
control logic.
- portalmem.c
Some adjustments were made in the code that cleans up portals at
transaction abort. The portal code could already handle a command
*committing* a transaction and continuing (e.g., VACUUM), but it was not
quite prepared for a command *aborting* a transaction and continuing.
In AtAbort_Portals(), remove the code that marks an active portal as
failed. As the comment there already predicted, this doesn't work if
the running command wants to keep running after transaction abort. And
it's actually not necessary, because pquery.c is careful to run all
portal code in a PG_TRY block and explicitly runs MarkPortalFailed() if
there is an exception. So the code in AtAbort_Portals() is never used
anyway.
In AtAbort_Portals() and AtCleanup_Portals(), we need to be careful not
to clean up active portals too much. This mirrors similar code in
PreCommit_Portals().
- PL/Perl
Gets new functions spi_commit() and spi_rollback()
- PL/pgSQL
Gets new commands COMMIT and ROLLBACK.
Update the PL/SQL porting example in the documentation to reflect that
transactions are now possible in procedures.
- PL/Python
Gets new functions plpy.commit and plpy.rollback.
- PL/Tcl
Gets new commands commit and rollback.
Reviewed-by: Andrew Dunstan <andrew.dunstan@2ndquadrant.com>
The previous code gave the same error message for attempting to drop
pinned and active portals, but those are separate states, so give
separate error messages.
Rename PortalMemory to TopPortalContext, to avoid confusion with
PortalContext and align naming with similar top-level memory contexts.
Rename PortalData's "heap" field to portalContext. The "heap" naming
seems quite antiquated and confusing. Also get rid of the
PortalGetHeapMemory() macro and access the field directly, which we do
for other portal fields, so this abstraction doesn't buy anything.
Reviewed-by: Andrew Dunstan <andrew.dunstan@2ndquadrant.com>
Reviewed-by: Alvaro Herrera <alvherre@alvh.no-ip.org>
This patch makes a number of interrelated changes to reduce the overhead
involved in creating/deleting memory contexts. The key ideas are:
* Include the AllocSetContext header of an aset.c context in its first
malloc request, rather than allocating it separately in TopMemoryContext.
This means that we now always create an initial or "keeper" block in an
aset, even if it never receives any allocation requests.
* Create freelists in which we can save and recycle recently-destroyed
asets (this idea is due to Robert Haas).
* In the common case where the name of a context is a constant string,
just store a pointer to it in the context header, rather than copying
the string.
The first change eliminates a palloc/pfree cycle per context, and
also avoids bloat in TopMemoryContext, at the price that creating
a context now involves a malloc/free cycle even if the context never
receives any allocations. That would be a loser for some common
usage patterns, but recycling short-lived contexts via the freelist
eliminates that pain.
Avoiding copying constant strings not only saves strlen() and strcpy()
overhead, but is an essential part of the freelist optimization because
it makes the context header size constant. Currently we make no
attempt to use the freelist for contexts with non-constant names.
(Perhaps someday we'll need to think harder about that, but in current
usage, most contexts with custom names are long-lived anyway.)
The freelist management in this initial commit is pretty simplistic,
and we might want to refine it later --- but in common workloads that
will never matter because the freelists will never get full anyway.
To create a context with a non-constant name, one is now required to
call AllocSetContextCreateExtended and specify the MEMCONTEXT_COPY_NAME
option. AllocSetContextCreate becomes a wrapper macro, and it includes
a test that will complain about non-string-literal context name
parameters on gcc and similar compilers.
An unfortunate side effect of making AllocSetContextCreate a macro is
that one is now *required* to use the size parameter abstraction macros
(ALLOCSET_DEFAULT_SIZES and friends) with it; the pre-9.6 habit of
writing out individual size parameters no longer works unless you
switch to AllocSetContextCreateExtended.
Internally to the memory-context-related modules, the context creation
APIs are simplified, removing the rather baroque original design whereby
a context-type module called mcxt.c which then called back into the
context-type module. That saved a bit of code duplication, but not much,
and it prevented context-type modules from exercising control over the
allocation of context headers.
In passing, I converted the test-and-elog validation of aset size
parameters into Asserts to save a few more cycles. The original thought
was that callers might compute size parameters on the fly, but in practice
nobody does that, so it's useless to expend cycles on checking those
numbers in production builds.
Also, mark the memory context method-pointer structs "const",
just for cleanliness.
Discussion: https://postgr.es/m/2264.1512870796@sss.pgh.pa.us
Revise aset.c so that all the "private" fields of chunk headers are
marked NOACCESS when outside the module, improving on the previous
coding which protected only requested_size. Fix a couple of corner
case bugs, such as failing to re-protect the header during a failure
exit from AllocSetRealloc, and wrong padding-size calculation for an
oversize allocation request.
Apply the same design to generation.c, and also fix several bugs therein
that I found by dint of hacking the code to use generation.c as the
standard allocator and then running the core regression tests with it.
Notably, we have to track the actual size of each block, else the
wipe_mem call in GenerationReset clears the wrong amount of memory for
an oversize-chunk block; and GenerationCheck needs a way of identifying
freed chunks that isn't fooled by palloc(0). I chose to fix the latter
by resetting the context pointer to NULL in a freed chunk, roughly like
what happens in a freed aset.c chunk.
Discussion: https://postgr.es/m/E1eHa4J-0006hI-Q8@gemulon.postgresql.org
Add commentary about what we're doing and why. Apply the method used for
padding in GenerationChunk to AllocChunkData, replacing the rather ad-hoc
solution used in commit 7e3aa03b4. Reorder fields in GenerationChunk so
that the padding calculation will work even if sizeof(size_t) is different
from sizeof(void *) --- likely that will never happen, but we don't need
the assumption if we do it like this. Improve static assertions about
alignment.
In passing, fix a couple of oversights in the "large chunk" path in
GenerationAlloc().
Discussion: https://postgr.es/m/E1eHa4J-0006hI-Q8@gemulon.postgresql.org
Add new style of memory allocator, known as Generational
appropriate for use in cases where memory is allocated
and then freed in roughly oldest first order (FIFO).
Use new allocator for logical decoding’s reorderbuffer
to significantly reduce memory usage and improve performance.
Author: Tomas Vondra
Reviewed-by: Simon Riggs
The lower case spellings are C and C++ standard and are used in most
parts of the PostgreSQL sources. The upper case spellings are only used
in some files/modules. So standardize on the standard spellings.
The APIs for ICU, Perl, and Windows define their own TRUE and FALSE, so
those are left as is when using those APIs.
In code comments, we use the lower-case spelling for the C concepts and
keep the upper-case spelling for the SQL concepts.
Reviewed-by: Michael Paquier <michael.paquier@gmail.com>
The previous placement of the fallback implementation in libpgcommon
was problematic, because libpqport functions need strnlen
functionality.
Move replacement into libpgport. Provide strnlen() under its posix
name, instead of pg_strnlen(). Fix stupid configure bug, executing the
test only when compiled with threading support.
Author: Andres Freund
Discussion: https://postgr.es/m/E1e1gR2-0005fB-SI@gemulon.postgresql.org
It is equivalent in ANSI C to write (*funcptr) () and funcptr(). These
two styles have been applied inconsistently. After discussion, we'll
use the more verbose style for plain function pointer variables, to make
it clear that it's a variable, and the shorter style when the function
pointer is in a struct (s.func() or s->func()), because then it's clear
that it's not a plain function name, and otherwise the excessive
punctuation makes some of those invocations hard to read.
Discussion: https://www.postgresql.org/message-id/f52c16db-14ed-757d-4b48-7ef360b1631d@2ndquadrant.com
Commit 16be2fd100 added DSA_ALLOC_HUGE,
DSA_ALLOC_ZERO and DSA_ALLOC_NO_OOM which have the same numerical
values and meanings as the similarly named MCXT_... macros. In one
place we accidentally used MCXT_ALLOC_NO_OOM when DSA_ALLOC_NO_OOM is
wanted, so tidy that up.
Author: Thomas Munro
Discussion: http://postgr.es/m/CAEepm=2AimHxVkkxnMfQvbZMkXy0uKbVa0-D38c5-qwrCm4CMQ@mail.gmail.com
Backpatch: 10, where dsa was introduced.
Stress testing by Andreas Seltenreich disclosed longstanding problems that
occur if a FATAL exit (e.g. due to receipt of SIGTERM) occurs while we are
trying to execute a ROLLBACK of an already-failed transaction. In such a
case, xact.c is in TBLOCK_ABORT state, so that AbortOutOfAnyTransaction
would skip AbortTransaction and go straight to CleanupTransaction. This
led to an assert failure in an assert-enabled build (due to the ROLLBACK's
portal still having a cleanup hook) or without assertions, to a FATAL exit
complaining about "cannot drop active portal". The latter's not
disastrous, perhaps, but it's messy enough to want to improve it.
We don't really want to run all of AbortTransaction in this code path.
The minimum required to clean up the open portal safely is to do
AtAbort_Memory and AtAbort_Portals. It seems like a good idea to
do AtAbort_Memory unconditionally, to be entirely sure that we are
starting with a safe CurrentMemoryContext. That means that if the
main loop in AbortOutOfAnyTransaction does nothing, we need an extra
step at the bottom to restore CurrentMemoryContext = TopMemoryContext,
which I chose to do by invoking AtCleanup_Memory. This'll result in
calling AtCleanup_Memory twice in many of the paths through this function,
but that seems harmless and reasonably inexpensive.
The original motivation for the assertion in AtCleanup_Portals was that
we wanted to be sure that any user-defined code executed as a consequence
of the cleanup hook runs during AbortTransaction not CleanupTransaction.
That still seems like a valid concern, and now that we've seen one case
of the assertion firing --- which means that exactly that would have
happened in a production build --- let's replace the Assert with a runtime
check. If we see the cleanup hook still set, we'll emit a WARNING and
just drop the hook unexecuted.
This has been like this a long time, so back-patch to all supported
branches.
Discussion: https://postgr.es/m/877ey7bmun.fsf@ansel.ydns.eu
Don't move parenthesized lines to the left, even if that means they
flow past the right margin.
By default, BSD indent lines up statement continuation lines that are
within parentheses so that they start just to the right of the preceding
left parenthesis. However, traditionally, if that resulted in the
continuation line extending to the right of the desired right margin,
then indent would push it left just far enough to not overrun the margin,
if it could do so without making the continuation line start to the left of
the current statement indent. That makes for a weird mix of indentations
unless one has been completely rigid about never violating the 80-column
limit.
This behavior has been pretty universally panned by Postgres developers.
Hence, disable it with indent's new -lpl switch, so that parenthesized
lines are always lined up with the preceding left paren.
This patch is much less interesting than the first round of indent
changes, but also bulkier, so I thought it best to separate the effects.
Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org
Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
Change pg_bsd_indent to follow upstream rules for placement of comments
to the right of code, and remove pgindent hack that caused comments
following #endif to not obey the general rule.
Commit e3860ffa4d wasn't actually using
the published version of pg_bsd_indent, but a hacked-up version that
tried to minimize the amount of movement of comments to the right of
code. The situation of interest is where such a comment has to be
moved to the right of its default placement at column 33 because there's
code there. BSD indent has always moved right in units of tab stops
in such cases --- but in the previous incarnation, indent was working
in 8-space tab stops, while now it knows we use 4-space tabs. So the
net result is that in about half the cases, such comments are placed
one tab stop left of before. This is better all around: it leaves
more room on the line for comment text, and it means that in such
cases the comment uniformly starts at the next 4-space tab stop after
the code, rather than sometimes one and sometimes two tabs after.
Also, ensure that comments following #endif are indented the same
as comments following other preprocessor commands such as #else.
That inconsistency turns out to have been self-inflicted damage
from a poorly-thought-through post-indent "fixup" in pgindent.
This patch is much less interesting than the first round of indent
changes, but also bulkier, so I thought it best to separate the effects.
Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org
Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
The new indent version includes numerous fixes thanks to Piotr Stefaniak.
The main changes visible in this commit are:
* Nicer formatting of function-pointer declarations.
* No longer unexpectedly removes spaces in expressions using casts,
sizeof, or offsetof.
* No longer wants to add a space in "struct structname *varname", as
well as some similar cases for const- or volatile-qualified pointers.
* Declarations using PG_USED_FOR_ASSERTS_ONLY are formatted more nicely.
* Fixes bug where comments following declarations were sometimes placed
with no space separating them from the code.
* Fixes some odd decisions for comments following case labels.
* Fixes some cases where comments following code were indented to less
than the expected column 33.
On the less good side, it now tends to put more whitespace around typedef
names that are not listed in typedefs.list. This might encourage us to
put more effort into typedef name collection; it's not really a bug in
indent itself.
There are more changes coming after this round, having to do with comment
indentation and alignment of lines appearing within parentheses. I wanted
to limit the size of the diffs to something that could be reviewed without
one's eyes completely glazing over, so it seemed better to split up the
changes as much as practical.
Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org
Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
Previously, the memory used by the logical replication apply worker for
processing messages would never be freed, so that could end up using a
lot of memory. To improve that, change the existing ApplyContext memory
context to ApplyMessageContext and reset that after every
message (similar to MessageContext used elsewhere). For consistency of
naming, rename the ApplyCacheContext to ApplyContext.
Author: Stas Kelvich <s.kelvich@postgrespro.ru>
The backend local copy of dsa_area_control->freed_segment_counter was
not properly initialized / maintained. This could, if unlucky, lead
to keeping attached to a segment for too long.
Found via valgrind bleat on buildfarm animal skink.
Author: Thomas Munro
Discussion: https://postgr.es/m/20170407164935.obsf2jipjfos5zei@alap3.anarazel.de
This extends the castNode() notation introduced by commit 5bcab1114 to
provide, in one step, extraction of a list cell's pointer and coercion to
a concrete node type. For example, "lfirst_node(Foo, lc)" is the same
as "castNode(Foo, lfirst(lc))". Almost half of the uses of castNode
that have appeared so far include a list extraction call, so this is
pretty widely useful, and it saves a few more keystrokes compared to the
old way.
As with the previous patch, back-patch the addition of these macros to
pg_list.h, so that the notation will be available when back-patching.
Patch by me, after an idea of Andrew Gierth's.
Discussion: https://postgr.es/m/14197.1491841216@sss.pgh.pa.us
During allocation VALGRIND_MAKE_MEM_DEFINED was called with a pointer
as size. That kind of works, but makes valgrind exceedingly slow for
workloads involving the slab allocator.
Secondly there was an access to memory marked as unreachable within
SlabCheck(). Fix that too.
Author: Tomas Vondra
Discussion: https://postgr.es/m/a6543b6d-6015-99b1-63ef-3ed55a76a730@2ndquadrant.com
With sufficiently bad luck, it was possible for a parallel worker to
attempt attach to a DSA area after all other backends have detached
from it, which is not legal. If the worker had waited a little longer
to get started, the DSM itself would have been destroyed, which is why
this wasn't noticed before.
Thomas Munro, per a report from Andreas Seltenreich
Discussion: http://postgr.es/m/87h92g83t3.fsf@credativ.de
Compilers that don't realize that elog(ERROR) doesn't return
complained that SlabRealloc() failed to return a value.
While at it, fix the rather muddled header comment for the function.
Per buildfarm.
Large chunks (those too large for any palloc freelist) are managed as
separate blocks. Formerly, realloc'ing or pfree'ing such a chunk required
O(N) time in a context with N blocks, since we had to traipse down the
singly-linked block list to locate the block's predecessor before we could
fix the list links. This can result in O(N^2) runtime in situations where
large numbers of such chunks are manipulated within one context. Cases
like that were not foreseen in the original design of aset.c, and indeed
didn't arise until fairly recently. But such problems can now occur in
reorderbuffer.c and in hash joining, both of which make repeated large
requests without scaling up their request size as they do so, and which
will free their requests in not-necessarily-LIFO order.
To fix, change the block list from singly-linked to doubly-linked.
This adds another 4 or 8 bytes to ALLOC_BLOCKHDRSZ, but that doesn't
seem like unacceptable overhead, since aset.c's blocks are normally
8K or more, and never less than 1K in current practice.
In passing, get rid of some redundant AllocChunkGetPointer() calls in
AllocSetRealloc (the compiler might be smart enough to optimize these
away anyway, but no need to assume that) and improve AllocSetCheck's
checking of block header fields.
Back-patch to 9.4 where reorderbuffer.c appeared. We could take this
further back, but currently there's no evidence that it would be useful.
Discussion: https://postgr.es/m/CAMkU=1x1hvue1XYrZoWk_omG0Ja5nBvTdvgrOeVkkeqs71CV8g@mail.gmail.com
In the previous commit I'd made MemoryContextContains() use
GetMemoryChunkContext(), but that causes trouble when the passed
pointer isn't allocated in any memory context - that's probably
something we shouldn't do, but the previous commit isn't a place for a
"policy" change.
The README was written as a "historical account", and that style
hasn't aged particularly well. Rephrase it to describe the current
situation, instead of having various version specific comments.
This also updates the description of how allocated chunks are
associated with their corresponding context, the method of which has
changed in the preceding commit.
Author: Andres Freund
Discussion: https://postgr.es/m/20170228074420.aazv4iw6k562mnxg@alap3.anarazel.de
The new slab allocator needs different per-allocation information than
the classical aset.c. The definition in 58b25e981 wasn't sufficiently
careful on 32 platforms with 8 byte alignment, leading to buildfarm
failures. That's not entirely easy to fix by just adjusting the
definition.
As slab.c doesn't actually need the size part(s) of the common header,
all chunks are equally sized after all, it seems better to instead
reduce the header to the part needed by all allocators, namely which
context an allocation belongs to. That has the advantage of reducing
the overhead of slab allocations, and also allows for more flexibility
in future allocators.
To avoid spreading the logic about accessing a chunk's context around,
centralize it in GetMemoryChunkContext(), which allows to delete a
good number of lines.
A followup commit will revise the mmgr/README portion about
StandardChunkHeader, and more.
Author: Andres Freund
Discussion: https://postgr.es/m/20170228074420.aazv4iw6k562mnxg@alap3.anarazel.de
PQerrorMessage() returns an error message with a trailing newline, but
in backend use (dblink, postgres_fdw, libpqwalreceiver), we want to have
the error message without that for emitting via ereport(). To simplify
that, add a function pchomp() that returns a pstrdup'ed string with the
trailing newline characters removed.
The default general purpose aset.c style memory context is not a great
choice for allocations that are all going to be evenly sized,
especially when those objects aren't small, and have varying
lifetimes. There tends to be a lot of fragmentation, larger
allocations always directly go to libc rather than have their cost
amortized over several pallocs.
These problems lead to the introduction of ad-hoc slab allocators in
reorderbuffer.c. But it turns out that the simplistic implementation
leads to problems when a lot of objects are allocated and freed, as
aset.c is still the underlying implementation. Especially freeing can
easily run into O(n^2) behavior in aset.c.
While the O(n^2) behavior in aset.c can, and probably will, be
addressed, custom allocators for this behavior are more efficient
both in space and time.
This allocator is for evenly sized allocations, and supports both
cheap allocations and freeing, without fragmenting significantly. It
does so by allocating evenly sized blocks via malloc(), and carves
them into chunks that can be used for allocations. In order to
release blocks to the OS as early as possible, chunks are allocated
from the fullest block that still has free objects, increasing the
likelihood of a block being entirely unused.
A subsequent commit uses this in reorderbuffer.c, but a further
allocator is needed to resolve the performance problems triggering
this work.
There likely are further potentialy uses of this allocator besides
reorderbuffer.c.
There's potential further optimizations of the new slab.c, in
particular the array of freelists could be replaced by a more
intelligent structure - but for now this looks more than good enough.
Author: Tomas Vondra, editorialized by Andres Freund
Reviewed-By: Andres Freund, Petr Jelinek, Robert Haas, Jim Nasby
Discussion: https://postgr.es/m/d15dff83-0b37-28ed-0809-95a5cc7292ad@2ndquadrant.com
An upcoming patch introduces a new type of memory context. To avoid
duplicating debugging infrastructure within aset.c, move useful pieces
to memdebug.[ch].
While touching aset.c, fix printf format code in AllocFree* debug
macros.
Author: Tomas Vondra
Reviewed-By: Andres Freund
Discussion: https://postgr.es/m/b3b2245c-b37a-e1e5-ebc4-857c914bc747@2ndquadrant.com
A new function dsa_allocate_extended now takes flags which indicate
that huge allocations should be permitted, that out-of-memory
conditions should not throw an error, and/or that the returned memory
should be zero-filled, just like MemoryContextAllocateExtended.
Commit 9acb85597f, which added
dsa_allocate0, was broken because it failed to account for the
possibility that dsa_allocate() might return InvalidDsaPointer.
This fixes that problem along the way.
Thomas Munro, with some comment changes by me.
Discussion: http://postgr.es/m/CA+Tgmobt7CcF_uQP2UQwWmu4K9qCHehMJP9_9m1urwP8hbOeHQ@mail.gmail.com