This reduces unnecessary exposure of other headers through htup.h, which
is very widely included by many files.
I have chosen to move the function prototypes to the new file as well,
because that means htup.h no longer needs to include tupdesc.h. In
itself this doesn't have much effect in indirect inclusion of tupdesc.h
throughout the tree, because it's also required by execnodes.h; but it's
something to explore in the future, and it seemed best to do the htup.h
change now while I'm busy with it.
This provides information about the numbers of tuples that were visited
but not returned by table scans, as well as the numbers of join tuples
that were considered and discarded within a join plan node.
There is still some discussion going on about the best way to report counts
for outer-join situations, but I think most of what's in the patch would
not change if we revise that, so I'm going to go ahead and commit it as-is.
Documentation changes to follow (they weren't in the submitted patch
either).
Marko Tiikkaja, reviewed by Marc Cousin, somewhat revised by Tom
Per experimentation with a recent example, in which unreasonable amounts
of time could elapse before the backend would respond to a query-cancel.
This might be something to back-patch, but the patch doesn't apply cleanly
because this code was rewritten for 9.1. Given the lack of field
complaints I won't bother for now.
Cédric Villemain
This warning is new in gcc 4.6 and part of -Wall. This patch cleans
up most of the noise, but there are some still warnings that are
trickier to remove.
This is advantageous first because it allows us to hash the smaller table
regardless of the outer-join type, and second because hash join can be more
flexible than merge join in dealing with arbitrary join quals in a FULL
join. For merge join all the join quals have to be mergejoinable, but hash
join will work so long as there's at least one hashjoinable qual --- the
others can be any condition. (This is true essentially because we don't
keep per-inner-tuple match flags in merge join, while hash join can do so.)
To do this, we need a has-it-been-matched flag for each tuple in the
hashtable, not just one for the current outer tuple. The key idea that
makes this practical is that we can store the match flag in the tuple's
infomask, since there are lots of bits there that are of no interest for a
MinimalTuple. So we aren't increasing the size of the hashtable at all for
the feature.
To write this without turning the hash code into even more of a pile of
spaghetti than it already was, I rewrote ExecHashJoin in a state-machine
style, similar to ExecMergeJoin. Other than that decision, it was pretty
straightforward.
relation using the general PARAM_EXEC executor parameter mechanism, rather
than the ad-hoc kluge of passing the outer tuple down through ExecReScan.
The previous method was hard to understand and could never be extended to
handle parameters coming from multiple join levels. This patch doesn't
change the set of possible plans nor have any significant performance effect,
but it's necessary infrastructure for future generalization of the concept
of an inner indexscan plan.
ExecReScan's second parameter is now unused, so it's removed.
distribution, by creating a special fast path for the (first few) most common
values of the outer relation. Tuples having hashvalues matching the MCVs
are effectively forced to be in the first batch, so that we never write
them out to the batch temp files.
Bryce Cutt and Ramon Lawrence, with some editorialization by me.
match in antijoin mode, we should advance to next outer tuple not next inner.
We know we don't want to return this outer tuple, and there is no point in
advancing over matching inner tuples now, because we'd just have to do it
again if the next outer tuple has the same merge key. This makes a noticeable
difference if there are lots of duplicate keys in both inputs.
Similarly, after finding a match in semijoin mode, arrange to advance to
the next outer tuple after returning the current match; or immediately,
if it fails the extra quals. The rationale is the same. (This is a
performance bug in existing releases; perhaps worth back-patching? The
planner tries to avoid using mergejoin with lots of duplicates, so it may
not be a big issue in practice.)
Nestloop and hash got this right to start with, but I made some cosmetic
adjustments there to make the corresponding bits of logic look more similar.
the old JOIN_IN code, but antijoins are new functionality.) Teach the planner
to convert appropriate EXISTS and NOT EXISTS subqueries into semi and anti
joins respectively. Also, LEFT JOINs with suitable upper-level IS NULL
filters are recognized as being anti joins. Unify the InClauseInfo and
OuterJoinInfo infrastructure into "SpecialJoinInfo". With that change,
it becomes possible to associate a SpecialJoinInfo with every join attempt,
which permits some cleanup of join selectivity estimation. That needs to be
taken much further than this patch does, but the next step is to change the
API for oprjoin selectivity functions, which seems like material for a
separate patch. So for the moment the output size estimates for semi and
especially anti joins are quite bogus.
for each temp file, rather than once per sort or hashjoin; this allows
spreading the data of a large sort or join across multiple tablespaces.
(I remain dubious that this will make any difference in practice, but certain
people insisted.) Arrange to cache the results of parsing the GUC variable
instead of recomputing from scratch on every demand, and push usage of the
cache down to the bottommost fd.c level.
tablespace(s) in which to store temp tables and temporary files. This is a
list to allow spreading the load across multiple tablespaces (a random list
element is chosen each time a temp object is to be created). Temp files are
not stored in per-database pgsql_tmp/ directories anymore, but per-tablespace
directories.
Jaime Casanova and Albert Cervera, with review by Bernd Helmle and Tom Lane.
made query plan. Use of ALTER COLUMN TYPE creates a hazard for cached
query plans: they could contain Vars that claim a column has a different
type than it now has. Fix this by checking during plan startup that Vars
at relation scan level match the current relation tuple descriptor. Since
at that point we already have at least AccessShareLock, we can be sure the
column type will not change underneath us later in the query. However,
since a backend's locks do not conflict against itself, there is still a
hole for an attacker to exploit: he could try to execute ALTER COLUMN TYPE
while a query is in progress in the current backend. Seal that hole by
rejecting ALTER TABLE whenever the target relation is already open in
the current backend.
This is a significant security hole: not only can one trivially crash the
backend, but with appropriate misuse of pass-by-reference datatypes it is
possible to read out arbitrary locations in the server process's memory,
which could allow retrieving database content the user should not be able
to see. Our thanks to Jeff Trout for the initial report.
Security: CVE-2007-0556
Hashing for aggregation purposes still needs work, so it's not time to
mark any cross-type operators as hashable for general use, but these cases
work if the operators are so marked by hand in the system catalogs.
match because they contain a null join key (and the join operator is
known strict). Improves performance significantly when the inner
relation contains a lot of nulls, as per bug #2930.
by creating a reference-count mechanism, similar to what we did a long time
ago for catcache entries. The back branches have an ugly solution involving
lots of extra copies, but this way is more efficient. Reference counting is
only applied to tupdescs that are actually in caches --- there seems no need
to use it for tupdescs that are generated in the executor, since they'll go
away during plan shutdown by virtue of being in the per-query memory context.
Neil Conway and Tom Lane
bits indicating which optional capabilities can actually be exercised
at runtime. This will allow Sort and Material nodes, and perhaps later
other nodes, to avoid unnecessary overhead in common cases.
This commit just adds the infrastructure and arranges to pass the correct
flag values down to plan nodes; none of the actual optimizations are here
yet. I'm committing this separately in case anyone wants to measure the
added overhead. (It should be negligible.)
Simon Riggs and Tom Lane
it's worth probing the outer relation for emptiness before building the
hash table. To wit, if we're rescanning a join previously performed,
remember whether we found it nonempty the previous time, and don't bother
with the probe if it was nonempty. This buys back the performance lost
in examples like Mario Weilguni's.
one child or the other had a problem: they did not leave the node in a
state that ExecReScanHashJoin would understand. In particular it would
tend to fail to reset the child plans when needed. Per report from
Mario Weilguni.
comment line where output as too long, and update typedefs for /lib
directory. Also fix case where identifiers were used as variable names
in the backend, but as typedefs in ecpg (favor the backend for
indenting).
Backpatch to 8.1.X.
outer relation is empty did not work, per test case from Patrick Welche.
It tried to use nodeHashjoin.c's high-level mechanisms for fetching an
outer-relation tuple, but that code expected the hash table to be filled
already. As patched, the code failed in corner cases such as having no
outer-relation tuples for the first hash batch. Revert and rewrite.
work if either of the join relations are empty. The logic is:
(1) if the inner relation's startup cost is less than the outer
relation's startup cost and this is not an outer join, read
a single tuple from the inner relation via ExecHash()
- if NULL, we're done
(2) read a single tuple from the outer relation
- if NULL, we're done
(3) build the hash table on the inner relation
- if hash table is empty and this is not an outer join,
we're done
(4) otherwise, do hash join as usual
The implementation uses the new MultiExecProcNode API, per a
suggestion from Tom: invoking ExecHash() now produces the first
tuple from the Hash node's child node, whereas MultiExecHash()
builds the hash table.
I had to put in a bit of a kludge to get the row count returned
for EXPLAIN ANALYZE to be correct: since ExecHash() is invoked to
return a tuple, and then MultiExecHash() is invoked, we would
return one too many tuples to EXPLAIN ANALYZE. I hacked around
this by just manually detecting this situation and subtracting 1
from the EXPLAIN ANALYZE row count.
return just a single tuple at a time. Currently the only such node
type is Hash, but I expect we will soon have indexscans that can return
tuple bitmaps. A side benefit is that EXPLAIN ANALYZE now shows the
correct tuple count for a Hash node.
old comment in the code claimed that this was necessary. Since it is not
actually necessary any more, it is clearer to remove the comment and
just return NULL instead -- the return value of ExecHash() is not used.
of tuples when passing data up through multiple plan nodes. A slot can now
hold either a normal "physical" HeapTuple, or a "virtual" tuple consisting
of Datum/isnull arrays. Upper plan levels can usually just copy the Datum
arrays, avoiding heap_formtuple() and possible subsequent nocachegetattr()
calls to extract the data again. This work extends Atsushi Ogawa's earlier
patch, which provided the key idea of adding Datum arrays to TupleTableSlots.
(I believe however that something like this was foreseen way back in Berkeley
days --- see the old comment on ExecProject.) A test case involving many
levels of join of fairly wide tables (about 80 columns altogether) showed
about 3x overall speedup, though simple queries will probably not be
helped very much.
I have also duplicated some code in heaptuple.c in order to provide versions
of heap_formtuple and friends that use "bool" arrays to indicate null
attributes, instead of the old convention of "char" arrays containing either
'n' or ' '. This provides a better match to the convention used by
ExecEvalExpr. While I have not made a concerted effort to get rid of uses
of the old routines, I think they should be deprecated and eventually removed.
on-the-fly, and thereby avoid blowing out memory when the planner has
underestimated the hash table size. Hash join will now obey the
work_mem limit with some faithfulness. Per my recent proposal
(hash aggregate part isn't done yet though).
Also performed an initial run through of upgrading our Copyright date to
extend to 2005 ... first run here was very simple ... change everything
where: grep 1996-2004 && the word 'Copyright' ... scanned through the
generated list with 'less' first, and after, to make sure that I only
picked up the right entries ...