Until now __attribute__() was defined to be empty for all compilers but
gcc. That's problematic because it prevents using it in other compilers;
which is necessary e.g. for atomics portability. It's also just
generally dubious to do so in a header as widely included as c.h.
Instead add pg_attribute_format_arg, pg_attribute_printf,
pg_attribute_noreturn macros which are implemented in the compilers that
understand them. Also add pg_attribute_noreturn and pg_attribute_packed,
but don't provide fallbacks, since they can affect functionality.
This means that external code that, possibly unwittingly, relied on
__attribute__ defined to be empty on !gcc compilers may now run into
warnings or errors on those compilers. But there shouldn't be many
occurances of that and it's hard to work around...
Discussion: 54B58BA3.8040302@ohmu.fi
Author: Oskari Saarenmaa, with some minor changes by me.
This patch adds the ability to write TABLE( function1(), function2(), ...)
as a single FROM-clause entry. The result is the concatenation of the
first row from each function, followed by the second row from each
function, etc; with NULLs inserted if any function produces fewer rows than
others. This is believed to be a much more useful behavior than what
Postgres currently does with multiple SRFs in a SELECT list.
This syntax also provides a reasonable way to combine use of column
definition lists with WITH ORDINALITY: put the column definition list
inside TABLE(), where it's clear that it doesn't control the ordinality
column as well.
Also implement SQL-compliant multiple-argument UNNEST(), by turning
UNNEST(a,b,c) into TABLE(unnest(a), unnest(b), unnest(c)).
The SQL standard specifies TABLE() with only a single function, not
multiple functions, and it seems to require an implicit UNNEST() which is
not what this patch does. There may be something wrong with that reading
of the spec, though, because if it's right then the spec's TABLE() is just
a pointless alternative spelling of UNNEST(). After further review of
that, we might choose to adopt a different syntax for what this patch does,
but in any case this functionality seems clearly worthwhile.
Andrew Gierth, reviewed by Zoltán Böszörményi and Heikki Linnakangas, and
significantly revised by me
Revert the matview-related changes in explain.c's API, as per recent
complaint from Robert Haas. The reason for these appears to have been
principally some ill-considered choices around having intorel_startup do
what ought to be parse-time checking, plus a poor arrangement for passing
it the view parsetree it needs to store into pg_rewrite when creating a
materialized view. Do the latter by having parse analysis stick a copy
into the IntoClause, instead of doing it at runtime. (On the whole,
I seriously question the choice to represent CREATE MATERIALIZED VIEW as a
variant of SELECT INTO/CREATE TABLE AS, because that means injecting even
more complexity into what was already a horrid legacy kluge. However,
I didn't go so far as to rethink that choice ... yet.)
I also moved several error checks into matview parse analysis, and
made the check for external Params in a matview more accurate.
In passing, clean things up a bit more around interpretOidsOption(),
and fix things so that we can use that to force no-oids for views,
sequences, etc, thereby eliminating the need to cons up "oids = false"
options when creating them.
catversion bump due to change in IntoClause. (I wonder though if we
really need readfuncs/outfuncs support for IntoClause anymore.)
This patch implements the standard syntax of LATERAL attached to a
sub-SELECT in FROM, and also allows LATERAL attached to a function in FROM,
since set-returning function calls are expected to be one of the principal
use-cases.
The main change here is a rewrite of the mechanism for keeping track of
which relations are visible for column references while the FROM clause is
being scanned. The parser "namespace" lists are no longer lists of bare
RTEs, but are lists of ParseNamespaceItem structs, which carry an RTE
pointer as well as some visibility-controlling flags. Aside from
supporting LATERAL correctly, this lets us get rid of the ancient hacks
that required rechecking subqueries and JOIN/ON and function-in-FROM
expressions for invalid references after they were initially parsed.
Invalid column references are now always correctly detected on sight.
In passing, remove assorted parser error checks that are now dead code by
virtue of our having gotten rid of add_missing_from, as well as some
comments that are obsolete for the same reason. (It was mainly
add_missing_from that caused so much fudging here in the first place.)
The planner support for this feature is very minimal, and will be improved
in future patches. It works well enough for testing purposes, though.
catversion bump forced due to new field in RangeTblEntry.
Per spec we ought to apply select_common_collation() across the expressions
in each column of the VALUES table. The original coding was just taking
the first row and assuming it was representative.
This patch adds a field to struct RangeTblEntry to carry the resolved
collations, so initdb is forced for changes in stored rule representation.
If the referencing and referenced columns have different collations,
the parser will be unable to resolve which collation to use unless it's
helped out in this way. The effects are sometimes masked, if we end up
using a non-collation-sensitive plan; but if we do use a mergejoin
we'll see a failure, as recently noted by Robert Haas.
The SQL spec states that the referenced column's collation should be used
to resolve RI checks, so that's what we do. Note however that we currently
don't append a COLLATE clause when writing a query that examines only the
referencing column. If we ever support collations that have varying
notions of equality, that will have to be changed. For the moment, though,
it's preferable to leave it off so that we can use a normal index on the
referencing column.
This patch implements data-modifying WITH queries according to the
semantics that the updates all happen with the same command counter value,
and in an unspecified order. Therefore one WITH clause can't see the
effects of another, nor can the outer query see the effects other than
through the RETURNING values. And attempts to do conflicting updates will
have unpredictable results. We'll need to document all that.
This commit just fixes the code; documentation updates are waiting on
author.
Marko Tiikkaja and Hitoshi Harada
recent proposal. As proof of concept, remove knowledge of Params from the
core parser, arranging for them to be handled entirely by parser hook
functions. It turns out we need an additional hook for that --- I had
forgotten about the code that handles inferring a parameter's type from
context.
This is a preliminary step towards letting plpgsql handle its variables
through parser hooks. Additional work remains to be done to expose the
facility through SPI, but I think this is all the changes needed in the core
parser.
for example in
WITH w AS (SELECT * FROM foo) SELECT * FROM w, bar ... FOR UPDATE
the FOR UPDATE will now affect bar but not foo. This is more useful and
consistent than the original 8.4 behavior, which tried to propagate FOR UPDATE
into the WITH query but always failed due to assorted implementation
restrictions. Even though we are in process of removing those restrictions,
it seems correct on philosophical grounds to not let the outer query's
FOR UPDATE affect the WITH query.
In passing, fix isLockedRel which frequently got things wrong in
nested-subquery cases: "FOR UPDATE OF foo" applies to an alias foo in the
current query level, not subqueries. This has been broken for a long time,
but it doesn't seem worth back-patching further than 8.4 because the actual
consequences are minimal. At worst the parser would sometimes get
RowShareLock on a relation when it should be AccessShareLock or vice versa.
That would only make a difference if someone were using ExclusiveLock
concurrently, which no standard operation does, and anyway FOR UPDATE
doesn't result in visible changes so it's not clear that the someone would
notice any problem. Between that and the fact that FOR UPDATE barely works
with subqueries at all in existing releases, I'm not excited about worrying
about it.
Per recent discussion, add_missing_from has been deprecated for long enough to
consider removing, and it's getting in the way of planned parser refactoring.
The system now always behaves as though add_missing_from were OFF.
well as regular tables. Per discussion, this seems necessary to meet the
principle of least astonishment.
In passing, simplify the error messages in warnAutoRange(). Now that we
have parser error position info for these errors, it doesn't seem very
useful to word the error message differently depending on whether we are
inside a sub-select or not.
There are some unimplemented aspects: recursive queries must use UNION ALL
(should allow UNION too), and we don't have SEARCH or CYCLE clauses.
These might or might not get done for 8.4, but even without them it's a
pretty useful feature.
There are also a couple of small loose ends and definitional quibbles,
which I'll send a memo about to pgsql-hackers shortly. But let's land
the patch now so we can get on with other development.
Yoshiyuki Asaba, with lots of help from Tatsuo Ishii and Tom Lane
(e.g. "INSERT ... VALUES (...), (...), ...") and elsewhere as allowed
by the spec. (e.g. similar to a FROM clause subselect). initdb required.
Joe Conway and Tom Lane.
during parse analysis, not only errors detected in the flex/bison stages.
This is per my earlier proposal. This commit includes all the basic
infrastructure, but locations are only tracked and reported for errors
involving column references, function calls, and operators. More could
be done later but this seems like a good set to start with. I've also
moved the ReportSyntaxErrorPosition logic out of psql and into libpq,
which should make it available to more people --- even within psql this
is an improvement because warnings weren't handled by ReportSyntaxErrorPosition.
representation as the jointree) with two lists of RTEs, one showing
the RTEs accessible by qualified names, and the other showing the RTEs
accessible by unqualified names. I think this is conceptually simpler
than what we did before, and it's sure a whole lot easier to search.
This seems to eliminate the parse-time bottleneck for deeply nested
JOIN structures that was exhibited by phil@vodafone.
RTE of interest, rather than the whole rangetable list. This makes
the API more understandable and avoids duplicate RTE lookups. This
patch reverts no-longer-needed portions of my patch of 2004-08-19.
of just a relation OID, thereby not having to open the relation for itself.
This actually saves code rather than adding it for most of the existing
callers, which had the rel open already. The main point though is to be
able to use this rather than plain addRangeTableEntry in setTargetTable,
thus saving one relation_openrv/relation_close cycle for every INSERT,
UPDATE, or DELETE. Seems to provide a several percent win on simple
INSERTs.
Also performed an initial run through of upgrading our Copyright date to
extend to 2005 ... first run here was very simple ... change everything
where: grep 1996-2004 && the word 'Copyright' ... scanned through the
generated list with 'less' first, and after, to make sure that I only
picked up the right entries ...
presence of dropped columns. Document the already-presumed fact that
eref aliases in relation RTEs are supposed to have entries for dropped
columns; cause the user alias structs to have such entries too, so that
there's always a one-to-one mapping to the underlying physical attnums.
Adjust expandRTE() and related code to handle the case where a column
that is part of a JOIN has been dropped. Generalize expandRTE()'s API
so that it can be used in a couple of places that formerly rolled their
own implementation of the same logic. Fix ruleutils.c to suppress
display of aliases for columns that were dropped since the rule was made.
are sought first as local FROM columns, then as local SELECT-list aliases,
and finally as outer FROM columns; the former behavior made outer FROM
columns take precedence over aliases. This does not change spec
conformance because SQL99 allows only the first case anyway, and it seems
more useful and self-consistent. Per gripe from Dennis Bjorklund 2004-04-05.
to behave according to SQL92 (or according to my current understanding
of same, anyway). Per pghackers discussion way back in March 2002:
thread 'Do FROM items of different schemas conflict?'
of functions returning domain types, update documentation for typtype,
move get_typtype to lsyscache.c (actually, resurrect the old version),
add defense against creating pseudo-typed table columns, fix some
bogus list-parsing in grammar. Issues remain with respect to alias
handling and type checking; Joe is on those.
types for Table Functions, as previously proposed on HACKERS. Here is a
brief explanation:
1. Creates a new pg_type typtype: 'p' for pseudo type (currently either
'b' for base or 'c' for catalog, i.e. a class).
2. Creates new builtin type of typtype='p' named RECORD. This is the
first of potentially several pseudo types.
3. Modify FROM clause grammer to accept:
SELECT * FROM my_func() AS m(colname1 type1, colname2 type1, ...)
where m is the table alias, colname1, etc are the column names, and
type1, etc are the column types.
4. When typtype == 'p' and the function return type is RECORD, a list
of column defs is required, and when typtype != 'p', it is
disallowed.
5. A check was added to ensure that the tupdesc provide via the parser
and the actual return tupdesc match in number and type of
attributes.
When creating a function you can do:
CREATE FUNCTION foo(text) RETURNS setof RECORD ...
When using it you can do:
SELECT * from foo(sqlstmt) AS (f1 int, f2 text, f3 timestamp)
or
SELECT * from foo(sqlstmt) AS f(f1 int, f2 text, f3 timestamp)
or
SELECT * from foo(sqlstmt) f(f1 int, f2 text, f3 timestamp)
Included in the patches are adjustments to the regression test sql and
expected files, and documentation.
p.s.
This potentially solves (or at least improves) the issue of builtin
Table Functions. They can be bootstrapped as returning RECORD, and
we can wrap system views around them with properly specified column
defs. For example:
CREATE VIEW pg_settings AS
SELECT s.name, s.setting
FROM show_all_settings()AS s(name text, setting text);
Then we can also add the UPDATE RULE that I previously posted to
pg_settings, and have pg_settings act like a virtual table, allowing
settings to be queried and set.
Joe Conway
code review by Tom Lane. Remaining issues: functions that take or
return tuple types are likely to break if one drops (or adds!)
a column in the table defining the type. Need to think about what
to do here.
Along the way: some code review for recent COPY changes; mark system
columns attnotnull = true where appropriate, per discussion a month ago.