This patch adds the ability to use "RANGE offset PRECEDING/FOLLOWING"
frame boundaries in window functions. We'd punted on that back in the
original patch to add window functions, because it was not clear how to
do it in a reasonably data-type-extensible fashion. That problem is
resolved here by adding the ability for btree operator classes to provide
an "in_range" support function that defines how to add or subtract the
RANGE offset value. Factoring it this way also allows the operator class
to avoid overflow problems near the ends of the datatype's range, if it
wishes to expend effort on that. (In the committed patch, the integer
opclasses handle that issue, but it did not seem worth the trouble to
avoid overflow failures for datetime types.)
The patch includes in_range support for the integer_ops opfamily
(int2/int4/int8) as well as the standard datetime types. Support for
other numeric types has been requested, but that seems like suitable
material for a follow-on patch.
In addition, the patch adds GROUPS mode which counts the offset in
ORDER-BY peer groups rather than rows, and it adds the frame_exclusion
options specified by SQL:2011. As far as I can see, we are now fully
up to spec on window framing options.
Existing behaviors remain unchanged, except that I changed the errcode
for a couple of existing error reports to meet the SQL spec's expectation
that negative "offset" values should be reported as SQLSTATE 22013.
Internally and in relevant parts of the documentation, we now consistently
use the terminology "offset PRECEDING/FOLLOWING" rather than "value
PRECEDING/FOLLOWING", since the term "value" is confusingly vague.
Oliver Ford, reviewed and whacked around some by me
Discussion: https://postgr.es/m/CAGMVOdu9sivPAxbNN0X+q19Sfv9edEPv=HibOJhB14TJv_RCQg@mail.gmail.com
The previous code assumed that we'd always succeed in creating
child-joins for a joinrel for which partition-wise join was considered,
but that's not guaranteed, at least in the case where dummy rels
are involved.
Ashutosh Bapat, with some wordsmithing by me.
Discussion: http://postgr.es/m/CAFjFpRf8=uyMYYfeTBjWDMs1tR5t--FgOe2vKZPULxxdYQ4RNw@mail.gmail.com
To make this work, tuplesort.c and logtape.c must also support
parallelism, so this patch adds that infrastructure and then applies
it to the particular case of parallel btree index builds. Testing
to date shows that this can often be 2-3x faster than a serial
index build.
The model for deciding how many workers to use is fairly primitive
at present, but it's better than not having the feature. We can
refine it as we get more experience.
Peter Geoghegan with some help from Rushabh Lathia. While Heikki
Linnakangas is not an author of this patch, he wrote other patches
without which this feature would not have been possible, and
therefore the release notes should possibly credit him as an author
of this feature. Reviewed by Claudio Freire, Heikki Linnakangas,
Thomas Munro, Tels, Amit Kapila, me.
Discussion: http://postgr.es/m/CAM3SWZQKM=Pzc=CAHzRixKjp2eO5Q0Jg1SoFQqeXFQ647JiwqQ@mail.gmail.com
Discussion: http://postgr.es/m/CAH2-Wz=AxWqDoVvGU7dq856S4r6sJAj6DBn7VMtigkB33N5eyg@mail.gmail.com
create_plan_recurse lacked any stack depth check. This is not per
our normal coding rules, but I'd supposed it was safe because earlier
planner processing is more complex and presumably should eat more
stack. But bug #15033 from Andrew Grossman shows this isn't true,
at least not for queries having the form of a many-thousand-way
INTERSECT stack.
Further testing showed that recurse_set_operations is also capable
of being crashed in this way, since it likewise will recurse to the
bottom of a parsetree before calling any support functions that
might themselves contain any stack checks. However, its stack
consumption is only perhaps a third of create_plan_recurse's.
It's possible that this particular problem with create_plan_recurse can
only manifest in 9.6 and later, since before that we didn't build a Path
tree for set operations. But having seen this example, I now have no
faith in the proposition that create_plan_recurse doesn't need a stack
check, so back-patch to all supported branches.
Discussion: https://postgr.es/m/20180127050845.28812.58244@wrigleys.postgresql.org
This is preparatory refactoring to prepare the way for partition-wise
aggregate, which will reuse the new subroutines for child grouping
rels. It also does not seem like a bad idea on general principle,
as the function was getting pretty long.
Jeevan Chalke. The larger patch series of which this patch is a part
was reviewed and tested by Antonin Houska, Rajkumar Raghuwanshi,
Ashutosh Bapat, David Rowley, Dilip Kumar, Konstantin Knizhnik,
Pascal Legrand, and me. Some cosmetic changes by me.
Discussion: http://postgr.es/m/CAM2+6=V64_xhstVHie0Rz=KPEQnLJMZt_e314P0jaT_oJ9MR8A@mail.gmail.com
get_relation_info() was too optimistic about opening indexes in
partitioned tables, which would raise errors when any queries were
planned on such tables. Fix by ignoring any indexes of the partitioned
kind.
CLUSTER (and ALTER TABLE CLUSTER ON) had a similar problem. Fix by
disallowing these commands in partitioned tables.
Fallout from 8b08f7d4820f.
If we're inside a lateral subquery, there may be no unparameterized paths
for a particular child relation of an appendrel, in which case we *must*
be able to create similarly-parameterized paths for each other child
relation, else the planner will fail with "could not devise a query plan
for the given query". This means that there are situations where we'd
better be able to reparameterize at least one path for each child.
This calls into question the assumption in reparameterize_path() that
it can just punt if it feels like it. However, the only case that is
known broken right now is where the child is itself an appendrel so that
all its paths are AppendPaths. (I think possibly I disregarded that in
the original coding on the theory that nested appendrels would get folded
together --- but that only happens *after* reparameterize_path(), so it's
not excused from handling a child AppendPath.) Given that this code's been
like this since 9.3 when LATERAL was introduced, it seems likely we'd have
heard of other cases by now if there were a larger problem.
Per report from Elvis Pranskevichus. Back-patch to 9.3.
Discussion: https://postgr.es/m/5981018.zdth1YWmNy@hammer.magicstack.net
When an UPDATE causes a row to no longer match the partition
constraint, try to move it to a different partition where it does
match the partition constraint. In essence, the UPDATE is split into
a DELETE from the old partition and an INSERT into the new one. This
can lead to surprising behavior in concurrency scenarios because
EvalPlanQual rechecks won't work as they normally did; the known
problems are documented. (There is a pending patch to improve the
situation further, but it needs more review.)
Amit Khandekar, reviewed and tested by Amit Langote, David Rowley,
Rajkumar Raghuwanshi, Dilip Kumar, Amul Sul, Thomas Munro, Álvaro
Herrera, Amit Kapila, and me. A few final revisions by me.
Discussion: http://postgr.es/m/CAJ3gD9do9o2ccQ7j7+tSgiE1REY65XRiMb=yJO3u3QhyP8EEPQ@mail.gmail.com
If a query against an inheritance tree runs concurrently with an ALTER
TABLE that's disinheriting one of the tree members, it's possible to get
a "could not find inherited attribute" error because after obtaining lock
on the removed member, make_inh_translation_list sees that its columns
have attinhcount=0 and decides they aren't the columns it's looking for.
An ideal fix, perhaps, would avoid including such a just-removed member
table in the query at all; but there seems no way to accomplish that
without adding expensive catalog rechecks or creating a likelihood of
deadlocks. Instead, let's just drop the check on attinhcount. In this
way, a query that's included a just-disinherited child will still
succeed, which is not a completely unreasonable behavior.
This problem has existed for a long time, so back-patch to all supported
branches. Also add an isolation test verifying related behaviors.
Patch by me; the new isolation test is based on Kyotaro Horiguchi's work.
Discussion: https://postgr.es/m/20170626.174612.23936762.horiguchi.kyotaro@lab.ntt.co.jp
If we flatten a subquery whose target list contains constants or
expressions, when those output columns are used in GROUPING SET columns,
the planner was capable of doing the wrong thing by merging a pulled-up
expression into the surrounding expression during const-simplification.
Then the late processing that attempts to match subexpressions to grouping
sets would fail to match those subexpressions to grouping sets, with the
effect that they'd not go to null when expected.
To fix, wrap such subquery outputs in PlaceHolderVars, ensuring that
they preserve their separate identity throughout the planner's expression
processing. This is a bit of a band-aid, because the wrapper defeats
const-simplification even in places where it would be safe to allow.
But a nicer fix would likely be too invasive to back-patch, and the
consequences of the missed optimizations probably aren't large in most
cases.
Back-patch to 9.5 where grouping sets were introduced.
Heikki Linnakangas, with small mods and better test cases by me;
additional review by Andrew Gierth
Discussion: https://postgr.es/m/7dbdcf5c-b5a6-ef89-4958-da212fe10176@iki.fi
Commit ab7271677 introduced code that attempts to order the child
scans of a Parallel Append node in a way that will minimize execution
time, based on total cost and startup cost. However, it failed to
think hard about what to do when estimated costs are exactly equal;
a case that's particularly likely to occur when comparing on startup
cost. In such a case the ordering of the child paths would be left
to the whims of qsort, an algorithm that isn't even stable.
We can improve matters by applying the rule used elsewhere in the
planner: if total costs are equal, sort on startup cost, and
vice versa. When both cost estimates are exactly equal, rather
than letting qsort do something unpredictable, sort based on the
child paths' relids, which should typically result in sorting in
inheritance order. (The latter provision requires inventing a
qsort-style comparator for bitmapsets, but maybe we'll have use
for that for other reasons in future.)
This results in a few plan changes in the select_parallel test,
but those all look more reasonable than before, when the actual
underlying cost numbers are taken into account.
Discussion: https://postgr.es/m/4944.1515446989@sss.pgh.pa.us
- Remove unnecessary #include mistakenly added in execnodes.h.
- Fix mistake in comment in choose_next_subplan_for_leader.
- Adjust row estimates in cost_append for a possibly-different
parallel divisor.
- Clamp row estimates in cost_append after operations that may
not produce integers.
Amit Kapila, with cosmetic adjustments by me.
Discussion: http://postgr.es/m/CAA4eK1+qcbeai3coPpRW=GFCzFeLUsuY4T-AKHqMjxpEGZBPQg@mail.gmail.com
Add some infrastructure (mostly macros) to make it easier to write
typical cases for constant-expression simplification. Add simplification
processing for ArrayRef, RowExpr, and ScalarArrayOpExpr node types,
which formerly went unsimplified even if all their inputs were constants.
Also teach it to simplify FieldSelect from a composite constant.
Make use of the new infrastructure to reduce the amount of code needed
for the existing ArrayExpr and ArrayCoerceExpr cases.
One existing test case changes output as a result of the fact that
RowExpr can now be folded to a constant. All the new code is exercised
by existing test cases according to gcov, so I feel no need to add
additional tests.
Tom Lane, reviewed by Dmitry Dolgov
Discussion: https://postgr.es/m/3be3b82c-e29c-b674-2163-bf47d98817b1@iki.fi
Since 9.4, we've allowed the syntax "select union select" and variants
of that. However, the planner wasn't expecting a no-column set operation
and ended up treating the set operation as if it were UNION ALL.
Turns out it's trivial to fix in v10 and later; we just need to be careful
about not generating a Sort node with no sort keys. However, since a weird
corner case like this is never going to be exercised by developers, we'd
better have thorough regression tests if we want to consider it supported.
Per report from Victor Yegorov.
Discussion: https://postgr.es/m/CAGnEbojGJrRSOgJwNGM7JSJZpVAf8xXcVPbVrGdhbVEHZ-BUMw@mail.gmail.com
This patch does three interrelated things:
* Create a new expression execution step type EEOP_PARAM_CALLBACK
and add the infrastructure needed for add-on modules to generate that.
As discussed, the best control mechanism for that seems to be to add
another hook function to ParamListInfo, which will be called by
ExecInitExpr if it's supplied and a PARAM_EXTERN Param is found.
For stand-alone expressions, we add a new entry point to allow the
ParamListInfo to be specified directly, since it can't be retrieved
from the parent plan node's EState.
* Redesign the API for the ParamListInfo paramFetch hook so that the
ParamExternData array can be entirely virtual. This also lets us get rid
of ParamListInfo.paramMask, instead leaving it to the paramFetch hook to
decide which param IDs should be accessible or not. plpgsql_param_fetch
was already doing the identical masking check, so having callers do it too
seemed redundant. While I was at it, I added a "speculative" flag to
paramFetch that the planner can specify as TRUE to avoid unwanted failures.
This solves an ancient problem for plpgsql that it couldn't provide values
of non-DTYPE_VAR variables to the planner for fear of triggering premature
"record not assigned yet" or "field not found" errors during planning.
* Rework plpgsql to get rid of the need for "unshared" parameter lists,
by dint of turning the single ParamListInfo per estate into a nearly
read-only data structure that doesn't instantiate any per-variable data.
Instead, the paramFetch hook controls access to per-variable data and can
make the right decisions on the fly, replacing the cases that we used to
need multiple ParamListInfos for. This might perhaps have been a
performance loss on its own, but by using a paramCompile hook we can
bypass plpgsql_param_fetch entirely during normal query execution.
(It's now only called when, eg, we copy the ParamListInfo into a cursor
portal. copyParamList() or SerializeParamList() effectively instantiate
the virtual parameter array as a simple physical array without a
paramFetch hook, which is what we want in those cases.) This allows
reverting most of commit 6c82d8d1f, though I kept the cosmetic
code-consolidation aspects of that (eg the assign_simple_var function).
Performance testing shows this to be at worst a break-even change,
and it can provide wins ranging up to 20% in test cases involving
accesses to fields of "record" variables. The fact that values of
such variables can now be exposed to the planner might produce wins
in some situations, too, but I've not pursued that angle.
In passing, remove the "parent" pointer from the arguments to
ExecInitExprRec and related functions, instead storing that pointer in a
transient field in ExprState. The ParamListInfo pointer for a stand-alone
expression is handled the same way; we'd otherwise have had to add
yet another recursively-passed-down argument in expression compilation.
Discussion: https://postgr.es/m/32589.1513706441@sss.pgh.pa.us
Introduce parallel-aware hash joins that appear in EXPLAIN plans as Parallel
Hash Join with Parallel Hash. While hash joins could already appear in
parallel queries, they were previously always parallel-oblivious and had a
partial subplan only on the outer side, meaning that the work of the inner
subplan was duplicated in every worker.
After this commit, the planner will consider using a partial subplan on the
inner side too, using the Parallel Hash node to divide the work over the
available CPU cores and combine its results in shared memory. If the join
needs to be split into multiple batches in order to respect work_mem, then
workers process different batches as much as possible and then work together
on the remaining batches.
The advantages of a parallel-aware hash join over a parallel-oblivious hash
join used in a parallel query are that it:
* avoids wasting memory on duplicated hash tables
* avoids wasting disk space on duplicated batch files
* divides the work of building the hash table over the CPUs
One disadvantage is that there is some communication between the participating
CPUs which might outweigh the benefits of parallelism in the case of small
hash tables. This is avoided by the planner's existing reluctance to supply
partial plans for small scans, but it may be necessary to estimate
synchronization costs in future if that situation changes. Another is that
outer batch 0 must be written to disk if multiple batches are required.
A potential future advantage of parallel-aware hash joins is that right and
full outer joins could be supported, since there is a single set of matched
bits for each hashtable, but that is not yet implemented.
A new GUC enable_parallel_hash is defined to control the feature, defaulting
to on.
Author: Thomas Munro
Reviewed-By: Andres Freund, Robert Haas
Tested-By: Rafia Sabih, Prabhat Sahu
Discussion:
https://postgr.es/m/CAEepm=2W=cOkiZxcg6qiFQP-dHUe09aqTrEMM7yJDrHMhDv_RA@mail.gmail.comhttps://postgr.es/m/CAEepm=37HKyJ4U6XOLi=JgfSHM3o6B-GaeO-6hkOmneTDkH+Uw@mail.gmail.com
Commit dc02c7bca4dccf7de278cdc6b3325a829e75b252 changed this call
to create_sort_path() to take -1 rather than limit_tuples because,
at that time, there was no way for a Sort beneath a Gather Merge
to become a top-N sort.
Later, commit 3452dc5240da43e833118484e1e9b4894d04431c provided
a way for a Sort beneath a Gather Merge to become a top-N sort,
but failed to revert the previous commit in the process. Do that.
Report and analysis by Jeff Janes; patch by Thomas Munro; review by
Amit Kapila and by me.
Discussion: http://postgr.es/m/CAEepm=1BWtC34vUroA0Uqjw02MaqdUrW+d6WD85_k8SLyPiKHQ@mail.gmail.com
When we create an Append node, we can spread out the workers over the
subplans instead of piling on to each subplan one at a time, which
should typically be a bit more efficient, both because the startup
cost of any plan executed entirely by one worker is paid only once and
also because of reduced contention. We can also construct Append
plans using a mix of partial and non-partial subplans, which may allow
for parallelism in places that otherwise couldn't support it.
Unfortunately, this patch doesn't handle the important case of
parallelizing UNION ALL by running each branch in a separate worker;
the executor infrastructure is added here, but more planner work is
needed.
Amit Khandekar, Robert Haas, Amul Sul, reviewed and tested by
Ashutosh Bapat, Amit Langote, Rafia Sabih, Amit Kapila, and
Rajkumar Raghuwanshi.
Discussion: http://postgr.es/m/CAJ3gD9dy0K_E8r727heqXoBmWZ83HwLFwdcaSSmBQ1+S+vRuUQ@mail.gmail.com
This adds a new object type "procedure" that is similar to a function
but does not have a return type and is invoked by the new CALL statement
instead of SELECT or similar. This implementation is aligned with the
SQL standard and compatible with or similar to other SQL implementations.
This commit adds new commands CALL, CREATE/ALTER/DROP PROCEDURE, as well
as ALTER/DROP ROUTINE that can refer to either a function or a
procedure (or an aggregate function, as an extension to SQL). There is
also support for procedures in various utility commands such as COMMENT
and GRANT, as well as support in pg_dump and psql. Support for defining
procedures is available in all the languages supplied by the core
distribution.
While this commit is mainly syntax sugar around existing functionality,
future features will rely on having procedures as a separate object
type.
Reviewed-by: Andrew Dunstan <andrew.dunstan@2ndquadrant.com>
Put the unique path in the same context as the owning RelOptInfo, rather
than the toplevel planner context. This is how this function worked
originally, but commit f41803bb39bc2949db200116a609fd242d0ec221
changed it without explanation. mark_dummy_rel adopted the older (or
newer?) technique in commit eca75a12a27d28b972fc269c1c8813cd8eb15441,
which also featured a much better explanation of why it is correct.
So, switch back to that technique here, with the same explanation
given there.
Although this fixes a possible memory leak when GEQO is in use, the
leak is minor and probably nobody cares, so no back-patch.
Ashutosh Bapat, reviewed by Tom Lane and by me
Discussion: http://postgr.es/m/CAFjFpRcXkHHrXyD9BCvkgGJV4TnHG2SWJ0PhJfrDu3NAcQvh7g@mail.gmail.com
rewriteTargetListUD's processing is dependent on the relkind of the query's
target table. That was fine at the time it was made to act that way, even
for queries on inheritance trees, because all tables in an inheritance tree
would necessarily be plain tables. However, the 9.5 feature addition
allowing some members of an inheritance tree to be foreign tables broke the
assumption that rewriteTargetListUD's output tlist could be applied to all
child tables with nothing more than column-number mapping. This led to
visible failures if foreign child tables had row-level triggers, and would
also break in cases where child tables belonged to FDWs that used methods
other than CTID for row identification.
To fix, delay running rewriteTargetListUD until after the planner has
expanded inheritance, so that it is applied separately to the (already
mapped) tlist for each child table. We can conveniently call it from
preprocess_targetlist. Refactor associated code slightly to avoid the
need to heap_open the target relation multiple times during
preprocess_targetlist. (The APIs remain a bit ugly, particularly around
the point of which steps scribble on parse->targetList and which don't.
But avoiding such scribbling would require a change in FDW callback APIs,
which is more pain than it's worth.)
Also fix ExecModifyTable to ensure that "tupleid" is reset to NULL when
we transition from rows providing a CTID to rows that don't. (That's
really an independent bug, but it manifests in much the same cases.)
Add a regression test checking one manifestation of this problem, which
was that row-level triggers on a foreign child table did not work right.
Back-patch to 9.5 where the problem was introduced.
Etsuro Fujita, reviewed by Ildus Kurbangaliev and Ashutosh Bapat
Discussion: https://postgr.es/m/20170514150525.0346ba72@postgrespro.ru
Improve query_is_distinct_for() to accept SRFs in the targetlist when
we can prove distinctness from a DISTINCT clause. In that case the
de-duplication will surely happen after SRF expansion, so the proof
still works. Continue to punt in the case where we'd try to prove
distinctness from GROUP BY (or, in the future, source relations).
To do that, we'd have to determine whether the SRFs were in the
grouping columns or elsewhere in the tlist, and it still doesn't
seem worth the trouble. But this trivial change allows us to
recognize that "SELECT DISTINCT unnest(foo) FROM ..." produces
unique-ified output, which seems worth having.
Also, fix estimate_num_groups() to consider the possibility of SRFs in
the grouping columns. Its failure to do so was masked before v10 because
grouping_planner() scaled up plan rowcount estimates by the estimated SRF
multiplier after performing grouping. That doesn't happen anymore, which
is more correct, but it means we need an adjustment in the estimate for
the number of groups. Failure to do this leads to an underestimate for
the number of output rows of subqueries like "SELECT DISTINCT unnest(foo)"
compared to what 9.6 and earlier estimated, thus breaking plan choices
in some cases.
Per report from Dmitry Shalashov. Back-patch to v10 to avoid degraded
plan choices compared to previous releases.
Discussion: https://postgr.es/m/CAKPeCUGAeHgoh5O=SvcQxREVkoX7UdeJUMj1F5=aBNvoTa+O8w@mail.gmail.com
If a PARAM_EXEC parameter is used below a Gather (Merge) but the InitPlan
that computes it is attached to or above the Gather (Merge), force the
value to be computed before starting parallelism and pass it down to all
workers. This allows us to use parallelism in cases where it previously
would have had to be rejected as unsafe. We do - in this case - lose the
optimization that the value is only computed if it's actually used. An
alternative strategy would be to have the first worker that needs the value
compute it, but one downside of that approach is that we'd then need to
select a parallel-safe path to compute the parameter value; it couldn't for
example contain a Gather (Merge) node. At some point in the future, we
might want to consider both approaches.
Independent of that consideration, there is a great deal more work that
could be done to make more kinds of PARAM_EXEC parameters parallel-safe.
This infrastructure could be used to allow a Gather (Merge) on the inner
side of a nested loop (although that's not a very appealing plan) and
cases where the InitPlan is attached below the Gather (Merge) could be
addressed as well using various techniques. But this is a good start.
Amit Kapila, reviewed and revised by me. Reviewing and testing from
Kuntal Ghosh, Haribabu Kommi, and Tushar Ahuja.
Discussion: http://postgr.es/m/CAA4eK1LV0Y1AUV4cUCdC+sYOx0Z0-8NAJ2Pd9=UKsbQ5Sr7+JQ@mail.gmail.com
Up until now, we only tracked the number of parameters, which was
sufficient to allocate an array of Datums of the appropriate size,
but not sufficient to, for example, know how to serialize a Datum
stored in one of those slots. An upcoming patch wants to do that,
so add this tracking to make it possible.
Patch by me, reviewed by Tom Lane and Amit Kapila.
Discussion: http://postgr.es/m/CA+TgmoYqpxDKn8koHdW8BEKk8FMUL0=e8m2Qe=M+r0UBjr3tuQ@mail.gmail.com
Hash partitioning is useful when you want to partition a growing data
set evenly. This can be useful to keep table sizes reasonable, which
makes maintenance operations such as VACUUM faster, or to enable
partition-wise join.
At present, we still depend on constraint exclusion for partitioning
pruning, and the shape of the partition constraints for hash
partitioning is such that that doesn't work. Work is underway to fix
that, which should both improve performance and make partitioning
pruning work with hash partitioning.
Amul Sul, reviewed and tested by Dilip Kumar, Ashutosh Bapat, Yugo
Nagata, Rajkumar Raghuwanshi, Jesper Pedersen, and by me. A few
final tweaks also by me.
Discussion: http://postgr.es/m/CAAJ_b96fhpJAP=ALbETmeLk1Uni_GFZD938zgenhF49qgDTjaQ@mail.gmail.com
The lower case spellings are C and C++ standard and are used in most
parts of the PostgreSQL sources. The upper case spellings are only used
in some files/modules. So standardize on the standard spellings.
The APIs for ICU, Perl, and Windows define their own TRUE and FALSE, so
those are left as is when using those APIs.
In code comments, we use the lower-case spelling for the C concepts and
keep the upper-case spelling for the SQL concepts.
Reviewed-by: Michael Paquier <michael.paquier@gmail.com>
For some reason, we have never accounted for either the evaluation cost
or the selectivity of filter conditions attached to Agg and Group nodes
(which, in practice, are always conditions from a HAVING clause).
Applying our regular selectivity logic to post-grouping conditions is a
bit bogus, but it's surely better than taking the selectivity as 1.0.
Perhaps someday the extended-statistics mechanism can be taught to provide
statistics that would help us in getting non-default estimates here.
Per a gripe from Benjamin Coutu. This is surely a bug fix, but I'm
hesitant to back-patch because of the prospect of destabilizing existing
plan choices. Given that it took us this long to notice the bug, it's
probably not hurting too many people in the field.
Discussion: https://postgr.es/m/20968.1509486337@sss.pgh.pa.us
If we don't have to return any columns from heap tuples, and there's
no need to recheck qual conditions, and the heap page is all-visible,
then we can skip fetching the heap page altogether.
Skip prefetching pages too, when possible, on the assumption that the
recheck flag will remain the same from one page to the next. While that
assumption is hardly bulletproof, it seems like a good bet most of the
time, and better than prefetching pages we don't need.
This commit installs the executor infrastructure, but doesn't change
any planner cost estimates, thus possibly causing bitmap scans to
not be chosen in cases where this change renders them the best choice.
I (tgl) am not entirely convinced that we need to account for this
behavior in the planner, because I think typically the bitmap scan would
get chosen anyway if it's the best bet. In any case the submitted patch
took way too many shortcuts, resulting in too many clearly-bad choices,
to be committable.
Alexander Kuzmenkov, reviewed by Alexey Chernyshov, and whacked around
rather heavily by me.
Discussion: https://postgr.es/m/239a8955-c0fc-f506-026d-c837e86c827b@postgrespro.ru
This was always intended to work, but due to an oversight in
max_parallel_hazard_walker, it didn't. In testing, we missed the
fact that it was only working for custom plans, where the parameter
value has been substituted for the parameter itself early enough
that everything worked. In a generic plan, the Param node survives
and must be treated as parallel-safe. SerializeParamList provides
for the transmission of parameter values to workers.
Amit Kapila with help from Kuntal Ghosh. Some changes by me.
Discussion: http://postgr.es/m/CAA4eK1+_BuZrmVCeua5Eqnm4Co9DAXdM5HPAOE2J19ePbR912Q@mail.gmail.com
This is the last major omission in our domains feature: you can now
make a domain over anything that's not a pseudotype.
The major complication from an implementation standpoint is that places
that might be creating tuples of a domain type now need to be prepared
to apply domain_check(). It seems better that unprepared code fail
with an error like "<type> is not composite" than that it silently fail
to apply domain constraints. Therefore, relevant infrastructure like
get_func_result_type() and lookup_rowtype_tupdesc() has been adjusted
to treat domain-over-composite as a distinct case that unprepared code
won't recognize, rather than just transparently treating it the same
as plain composite. This isn't a 100% solution to the possibility of
overlooked domain checks, but it catches most places.
In passing, improve typcache.c's support for domains (it can now cache
the identity of a domain's base type), and rewrite the argument handling
logic in jsonfuncs.c's populate_record[set]_worker to reduce duplicative
per-call lookups.
I believe this is code-complete so far as the core and contrib code go.
The PLs need varying amounts of work, which will be tackled in followup
patches.
Discussion: https://postgr.es/m/4206.1499798337@sss.pgh.pa.us
Previously, we skipped using search_indexed_tlist_for_sortgroupref()
if the tlist expression being sought in the child plan node was merely
a Var. This is purely an optimization, based on the theory that
search_indexed_tlist_for_var() is faster, and one copy of a Var should
be as good as another. However, the GROUPING SETS patch broke the
latter assumption: grouping columns containing the "same" Var can
sometimes have different outputs, as shown in the test case added here.
So do it the hard way whenever a ressortgroupref marking exists.
(If this seems like a bottleneck, we could imagine building a tlist index
data structure for ressortgroupref values, as we do for Vars. But I'll
let that idea go until there's some evidence it's worthwhile.)
Back-patch to 9.6. The problem also exists in 9.5 where GROUPING SETS
came in, but this patch is insufficient to resolve the problem in 9.5:
there is some obscure dependency on the upper-planner-pathification
work that happened in 9.6. Given that this is such a weird corner case,
and no end users have complained about it, it doesn't seem worth the work
to develop a fix for 9.5.
Patch by me, per a report from Heikki Linnakangas. (This does not fix
Heikki's original complaint, just the follow-on one.)
Discussion: https://postgr.es/m/aefc657e-edb2-64d5-6df1-a0828f6e9104@iki.fi
Although joinaliasvars lists coming out of the parser are quite simple,
those lists can contain arbitrarily complex expressions after subquery
pullup. We do not perform expression preprocessing on them, meaning that
expressions in those lists will not meet the expectations of later phases
of the planner (for example, that they do not contain SubLinks). This had
been thought pretty harmless, since we don't intentionally touch those
lists in later phases --- but Andreas Seltenreich found a case in which
adjust_appendrel_attrs() could recurse into a joinaliasvars list and then
die on its assertion that it never sees a SubLink. We considered a couple
of localized fixes to prevent that specific case from looking at the
joinaliasvars lists, but really this seems like a generic hazard for all
expression processing in the planner. Therefore, probably the best answer
is to delete the joinaliasvars lists from the parsetree at the end of
expression preprocessing, so that there are no reachable expressions that
haven't been through preprocessing.
The case Andreas found seems to be harmless in non-Assert builds, and so
far there are no field reports suggesting that there are user-visible
effects in other cases. I considered back-patching this anyway, but
it turns out that Andreas' test doesn't fail at all in 9.4-9.6, because
in those versions adjust_appendrel_attrs contains code (added in commit
842faa714 and removed again in commit 215b43cdc) to process SubLinks
rather than complain about them. Barring discovery of another path by
which unprocessed joinaliasvars lists can cause trouble, the most
prudent compromise seems to be to patch this into v10 but not further.
Patch by me, with thanks to Amit Langote for initial investigation
and review.
Discussion: https://postgr.es/m/87r2tvt9f1.fsf@ansel.ydns.eu
If a Parallel Bitmap Heap scan's chain of leftmost descendents
includes a BitmapOr whose first child is a BitmapAnd, the prior coding
would mistakenly create a non-shared TIDBitmap and then try to perform
shared iteration.
Report by Tomas Vondra. Patch by Dilip Kumar.
Discussion: http://postgr.es/m/50e89684-8ad9-dead-8767-c9545bafd3b6@2ndquadrant.com