maintained for each cache entry. A cache entry will not be freed until
the matching ReleaseSysCache call has been executed. This eliminates
worries about cache entries getting dropped while still in use. See
my posting to pg-hackers of even date for more info.
(Don't forget that an alias is required.) Views reimplemented as expanding
to subselect-in-FROM. Grouping, aggregates, DISTINCT in views actually
work now (he says optimistically). No UNION support in subselects/views
yet, but I have some ideas about that. Rule-related permissions checking
moved out of rewriter and into executor.
INITDB REQUIRED!
right thing with variable-free clauses that contain noncachable functions,
such as 'WHERE random() < 0.5' --- these are evaluated once per
potential output tuple. Expressions that contain only Params are
now candidates to be indexscan quals --- for example, 'var = ($1 + 1)'
can now be indexed. Cope with RelabelType nodes atop potential indexscan
variables --- this oversight prevents 7.0.* from recognizing some
potentially indexscanable situations.
from Param nodes, per discussion a few days ago on pghackers. Add new
expression node type FieldSelect that implements the functionality where
it's actually needed. Clean up some other unused fields in Func nodes
as well.
NOTE: initdb forced due to change in stored expression trees for rules.
mergejoinable qual clauses, and add them to the query quals. For
example, WHERE a = b AND b = c will cause us to add AND a = c.
This is necessary to ensure that it's safe to use these variables
as interchangeable sort keys, which is something 7.0 knows how to do.
Should provide a useful improvement in planning ability, too.
accesses versus sequential accesses, a (very crude) estimate of the
effects of caching on random page accesses, and cost to evaluate WHERE-
clause expressions. Export critical parameters for this model as SET
variables. Also, create SET variables for the planner's enable flags
(enable_seqscan, enable_indexscan, etc) so that these can be controlled
more conveniently than via PGOPTIONS.
Planner now estimates both startup cost (cost before retrieving
first tuple) and total cost of each path, so it can optimize queries
with LIMIT on a reasonable basis by interpolating between these costs.
Same facility is a win for EXISTS(...) subqueries and some other cases.
Redesign pathkey representation to achieve a major speedup in planning
(I saw as much as 5X on a 10-way join); also minor changes in planner
to reduce memory consumption by recycling discarded Path nodes and
not constructing unnecessary lists.
Minor cleanups to display more-plausible costs in some cases in
EXPLAIN output.
Initdb forced by change in interface to index cost estimation
functions.
fields in JoinPaths --- turns out that we do need that after all :-(.
Also, rearrange planner so that only one RelOptInfo is created for a
particular set of joined base relations, no matter how many different
subsets of relations it can be created from. This saves memory and
processing time compared to the old method of making a bunch of RelOptInfos
and then removing the duplicates. Clean up the jointree iteration logic;
not sure if it's better, but I sure find it more readable and plausible
now, particularly for the case of 'bushy plans'.
pghackers discussion of 5-Jan-2000. The amopselect and amopnpages
estimators are gone, and in their place is a per-AM amcostestimate
procedure (linked to from pg_am, not pg_amop).
mentioned in FROM but not elsewhere in the query: such tables should be
joined over anyway. Aside from being more standards-compliant, this allows
removal of some very ugly hacks for COUNT(*) processing. Also, allow
HAVING clause without aggregate functions, since SQL does. Clean up
CREATE RULE statement-list syntax the same way Bruce just fixed the
main stmtmulti production.
CAUTION: addition of a field to RangeTblEntry nodes breaks stored rules;
you will have to initdb if you have any rules.
Most parts of the planner should ignore, or indeed never even see, uplevel
Vars because they will be or have been replaced by Params. There were a
couple of places that got it wrong though, probably my fault from recent
changes...
and fix_opids processing to a single recursive pass over the plan tree
executed at the very tail end of planning, rather than haphazardly here
and there at different places. Now that tlist Vars do not get modified
until the very end, it's possible to get rid of the klugy var_equal and
match_varid partial-matching routines, and just use plain equal()
throughout the optimizer. This is a step towards allowing merge and
hash joins to be done on expressions instead of only Vars ...
store all ordering information in pathkeys lists (which are now lists of
lists of PathKeyItem nodes, not just lists of lists of vars). This was
a big win --- the code is smaller and IMHO more understandable than it
was, even though it handles more cases. I believe the node changes will
not force an initdb for anyone; planner nodes don't show up in stored
rules.
identified by Hiroshi (incorrect cost attributed to OR clauses
after multiple passes through set_rest_selec()). I think the code
was trying to allow selectivities of OR subclauses to be passed in
from outside, but noplace was actually passing any useful data, and
set_rest_selec() was passing wrong data.
Restructure representation of "indexqual" in IndexPath nodes so that
it is the same as for indxqual in completed IndexScan nodes: namely,
a toplevel list with an entry for each pass of the index scan, having
sublists that are implicitly-ANDed index qual conditions for that pass.
You don't want to know what the old representation was :-(
Improve documentation of OR-clause indexscan functions.
Remove useless 'notclause' field from RestrictInfo nodes. (This might
force an initdb for anyone who has stored rules containing RestrictInfos,
but I do not think that RestrictInfo ever appears in completed plans.)
Subject: [HACKERS] linux/alpha patches
These patches lay the groundwork for a Linux/Alpha port. The port doesn't
actually work unless you tweak the linker to put all the pointers in the
first 32 bits of the address space, but it's at least a start. It
implements the test-and-set instruction in Alpha assembly, and also fixes
a lot of pointer-to-integer conversions, which is probably good anyway.