Get rid of VARATT_SIZE and VARATT_DATA, which were simply redundant with
VARSIZE and VARDATA, and as a consequence almost no code was using the
longer names. Rename the length fields of struct varlena and various
derived structures to catch anyplace that was accessing them directly;
and clean up various places so caught. In itself this patch doesn't
change any behavior at all, but it is necessary infrastructure if we hope
to play any games with the representation of varlena headers.
Greg Stark and Tom Lane
parent query's EState. Now that there's a single flat rangetable for both
the main plan and subplans, there's no need anymore for a separate EState,
and removing it allows cleaning up some crufty code in nodeSubplan.c and
nodeSubqueryscan.c. Should be a tad faster too, although any difference
will probably be hard to measure. This is the last bit of subsidiary
mop-up work from changing to a flat rangetable.
is still needed despite cleanups in setrefs.c, because the point is to
let the inserted Result node compute a different tlist than its input
node does. Per example from Jeremy Drake.
drill down into subplan targetlists to print the referent expression for an
OUTER or INNER var in an upper plan node. Hence, make it do that always, and
banish the old hack of showing "?columnN?" when things got too complicated.
Along the way, fix an EXPLAIN bug I introduced by suppressing subqueries from
execution-time range tables: get_name_for_var_field() assumed it could look at
rte->subquery to find out the real type of a RECORD var. That doesn't work
anymore, but instead we can look at the input plan of the SubqueryScan plan
node.
and quals have varno OUTER, rather than zero, to indicate a reference to
an output of their lefttree subplan. This is consistent with the way
that every other upper-level node type does it, and allows some simplifications
in setrefs.c and EXPLAIN.
useless substructure for its RangeTblEntry nodes. (I chose to keep using the
same struct node type and just zero out the link fields for unneeded info,
rather than making a separate ExecRangeTblEntry type --- it seemed too
fragile to have two different rangetable representations.)
Along the way, put subplans into a list in the toplevel PlannedStmt node,
and have SubPlan nodes refer to them by list index instead of direct pointers.
Vadim wanted to do that years ago, but I never understood what he was on about
until now. It makes things a *whole* lot more robust, because we can stop
worrying about duplicate processing of subplans during expression tree
traversals. That's been a constant source of bugs, and it's finally gone.
There are some consequent simplifications yet to be made, like not using
a separate EState for subplans in the executor, but I'll tackle that later.
I refactored findsplitloc and checksplitloc so that the division of
labor is more clear IMO. I pushed all the space calculation inside the
loop to checksplitloc.
I also fixed the off by 4 in free space calculation caused by
PageGetFreeSpace subtracting sizeof(ItemIdData), even though it was
harmless, because it was distracting and I felt it might come back to
bite us in the future if we change the page layout or alignments.
There's now a new function PageGetExactFreeSpace that doesn't do the
subtraction.
findsplitloc now tries the "just the new item to right page" split as
well. If people don't like the refactoring, I can write a patch to just
add that.
Heikki Linnakangas
storing mostly-redundant Query trees in prepared statements, portals, etc.
To replace Query, a new node type called PlannedStmt is inserted by the
planner at the top of a completed plan tree; this carries just the fields of
Query that are still needed at runtime. The statement lists kept in portals
etc. now consist of intermixed PlannedStmt and bare utility-statement nodes
--- no Query. This incidentally allows us to remove some fields from Query
and Plan nodes that shouldn't have been there in the first place.
Still to do: simplify the execution-time range table; at the moment the
range table passed to the executor still contains Query trees for subqueries.
initdb forced due to change of stored rules.
this code was last gone over, there wasn't really any alternative to
globals because we didn't have the PlannerInfo struct being passed all
through the planner code. Now that we do, we can restructure things
to avoid non-reentrancy. I'm fooling with this because otherwise I'd
have had to add another global variable for the planned compact
range table list.
plan nodes, so that the executor does not need to get these items from
the range table at runtime. This will avoid needing to include these
fields in the compact range table I'm expecting to make the executor use.
portals using PORTAL_UTIL_SELECT strategy. This is currently significant only
for FETCH queries, which are supposed to include a count in the tag. Seems
it's been broken since 7.4, but nobody noticed before Knut Lehre.
equal functions are checked for raw parse trees as well as post-analysis
trees. This was never very important before, but the upcoming plan cache
control module will need to be able to do copyObject() on raw parse trees.
forces a particular relation nonnullable, then we can say that the OR does.
This is worth a little extra trouble since it may allow reduction of
outer joins to plain joins.
an opclass for a generic type such as ANYARRAY. The original coding failed
to check that PK and FK columns were of the same array type. Per discussion
with Tom Dunstan. Also, make the code a shade more readable by not trying
to economize on variables.
JOIN quals, just like WHERE quals, even if they reference every one of the
join's relations. Now that we can reorder outer and inner joins, it's
possible for such a qual to end up being assigned to an outer join plan node,
and we mustn't have it treated as a join qual rather than a filter qual for
the node. (If it were, the join could produce null-extended rows that it
shouldn't.) Per bug report from Pelle Johansson.
be checked at plan levels below the top; namely, we have to allow for Result
nodes inserted just above a nestloop inner indexscan. Should think about
using the general Param mechanism to pass down outer-relation variables, but
for the moment we need a back-patchable solution. Per report from Phil Frost.
to_timestamp():
- ID for day-of-week
- IDDD for day-of-year
This makes it possible to convert ISO week dates to and from text
fully represented in either week ('IYYY-IW-ID') or day-of-year
('IYYY-IDDD') format.
I have also added an 'isoyear' field for use with extract / date_part.
Brendan Jurd
o read global SSL configuration file
o add GUC "ssl_ciphers" to control allowed ciphers
o add libpq environment variable PGSSLKEY to control SSL hardware keys
Victor B. Wagner
considered when it is necessary to do so because of a join-order restriction
(that is, an outer-join or IN-subselect construct). The former coding was a
bit ad-hoc and inconsistent, and it missed some cases, as exposed by Mario
Weilguni's recent bug report. His specific problem was that an IN could be
turned into a "clauseless" join due to constant-propagation removing the IN's
joinclause, and if the IN's subselect involved more than one relation and
there was more than one such IN linking to the same upper relation, then the
only valid join orders involve "bushy" plans but we would fail to consider the
specific paths needed to get there. (See the example case added to the join
regression test.) On examining the code I wonder if there weren't some other
problem cases too; in particular it seems that GEQO was defending against a
different set of corner cases than the main planner was. There was also an
efficiency problem, in that when we did realize we needed a clauseless join
because of an IN, we'd consider clauseless joins against every other relation
whether this was sensible or not. It seems a better design is to use the
outer-join and in-clause lists as a backup heuristic, just as the rule of
joining only where there are joinclauses is a heuristic: we'll join two
relations if they have a usable joinclause *or* this might be necessary to
satisfy an outer-join or IN-clause join order restriction. I refactored the
code to have just one place considering this instead of three, and made sure
that it covered all the cases that any of them had been considering.
Backpatch as far as 8.1 (which has only the IN-clause form of the disease).
By rights 8.0 and 7.4 should have the bug too, but they accidentally fail
to fail, because the joininfo structure used in those releases preserves some
memory of there having once been a joinclause between the inner and outer
sides of an IN, and so it leads the code in the right direction anyway.
I'll be conservative and not touch them.