that used to do it in planner. That was an ancient kluge that was
never satisfactory; errors should be detected at parse time when possible.
But at the time we didn't have the support mechanism (expression_tree_walker
et al) to make it convenient to do in the parser.
simplify callers. It turns out the common case is that the caller
does want to recurse into sub-queries, so push support for that into
these subroutines.
join_references(), it's practical to consolidate all join_references()
processing into the set_plan_references traversal in setrefs.c. This
seems considerably cleaner than the old way where we did it for join
quals in createplan.c and for targetlists in setrefs.c.
containing a volatile function), rather than only on 'Var = Var' clauses
as before. This makes it practical to do flatten_join_alias_vars at the
start of planning, which in turn eliminates a bunch of klugery inside the
planner to deal with alias vars. As a free side effect, we now detect
implied equality of non-Var expressions; for example in
SELECT ... WHERE a.x = b.y and b.y = 42
we will deduce a.x = 42 and use that as a restriction qual on a. Also,
we can remove the restriction introduced 12/5/02 to prevent pullup of
subqueries whose targetlists contain sublinks.
Still TODO: make statistical estimation routines in selfuncs.c and costsize.c
smarter about expressions that are more complex than plain Vars. The need
for this is considerably greater now that we have to be able to estimate
the suitability of merge and hash join techniques on such expressions.
a qualification clause (and hence can get away with being sloppy about
distinguishing FALSE from UNKNOWN). We need to know this in subselect.c;
marking the subplans in setrefs.c is too late.
HAVING quals. Normally this is an insignificant effect --- but it
will not be insignificant when these clauses contain sub-selects.
The added costs cannot affect the planning of the query containing
them, but they might have an impact when the query is a sub-query
of a larger one.
costs for expression evaluation, not only per-tuple cost as before.
This extension is needed in order to deal realistically with hashed or
materialized sub-selects.
Simplify SubLink by storing just a List of operator OIDs, instead of
a list of incomplete OpExprs --- that was a bizarre and bulky choice,
with no redeeming social value since we have to build new OpExprs
anyway when forming the plan tree.
'NOT (x IN (subselect))', that is 'NOT (x = ANY (subselect))',
rather than 'x <> ALL (subselect)' as we formerly did. This
opens the door to optimizing NOT IN the same way as IN, whereas
there's no hope of optimizing the expression using <>. Also,
convert 'x <> ALL (subselect)' to the NOT(IN) style, so that
the optimization will be available when processing rules dumped
by older Postgres versions.
initdb forced due to small change in SubLink node representation.
match parent table. This used to work, but was broken in 7.3 by
rearrangement of code that handles targetlist sorting. Add a regression
test to catch future breakage.
computation: reduce the bucket number mod nbatch. This changes the
association between original bucket numbers and batches, but that
doesn't matter. Minor other cleanups in hashjoin code to help
centralize decisions.
allocation in best_inner_indexscan(). While at it, simplify GEQO's
interface to the main planner --- make_join_rel() offers exactly the
API it really wants, whereas calling make_rels_by_clause_joins() and
make_rels_by_clauseless_joins() required jumping through hoops.
Rewrite gimme_tree for clarity (sometimes iteration is much better than
recursion), and approximately halve GEQO's runtime by recognizing that
tours of the forms (a,b,c,d,...) and (b,a,c,d,...) are equivalent
because of symmetry in make_join_rel().
a per-query memory context created by CreateExecutorState --- and destroyed
by FreeExecutorState. This provides a final solution to the longstanding
problem of memory leaked by various ExecEndNode calls.
in the planned representation of a subplan at all any more, only SubPlan.
This means subselect.c doesn't scribble on its input anymore, which seems
like a good thing; and there are no longer three different possible
interpretations of a SubLink. Simplify node naming and improve comments
in primnodes.h. No change to stored rules, though.
execution state trees, and ExecEvalExpr takes an expression state tree
not an expression plan tree. The plan tree is now read-only as far as
the executor is concerned. Next step is to begin actually exploiting
this property.
make VALUE a non-reserved word again, use less invasive method of passing
ConstraintTestValue into transformExpr, fix problems with nested constraint
testing, do correct thing with NULL result from a constraint expression,
remove memory leak. Domain checks still need much more work if we are going
to allow ALTER DOMAIN, however.
so that all executable expression nodes inherit from a common supertype
Expr. This is somewhat of an exercise in code purity rather than any
real functional advance, but getting rid of the extra Oper or Func node
formerly used in each operator or function call should provide at least
a little space and speed improvement.
initdb forced by changes in stored-rules representation.
problems that occur if sublink is referenced via a join alias variable.
Perhaps this can be improved later, but a simple and safe fix is needed
for 7.3.1.
to plan nodes, not vice-versa. All executor state nodes now inherit from
struct PlanState. Copying of plan trees has been simplified by not
storing a list of SubPlans in Plan nodes (eliminating duplicate links).
The executor still needs such a list, but it can build it during
ExecutorStart since it has to scan the plan tree anyway.
No initdb forced since no stored-on-disk structures changed, but you
will need a full recompile because of node-numbering changes.
('SELECT expression') inline, like macros, during the constant-folding
phase of planning. The actual expansion is not difficult, but checking
that we're not changing the semantics of the call turns out to be more
subtle than one might think; in particular must pay attention to
permissions issues, strictness, and volatility.
logic, dissuade planner from thinking that 'x IS DISTINCT FROM 42' may
be optimized into 'x = 42' (!!), cause dependency on = operator to be
recorded correctly, minor other improvements.
instead of only one. This should speed up planning (only one hash path
to consider for a given pair of relations) as well as allow more effective
hashing, when there are multiple hashable joinclauses.
operations: make sure we use operators that are compatible, as determined
by a mergejoin link in pg_operator. Also, add code to planner to ensure
we don't try to use hashed grouping when the grouping operators aren't
marked hashable.
sublink results and COPY's domain constraint checking. A Const that
isn't really constant is just a Bad Idea(tm). Remove hacks in
parse_coerce and other places that were needed because of the former
klugery.
joinclauses is determined accurately for each join. Formerly, the code only
considered joinclauses that used all of the rels from the outer side of the
join; thus for example
FROM (a CROSS JOIN b) JOIN c ON (c.f1 = a.x AND c.f2 = b.y)
could not exploit a two-column index on c(f1,f2), since neither of the
qual clauses would be in the joininfo list it looked in. The new code does
this correctly, and also is able to eliminate redundant clauses, thus fixing
the problem noted 24-Oct-02 by Hans-Jürgen Schönig.
parameter to allow it to be forced off for comparison purposes.
Add ORDER BY clauses to a bunch of regression test queries that will
otherwise produce randomly-ordered output in the new regime.
of groups produced by GROUP BY. This improves the accuracy of planning
estimates for grouped subselects, and is needed to check whether a
hashed aggregation plan risks memory overflow.
node now does its own grouping of the input rows, and has no need for a
preceding GROUP node in the plan pipeline. This allows elimination of
the misnamed tuplePerGroup option for GROUP, and actually saves more code
in nodeGroup.c than it costs in nodeAgg.c, as well as being presumably
faster. Restructure the API of query_planner so that we do not commit to
using a sorted or unsorted plan in query_planner; instead grouping_planner
makes the decision. (Right now it isn't any smarter than query_planner
was, but that will change as soon as it has the option to select a hash-
based aggregation step.) Despite all the hackery, no initdb needed since
only in-memory node types changed.
Ray Ontko 28-June-02. Also, fix prefix_selectivity for NAME lefthand
variables (it was bogusly assuming binary compatibility), and adjust
make_greater_string() to not call pg_mbcliplen() with invalid multibyte
data (this last per bug report that I can't find at the moment, but it
was in July '02).
to be flexible about assignment casts without introducing ambiguity in
operator/function resolution. Introduce a well-defined promotion hierarchy
for numeric datatypes (int2->int4->int8->numeric->float4->float8).
Change make_const to initially label numeric literals as int4, int8, or
numeric (never float8 anymore).
Explicitly mark Func and RelabelType nodes to indicate whether they came
from a function call, explicit cast, or implicit cast; use this to do
reverse-listing more accurately and without so many heuristics.
Explicit casts to char, varchar, bit, varbit will truncate or pad without
raising an error (the pre-7.2 behavior), while assigning to a column without
any explicit cast will still raise an error for wrong-length data like 7.3.
This more nearly follows the SQL spec than 7.2 behavior (we should be
reporting a 'completion condition' in the explicit-cast cases, but we have
no mechanism for that, so just do silent truncation).
Fix some problems with enforcement of typmod for array elements;
it didn't work at all in 'UPDATE ... SET array[n] = foo', for example.
Provide a generalized array_length_coerce() function to replace the
specialized per-array-type functions that used to be needed (and were
missing for NUMERIC as well as all the datetime types).
Add missing conversions int8<->float4, text<->numeric, oid<->int8.
initdb forced.
that are explicitly JOINed are not considered dependencies unless they
are actually used in the query: mere presence in the joinaliasvars
list of a JOIN RTE doesn't count as being used. The patch touches
a number of files because I needed to generalize the API of
query_tree_walker to support an additional flag bit, but the changes
are otherwise quite small.