If the toplevel scan/join target list is parallel-safe, postpone
generating Gather (or Gather Merge) paths until after the toplevel has
been adjusted to return it. This (correctly) makes queries with
expensive functions in the target list more likely to choose a
parallel plan, since the cost of the plan now reflects the fact that
the evaluation will happen in the workers rather than the leader.
The original complaint about this problem was from Jeff Janes.
If the toplevel scan/join relation is partitioned, recursively apply
the changes to all partitions. This sometimes allows us to get rid of
Result nodes, because Append is not projection-capable but its
children may be. It also cleans up what appears to be incorrect SRF
handling from commit e2f1eb0ee30d144628ab523432320f174a2c8966: the old
code had no knowledge of SRFs for child scan/join rels.
Because we now use create_projection_path() in some cases where we
formerly used apply_projection_to_path(), this changes the ordering
of columns in some queries generated by postgres_fdw. Update
regression outputs accordingly.
Patch by me, reviewed by Amit Kapila and by Ashutosh Bapat. Other
fixes for this problem (substantially different from this version)
were reviewed by Dilip Kumar, Amit Khandekar, and Marina Polyakova.
Discussion: http://postgr.es/m/CAMkU=1ycXNipvhWuweUVpKuyu6SpNjF=yHWu4c4US5JgVGxtZQ@mail.gmail.com
Don't call generate_gather_paths for the topmost scan/join relation
when it is initially populated with paths. Instead, do the work in
grouping_planner. By itself, this gains nothing; in fact it loses
slightly because we end up calling set_cheapest() for the topmost
scan/join rel twice rather than once. However, it paves the way for
a future commit which will postpone generate_gather_paths for the
topmost scan/join relation even further, allowing more accurate
costing of parallel paths.
Amit Kapila and Robert Haas. Earlier versions of this patch (which
different substantially) were reviewed by Dilip Kumar, Amit
Khandekar, Marina Polyakova, and Ashutosh Bapat.
This provides infrastructure to allow JITed code to inline code
implemented in C. This e.g. can be postgres internal functions or
extension code.
This already speeds up long running queries, by allowing the LLVM
optimizer to optimize across function boundaries. The optimization
potential currently doesn't reach its full potential because LLVM
cannot optimize the FunctionCallInfoData argument fully away, because
it's allocated on the heap rather than the stack. Fixing that is
beyond what's realistic for v11.
To be able to do that, use CLANG to convert C code to LLVM bitcode,
and have LLVM build a summary for it. That bitcode can then be used to
to inline functions at runtime. For that the bitcode needs to be
installed. Postgres bitcode goes into $pkglibdir/bitcode/postgres,
extensions go into equivalent directories. PGXS has been modified so
that happens automatically if postgres has been compiled with LLVM
support.
Currently this isn't the fastest inline implementation, modules are
reloaded from disk during inlining. That's to work around an apparent
LLVM bug, triggering an apparently spurious error in LLVM assertion
enabled builds. Once that is resolved we can remove the superfluous
read from disk.
Docs will follow in a later commit containing docs for the whole JIT
feature.
Author: Andres Freund
Discussion: https://postgr.es/m/20170901064131.tazjxwus3k2w3ybh@alap3.anarazel.de
Performing JIT compilation for deforming gains performance benefits
over unJITed deforming from compile-time knowledge of the tuple
descriptor. Fixed column widths, NOT NULLness, etc can be taken
advantage of.
Right now the JITed deforming is only used when deforming tuples as
part of expression evaluation (and obviously only if the descriptor is
known). It's likely to be beneficial in other cases, too.
By default tuple deforming is JITed whenever an expression is JIT
compiled. There's a separate boolean GUC controlling it, but that's
expected to be primarily useful for development and benchmarking.
Docs will follow in a later commit containing docs for the whole JIT
feature.
Author: Andres Freund
Discussion: https://postgr.es/m/20170901064131.tazjxwus3k2w3ybh@alap3.anarazel.de
In addition to the interpretation of expressions (which back
evaluation of WHERE clauses, target list projection, aggregates
transition values etc) support compiling expressions to native code,
using the infrastructure added in earlier commits.
To avoid duplicating a lot of code, only support emitting code for
cases that are likely to be performance critical. For expression steps
that aren't deemed that, use the existing interpreter.
The generated code isn't great - some architectural changes are
required to address that. But this already yields a significant
speedup for some analytics queries, particularly with WHERE clauses
filtering a lot, or computing multiple aggregates.
Author: Andres Freund
Tested-By: Thomas Munro
Discussion: https://postgr.es/m/20170901064131.tazjxwus3k2w3ybh@alap3.anarazel.de
Disable JITing for VALUES() nodes.
VALUES() nodes are only ever executed once. This is primarily helpful
for debugging, when forcing JITing even for cheap queries.
Author: Andres Freund
Discussion: https://postgr.es/m/20170901064131.tazjxwus3k2w3ybh@alap3.anarazel.de
This adds simple cost based plan time decision about whether JIT
should be performed. jit_above_cost, jit_optimize_above_cost are
compared with the total cost of a plan, and if the cost is above them
JIT is performed / optimization is performed respectively.
For that PlannedStmt and EState have a jitFlags (es_jit_flags) field
that stores information about what JIT operations should be performed.
EState now also has a new es_jit field, which can store a
JitContext. When there are no errors the context is released in
standard_ExecutorEnd().
It is likely that the default values for jit_[optimize_]above_cost
will need to be adapted further, but in my test these values seem to
work reasonably.
Author: Andres Freund, with feedback by Peter Eisentraut
Discussion: https://postgr.es/m/20170901064131.tazjxwus3k2w3ybh@alap3.anarazel.de
If the partition keys of input relation are part of the GROUP BY
clause, all the rows belonging to a given group come from a single
partition. This allows aggregation/grouping over a partitioned
relation to be broken down * into aggregation/grouping on each
partition. This should be no worse, and often better, than the normal
approach.
If the GROUP BY clause does not contain all the partition keys, we can
still perform partial aggregation for each partition and then finalize
aggregation after appending the partial results. This is less certain
to be a win, but it's still useful.
Jeevan Chalke, Ashutosh Bapat, Robert Haas. The larger patch series
of which this patch is a part was also reviewed and tested by Antonin
Houska, Rajkumar Raghuwanshi, David Rowley, Dilip Kumar, Konstantin
Knizhnik, Pascal Legrand, and Rafia Sabih.
Discussion: http://postgr.es/m/CAM2+6=V64_xhstVHie0Rz=KPEQnLJMZt_e314P0jaT_oJ9MR8A@mail.gmail.com
If there were multiple grouping sets, none of them empty, all of which
were unsortable, then an oversight in consider_groupingsets_paths led
to a null pointer dereference. Fix, and add a regression test for this
case.
Per report from Dang Minh Huong, though I didn't use their patch.
Backpatch to 10.x where hashed grouping sets were added.
Since commit 4f15e5d09de276fb77326be5567dd9796008ca2e made grouped_rel
set reltarget, a variety of other functions can just get it from
grouped_rel instead of having to pass it around explicitly. Simplify
accordingly.
Patch by me, reviewed by Ashutosh Bapat.
Discussion: http://postgr.es/m/CA+TgmoZ+ZJTVad-=vEq393N99KTooxv9k7M+z73qnTAqkb49BQ@mail.gmail.com
This avoids unnecessarily creating a RelOptInfo for which we have no
actual need. This idea is from Ashutosh Bapat, who wrote a very
different patch to accomplish a similar goal. It will be more
important if and when we get partition-wise aggregate, since then
there could be many partially grouped relations all of which could
potentially be unnecessary. In passing, this sets the grouping
relation's reltarget, which wasn't done previously but makes things
simpler for this refactoring.
Along the way, adjust things so that add_paths_to_partial_grouping_rel,
now renamed create_partial_grouping_paths, does not perform the Gather
or Gather Merge steps to generate non-partial paths from partial
paths; have the caller do it instead. This is again for the
convenience of partition-wise aggregate, which wants to inject
additional partial paths are created and before we decide which ones
to Gather/Gather Merge. This might seem like a separate change, but
it's actually pretty closely entangled; I couldn't really see much
value in separating it and having to change some things twice.
Patch by me, reviewed by Ashutosh Bapat.
Discussion: http://postgr.es/m/CA+TgmoZ+ZJTVad-=vEq393N99KTooxv9k7M+z73qnTAqkb49BQ@mail.gmail.com
There's no functional change here, or at least I hope there isn't,
just code rearrangement. The rearrangement is motivated by
partition-wise aggregate, which doesn't need to consider the
degenerate case but wants to reuse the logic for the ordinary case.
Based loosely on a patch from Ashutosh Bapat and Jeevan Chalke, but I
whacked it around pretty heavily. The larger patch series of which
this patch is a part was also reviewed and tested by Antonin Houska,
Rajkumar Raghuwanshi, David Rowley, Dilip Kumar, Konstantin Knizhnik,
Pascal Legrand, Rafia Sabih, and me.
Discussion: http://postgr.es/m/CAFjFpRewpqCmVkwvq6qrRjmbMDpN0CZvRRzjd8UvncczA3Oz1Q@mail.gmail.com
get_number_of_groups() and make_partial_grouping_target() currently
fish information directly out of the PlannerInfo; in the former case,
the target list, and in the latter case, the HAVING qual. This works
fine if there's only one grouping relation, but if the pending patch
for partition-wise aggregate gets committed, we'll have multiple
grouping relations and must therefore use appropriately translated
versions of these values for each one. To make that simpler, pass the
values to be used as arguments.
Jeevan Chalke. The larger patch series of which this patch is a part
was also reviewed and tested by Antonin Houska, Rajkumar Raghuwanshi,
David Rowley, Dilip Kumar, Konstantin Knizhnik, Pascal Legrand, Rafia
Sabih, and me.
Discussion: http://postgr.es/m/CAM2+6=UqFnFUypOvLdm5TgC+2M=-E0Q7_LOh0VDFFzmk2BBPzQ@mail.gmail.com
Discussion: http://postgr.es/m/CAM2+6=W+L=C4yBqMrgrfTfNtbtmr4T53-hZhwbA2kvbZ9VMrrw@mail.gmail.com
In b5635948ab1, a couple of function header comments weren't changed, or
weren't changed correctly, to reflect the arguments being passed into
the functions. Specifically, get_number_of_groups() had the wrong
argument name in the commit and create_grouping_paths() wasn't
updated even though the arguments had been changed.
The issue with create_grouping_paths() was noticed by Ashutosh Bapat,
while I discovered the issue with get_number_of_groups() by looking to
see if there were any similar issues from that commit.
Discussion: https://postgr.es/m/CAFjFpRcbp4702jcp387PExt3fNCt62QJN8++DQGwBhsW6wRHWA@mail.gmail.com
A simple UNION ALL gets flattened into an appendrel of subquery
RTEs, but up until now it's been impossible for the appendrel to use
the partial paths for the subqueries, so we can implement the
appendrel as a Parallel Append but only one with non-partial paths
as children.
There are three separate obstacles to removing that limitation.
First, when planning a subquery, propagate any partial paths to the
final_rel so that they are potentially visible to outer query levels
(but not if they have initPlans attached, because that wouldn't be
safe). Second, after planning a subquery, propagate any partial paths
for the final_rel to the subquery RTE in the outer query level in the
same way we do for non-partial paths. Third, teach finalize_plan() to
account for the possibility that the fake parameter we use for rescan
signalling when the plan contains a Gather (Merge) node may be
propagated from an outer query level.
Patch by me, reviewed and tested by Amit Khandekar, Rajkumar
Raghuwanshi, and Ashutosh Bapat. Test cases based on examples by
Rajkumar Raghuwanshi.
Discussion: http://postgr.es/m/CA+Tgmoa6L9A1nNCk3aTDVZLZ4KkHDn1+tm7mFyFvP+uQPS7bAg@mail.gmail.com
One of the things canonicalize_qual() does is to remove constant-NULL
subexpressions of top-level AND/OR clauses. It does that on the assumption
that what it's given is a top-level WHERE clause, so that NULL can be
treated like FALSE. Although this is documented down inside a subroutine
of canonicalize_qual(), it wasn't mentioned in the documentation of that
function itself, and some callers hadn't gotten that memo.
Notably, commit d007a9505 caused get_relation_constraints() to apply
canonicalize_qual() to CHECK constraints. That allowed constraint
exclusion to misoptimize situations in which a CHECK constraint had a
provably-NULL subclause, as seen in the regression test case added here,
in which a child table that should be scanned is not. (Although this
thinko is ancient, the test case doesn't fail before 9.2, for reasons
I've not bothered to track down in detail. There may be related cases
that do fail before that.)
More recently, commit f0e44751d added an independent bug by applying
canonicalize_qual() to index expressions, which is even sillier since
those might not even be boolean. If they are, though, I think this
could lead to making incorrect index entries for affected index
expressions in v10. I haven't attempted to prove that though.
To fix, add an "is_check" parameter to canonicalize_qual() to specify
whether it should assume WHERE or CHECK semantics, and make it perform
NULL-elimination accordingly. Adjust the callers to apply the right
semantics, or remove the call entirely in cases where it's not known
that the expression has one or the other semantics. I also removed
the call in some cases involving partition expressions, where it should
be a no-op because such expressions should be canonical already ...
and was a no-op, independently of whether it could in principle have
done something, because it was being handed the qual in implicit-AND
format which isn't what it expects. In HEAD, add an Assert to catch
that type of mistake in future.
This represents an API break for external callers of canonicalize_qual().
While that's intentional in HEAD to make such callers think about which
case applies to them, it seems like something we probably wouldn't be
thanked for in released branches. Hence, in released branches, the
extra parameter is added to a new function canonicalize_qual_ext(),
and canonicalize_qual() is a wrapper that retains its old behavior.
Patch by me with suggestions from Dean Rasheed. Back-patch to all
supported branches.
Discussion: https://postgr.es/m/24475.1520635069@sss.pgh.pa.us
Since commit 69f4b9c85f168ae006929eec44fc44d569e846b9, the existing
code was no longer assessing the parallel-safety of the real tlist
for each upper rel, but rather the first of possibly several tlists
created by split_pathtarget_at_srfs(). Repair.
Even though this is clearly wrong, it's not clear that it has any
user-visible consequences at the moment, so no back-patch for now. If
we discover later that it does have user-visible consequences, we
might need to back-patch this to v10.
Patch by me, per a report from Rajkumar Raghuwanshi.
Discussion: http://postgr.es/m/CA+Tgmoaob_Strkg4Dcx=VyxnyXtrmkV=ofj=pX7gH9hSre-g0Q@mail.gmail.com
Commit 3bf05e096b9f8375e640c5d7996aa57efd7f240c sometimes uses the
cheapest_partial_path variable in this function to mean the cheapest
one from the input rel and at other times the cheapest one from the
partially grouped rel, but it never resets it, so we can end up with
bad plans, leading to "ERROR: Aggref found in non-Agg plan node".
Jeevan Chalke, per a report from Andreas Joseph Krogh and a separate
off-list report from Rajkumar Raghuwanshi
Discussion: http://postgr.es/m/CAM2+6=X9kxQoL2ZqZ00E6asBt9z+rfyWbOmhXJ0+8fPAyMZ9Jg@mail.gmail.com
Up until now, we've abused grouped_rel->partial_pathlist as a place to
store partial paths that have been partially aggregate, but that's
really not correct, because a partial path for a relation is supposed
to be one which produces the correct results with the addition of only
a Gather or Gather Merge node, and these paths also require a Finalize
Aggregate step. Instead, add a new partially_group_rel which can hold
either partial paths (which need to be gathered and then have
aggregation finalized) or non-partial paths (which only need to have
aggregation finalized). This allows us to reuse generate_gather_paths
for partially_grouped_rel instead of writing new code, so that this
patch actually basically no net new code while making things cleaner,
simplifying things for pending patches for partition-wise aggregate.
Robert Haas and Jeevan Chalke. The larger patch series of which this
patch is a part was also reviewed and tested by Antonin Houska,
Rajkumar Raghuwanshi, David Rowley, Dilip Kumar, Konstantin Knizhnik,
Pascal Legrand, Rafia Sabih, and me.
Discussion: http://postgr.es/m/CA+TgmobrzFYS3+U8a_BCy3-hOvh5UyJbC18rEcYehxhpw5=ETA@mail.gmail.com
Discussion: http://postgr.es/m/CA+TgmoZyQEjdBNuoG9-wC5GQ5GrO4544Myo13dVptvx+uLg9uQ@mail.gmail.com
The previous code failed to realize that this setting effectively
disables parallelism, and would crash if it decided to attempt
parallelism anyway. Instead, treat it as a disabling condition.
Kyotaro Horiguchi, who also reported the issue. Reviewed by Michael
Paquier and Peter Geoghegan.
Discussion: http://postgr.es/m/20180209.170635.256350357.horiguchi.kyotaro@lab.ntt.co.jp
To make this work, tuplesort.c and logtape.c must also support
parallelism, so this patch adds that infrastructure and then applies
it to the particular case of parallel btree index builds. Testing
to date shows that this can often be 2-3x faster than a serial
index build.
The model for deciding how many workers to use is fairly primitive
at present, but it's better than not having the feature. We can
refine it as we get more experience.
Peter Geoghegan with some help from Rushabh Lathia. While Heikki
Linnakangas is not an author of this patch, he wrote other patches
without which this feature would not have been possible, and
therefore the release notes should possibly credit him as an author
of this feature. Reviewed by Claudio Freire, Heikki Linnakangas,
Thomas Munro, Tels, Amit Kapila, me.
Discussion: http://postgr.es/m/CAM3SWZQKM=Pzc=CAHzRixKjp2eO5Q0Jg1SoFQqeXFQ647JiwqQ@mail.gmail.com
Discussion: http://postgr.es/m/CAH2-Wz=AxWqDoVvGU7dq856S4r6sJAj6DBn7VMtigkB33N5eyg@mail.gmail.com
This is preparatory refactoring to prepare the way for partition-wise
aggregate, which will reuse the new subroutines for child grouping
rels. It also does not seem like a bad idea on general principle,
as the function was getting pretty long.
Jeevan Chalke. The larger patch series of which this patch is a part
was reviewed and tested by Antonin Houska, Rajkumar Raghuwanshi,
Ashutosh Bapat, David Rowley, Dilip Kumar, Konstantin Knizhnik,
Pascal Legrand, and me. Some cosmetic changes by me.
Discussion: http://postgr.es/m/CAM2+6=V64_xhstVHie0Rz=KPEQnLJMZt_e314P0jaT_oJ9MR8A@mail.gmail.com
When an UPDATE causes a row to no longer match the partition
constraint, try to move it to a different partition where it does
match the partition constraint. In essence, the UPDATE is split into
a DELETE from the old partition and an INSERT into the new one. This
can lead to surprising behavior in concurrency scenarios because
EvalPlanQual rechecks won't work as they normally did; the known
problems are documented. (There is a pending patch to improve the
situation further, but it needs more review.)
Amit Khandekar, reviewed and tested by Amit Langote, David Rowley,
Rajkumar Raghuwanshi, Dilip Kumar, Amul Sul, Thomas Munro, Álvaro
Herrera, Amit Kapila, and me. A few final revisions by me.
Discussion: http://postgr.es/m/CAJ3gD9do9o2ccQ7j7+tSgiE1REY65XRiMb=yJO3u3QhyP8EEPQ@mail.gmail.com
Commit dc02c7bca4dccf7de278cdc6b3325a829e75b252 changed this call
to create_sort_path() to take -1 rather than limit_tuples because,
at that time, there was no way for a Sort beneath a Gather Merge
to become a top-N sort.
Later, commit 3452dc5240da43e833118484e1e9b4894d04431c provided
a way for a Sort beneath a Gather Merge to become a top-N sort,
but failed to revert the previous commit in the process. Do that.
Report and analysis by Jeff Janes; patch by Thomas Munro; review by
Amit Kapila and by me.
Discussion: http://postgr.es/m/CAEepm=1BWtC34vUroA0Uqjw02MaqdUrW+d6WD85_k8SLyPiKHQ@mail.gmail.com
When we create an Append node, we can spread out the workers over the
subplans instead of piling on to each subplan one at a time, which
should typically be a bit more efficient, both because the startup
cost of any plan executed entirely by one worker is paid only once and
also because of reduced contention. We can also construct Append
plans using a mix of partial and non-partial subplans, which may allow
for parallelism in places that otherwise couldn't support it.
Unfortunately, this patch doesn't handle the important case of
parallelizing UNION ALL by running each branch in a separate worker;
the executor infrastructure is added here, but more planner work is
needed.
Amit Khandekar, Robert Haas, Amul Sul, reviewed and tested by
Ashutosh Bapat, Amit Langote, Rafia Sabih, Amit Kapila, and
Rajkumar Raghuwanshi.
Discussion: http://postgr.es/m/CAJ3gD9dy0K_E8r727heqXoBmWZ83HwLFwdcaSSmBQ1+S+vRuUQ@mail.gmail.com
rewriteTargetListUD's processing is dependent on the relkind of the query's
target table. That was fine at the time it was made to act that way, even
for queries on inheritance trees, because all tables in an inheritance tree
would necessarily be plain tables. However, the 9.5 feature addition
allowing some members of an inheritance tree to be foreign tables broke the
assumption that rewriteTargetListUD's output tlist could be applied to all
child tables with nothing more than column-number mapping. This led to
visible failures if foreign child tables had row-level triggers, and would
also break in cases where child tables belonged to FDWs that used methods
other than CTID for row identification.
To fix, delay running rewriteTargetListUD until after the planner has
expanded inheritance, so that it is applied separately to the (already
mapped) tlist for each child table. We can conveniently call it from
preprocess_targetlist. Refactor associated code slightly to avoid the
need to heap_open the target relation multiple times during
preprocess_targetlist. (The APIs remain a bit ugly, particularly around
the point of which steps scribble on parse->targetList and which don't.
But avoiding such scribbling would require a change in FDW callback APIs,
which is more pain than it's worth.)
Also fix ExecModifyTable to ensure that "tupleid" is reset to NULL when
we transition from rows providing a CTID to rows that don't. (That's
really an independent bug, but it manifests in much the same cases.)
Add a regression test checking one manifestation of this problem, which
was that row-level triggers on a foreign child table did not work right.
Back-patch to 9.5 where the problem was introduced.
Etsuro Fujita, reviewed by Ildus Kurbangaliev and Ashutosh Bapat
Discussion: https://postgr.es/m/20170514150525.0346ba72@postgrespro.ru
If a PARAM_EXEC parameter is used below a Gather (Merge) but the InitPlan
that computes it is attached to or above the Gather (Merge), force the
value to be computed before starting parallelism and pass it down to all
workers. This allows us to use parallelism in cases where it previously
would have had to be rejected as unsafe. We do - in this case - lose the
optimization that the value is only computed if it's actually used. An
alternative strategy would be to have the first worker that needs the value
compute it, but one downside of that approach is that we'd then need to
select a parallel-safe path to compute the parameter value; it couldn't for
example contain a Gather (Merge) node. At some point in the future, we
might want to consider both approaches.
Independent of that consideration, there is a great deal more work that
could be done to make more kinds of PARAM_EXEC parameters parallel-safe.
This infrastructure could be used to allow a Gather (Merge) on the inner
side of a nested loop (although that's not a very appealing plan) and
cases where the InitPlan is attached below the Gather (Merge) could be
addressed as well using various techniques. But this is a good start.
Amit Kapila, reviewed and revised by me. Reviewing and testing from
Kuntal Ghosh, Haribabu Kommi, and Tushar Ahuja.
Discussion: http://postgr.es/m/CAA4eK1LV0Y1AUV4cUCdC+sYOx0Z0-8NAJ2Pd9=UKsbQ5Sr7+JQ@mail.gmail.com
Up until now, we only tracked the number of parameters, which was
sufficient to allocate an array of Datums of the appropriate size,
but not sufficient to, for example, know how to serialize a Datum
stored in one of those slots. An upcoming patch wants to do that,
so add this tracking to make it possible.
Patch by me, reviewed by Tom Lane and Amit Kapila.
Discussion: http://postgr.es/m/CA+TgmoYqpxDKn8koHdW8BEKk8FMUL0=e8m2Qe=M+r0UBjr3tuQ@mail.gmail.com
The lower case spellings are C and C++ standard and are used in most
parts of the PostgreSQL sources. The upper case spellings are only used
in some files/modules. So standardize on the standard spellings.
The APIs for ICU, Perl, and Windows define their own TRUE and FALSE, so
those are left as is when using those APIs.
In code comments, we use the lower-case spelling for the C concepts and
keep the upper-case spelling for the SQL concepts.
Reviewed-by: Michael Paquier <michael.paquier@gmail.com>
Although joinaliasvars lists coming out of the parser are quite simple,
those lists can contain arbitrarily complex expressions after subquery
pullup. We do not perform expression preprocessing on them, meaning that
expressions in those lists will not meet the expectations of later phases
of the planner (for example, that they do not contain SubLinks). This had
been thought pretty harmless, since we don't intentionally touch those
lists in later phases --- but Andreas Seltenreich found a case in which
adjust_appendrel_attrs() could recurse into a joinaliasvars list and then
die on its assertion that it never sees a SubLink. We considered a couple
of localized fixes to prevent that specific case from looking at the
joinaliasvars lists, but really this seems like a generic hazard for all
expression processing in the planner. Therefore, probably the best answer
is to delete the joinaliasvars lists from the parsetree at the end of
expression preprocessing, so that there are no reachable expressions that
haven't been through preprocessing.
The case Andreas found seems to be harmless in non-Assert builds, and so
far there are no field reports suggesting that there are user-visible
effects in other cases. I considered back-patching this anyway, but
it turns out that Andreas' test doesn't fail at all in 9.4-9.6, because
in those versions adjust_appendrel_attrs contains code (added in commit
842faa714 and removed again in commit 215b43cdc) to process SubLinks
rather than complain about them. Barring discovery of another path by
which unprocessed joinaliasvars lists can cause trouble, the most
prudent compromise seems to be to patch this into v10 but not further.
Patch by me, with thanks to Amit Langote for initial investigation
and review.
Discussion: https://postgr.es/m/87r2tvt9f1.fsf@ansel.ydns.eu
Instead of joining two partitioned tables in their entirety we can, if
it is an equi-join on the partition keys, join the matching partitions
individually. This involves teaching the planner about "other join"
rels, which are related to regular join rels in the same way that
other member rels are related to baserels. This can use significantly
more CPU time and memory than regular join planning, because there may
now be a set of "other" rels not only for every base relation but also
for every join relation. In most practical cases, this probably
shouldn't be a problem, because (1) it's probably unusual to join many
tables each with many partitions using the partition keys for all
joins and (2) if you do that scenario then you probably have a big
enough machine to handle the increased memory cost of planning and (3)
the resulting plan is highly likely to be better, so what you spend in
planning you'll make up on the execution side. All the same, for now,
turn this feature off by default.
Currently, we can only perform joins between two tables whose
partitioning schemes are absolutely identical. It would be nice to
cope with other scenarios, such as extra partitions on one side or the
other with no match on the other side, but that will have to wait for
a future patch.
Ashutosh Bapat, reviewed and tested by Rajkumar Raghuwanshi, Amit
Langote, Rafia Sabih, Thomas Munro, Dilip Kumar, Antonin Houska, Amit
Khandekar, and by me. A few final adjustments by me.
Discussion: http://postgr.es/m/CAFjFpRfQ8GrQvzp3jA2wnLqrHmaXna-urjm_UY9BqXj=EaDTSA@mail.gmail.com
Discussion: http://postgr.es/m/CAFjFpRcitjfrULr5jfuKWRPsGUX0LQ0k8-yG0Qw2+1LBGNpMdw@mail.gmail.com
Haribabu Kommi, reviewed by Dilip Kumar and Rafia Sabih. Various
cosmetic changes by me to explain why this appears to be safe but
allowing inserts in parallel mode in general wouldn't be. Also, I
removed the REFRESH MATERIALIZED VIEW case from Haribabu's patch,
since I'm not convinced that case is OK, and hacked on the
documentation somewhat.
Discussion: http://postgr.es/m/CAJrrPGdo5bak6qnPWe8Kpi8g_jfQEs-G4SYmG9y+OFaw2-dPvA@mail.gmail.com
Flattening the partitioning hierarchy at this stage makes various
desirable optimizations difficult. The original use case for this
patch was partition-wise join, which wants to match up the partitions
in one partitioning hierarchy with those in another such hierarchy.
However, it now seems that it will also be useful in making partition
pruning work using the PartitionDesc rather than constraint exclusion,
because with a flattened expansion, we have no easy way to figure out
which PartitionDescs apply to which leaf tables in a multi-level
partition hierarchy.
As it turns out, we end up creating both rte->inh and !rte->inh RTEs
for each intermediate partitioned table, just as we previously did for
the root table. This seems unnecessary since the partitioned tables
have no storage and are not scanned. We might want to go back and
rejigger things so that no partitioned tables (including the parent)
need !rte->inh RTEs, but that seems to require some adjustments not
related to the core purpose of this patch.
Ashutosh Bapat, reviewed by me and by Amit Langote. Some final
adjustments by me.
Discussion: http://postgr.es/m/CAFjFpRd=1venqLL7oGU=C1dEkuvk2DJgvF+7uKbnPHaum1mvHQ@mail.gmail.com
The ExecReScan machinery contains various optimizations for postponing
or skipping rescans of plan subtrees; for example a HashAgg node may
conclude that it can re-use the table it built before, instead of
re-reading its input subtree. But that is wrong if the input contains
a parallel-aware table scan node, since the portion of the table scanned
by the leader process is likely to vary from one rescan to the next.
This explains the timing-dependent buildfarm failures we saw after
commit a2b70c89c.
The established mechanism for showing that a plan node's output is
potentially variable is to mark it as depending on some runtime Param.
Hence, to fix this, invent a dummy Param (one that has a PARAM_EXEC
parameter number, but carries no actual value) associated with each Gather
or GatherMerge node, mark parallel-aware nodes below that node as dependent
on that Param, and arrange for ExecReScanGather[Merge] to flag that Param
as changed whenever the Gather[Merge] node is rescanned.
This solution breaks an undocumented assumption made by the parallel
executor logic, namely that all rescans of nodes below a Gather[Merge]
will happen synchronously during the ReScan of the top node itself.
But that's fundamentally contrary to the design of the ExecReScan code,
and so was doomed to fail someday anyway (even if you want to argue
that the bug being fixed here wasn't a failure of that assumption).
A follow-on patch will address that issue. In the meantime, the worst
that's expected to happen is that given very bad timing luck, the leader
might have to do all the work during a rescan, because workers think
they have nothing to do, if they are able to start up before the eventual
ReScan of the leader's parallel-aware table scan node has reset the
shared scan state.
Although this problem exists in 9.6, there does not seem to be any way
for it to manifest there. Without GatherMerge, it seems that a plan tree
that has a rescan-short-circuiting node below Gather will always also
have one above it that will short-circuit in the same cases, preventing
the Gather from being rescanned. Hence we won't take the risk of
back-patching this change into 9.6. But v10 needs it.
Discussion: https://postgr.es/m/CAA4eK1JkByysFJNh9M349u_nNjqETuEnY_y1VUc_kJiU0bxtaQ@mail.gmail.com
Currently, child relations are always base relations, so when we
translate parent relids to child relids, we only need to translate
a singler relid. However, the proposed partition-wise join feature
will create child joins, which will mean we need to translate a set
of parent relids to the corresponding child relids. This is
preliminary refactoring to make that possible.
Ashutosh Bapat. Review and testing of the larger patch set of which
this is a part by Amit Langote, Rajkumar Raghuwanshi, Rafia Sabih,
Thomas Munro, Dilip Kumar, and me. Some adjustments, mostly
cosmetic, by me.
Discussion: http://postgr.es/m/CA+TgmobQK80vtXjAsPZWWXd7c8u13G86gmuLupN+uUJjA+i4nA@mail.gmail.com
Don't move parenthesized lines to the left, even if that means they
flow past the right margin.
By default, BSD indent lines up statement continuation lines that are
within parentheses so that they start just to the right of the preceding
left parenthesis. However, traditionally, if that resulted in the
continuation line extending to the right of the desired right margin,
then indent would push it left just far enough to not overrun the margin,
if it could do so without making the continuation line start to the left of
the current statement indent. That makes for a weird mix of indentations
unless one has been completely rigid about never violating the 80-column
limit.
This behavior has been pretty universally panned by Postgres developers.
Hence, disable it with indent's new -lpl switch, so that parenthesized
lines are always lined up with the preceding left paren.
This patch is much less interesting than the first round of indent
changes, but also bulkier, so I thought it best to separate the effects.
Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org
Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
Change pg_bsd_indent to follow upstream rules for placement of comments
to the right of code, and remove pgindent hack that caused comments
following #endif to not obey the general rule.
Commit e3860ffa4dd0dad0dd9eea4be9cc1412373a8c89 wasn't actually using
the published version of pg_bsd_indent, but a hacked-up version that
tried to minimize the amount of movement of comments to the right of
code. The situation of interest is where such a comment has to be
moved to the right of its default placement at column 33 because there's
code there. BSD indent has always moved right in units of tab stops
in such cases --- but in the previous incarnation, indent was working
in 8-space tab stops, while now it knows we use 4-space tabs. So the
net result is that in about half the cases, such comments are placed
one tab stop left of before. This is better all around: it leaves
more room on the line for comment text, and it means that in such
cases the comment uniformly starts at the next 4-space tab stop after
the code, rather than sometimes one and sometimes two tabs after.
Also, ensure that comments following #endif are indented the same
as comments following other preprocessor commands such as #else.
That inconsistency turns out to have been self-inflicted damage
from a poorly-thought-through post-indent "fixup" in pgindent.
This patch is much less interesting than the first round of indent
changes, but also bulkier, so I thought it best to separate the effects.
Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org
Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
Even though no actual tuples are ever inserted into a partitioned
table (the actual tuples are in the partitions, not the partitioned
table itself), we still need to have a ResultRelInfo for the
partitioned table, or per-statement triggers won't get fired.
Amit Langote, per a report from Rajkumar Raghuwanshi. Reviewed by me.
Discussion: http://postgr.es/m/CAKcux6%3DwYospCRY2J4XEFuVy0L41S%3Dfic7rmkbsU-GXhhSbmBg%40mail.gmail.com
We'd managed to avoid doing this so far, but it seems pretty obvious
that it would be forced on us some day, and this is much the cleanest
way of approaching the open problem that parallel-unsafe subplans are
being transmitted to parallel workers. Anyway there's no space cost
due to alignment considerations, and the time cost is pretty minimal
since we're just copying the flag from the corresponding Path node.
(At least in most cases ... some of the klugier spots in createplan.c
have to work a bit harder.)
In principle we could perhaps get rid of SubPlan.parallel_safe,
but I thought it better to keep that in case there are reasons to
consider a SubPlan unsafe even when its child plan is parallel-safe.
This patch doesn't actually do anything with the new flags, but
I thought I'd commit it separately anyway.
Note: although this touches outfuncs/readfuncs, there's no need for
a catversion bump because Plan trees aren't stored on disk.
Discussion: https://postgr.es/m/87tw5x4vcu.fsf@credativ.de
This extends the castNode() notation introduced by commit 5bcab1114 to
provide, in one step, extraction of a list cell's pointer and coercion to
a concrete node type. For example, "lfirst_node(Foo, lc)" is the same
as "castNode(Foo, lfirst(lc))". Almost half of the uses of castNode
that have appeared so far include a list extraction call, so this is
pretty widely useful, and it saves a few more keystrokes compared to the
old way.
As with the previous patch, back-patch the addition of these macros to
pg_list.h, so that the notation will be available when back-patching.
Patch by me, after an idea of Andrew Gierth's.
Discussion: https://postgr.es/m/14197.1491841216@sss.pgh.pa.us
Currently, the only type of child relation is an "other member rel",
which is the child of a baserel, but in the future joins and even
upper relations may have child rels. To facilitate that, introduce
macros that test to test for particular RelOptKind values, and use
them in various places where they help to clarify the sense of a test.
(For example, a test may allow RELOPT_OTHER_MEMBER_REL either because
it intends to allow child rels, or because it intends to allow simple
rels.)
Also, remove find_childrel_top_parent, which will not work for a
child rel that is not a baserel. Instead, add a new RelOptInfo
member top_parent_relids to track the same kind of information in a
more generic manner.
Ashutosh Bapat, slightly tweaked by me. Review and testing of the
patch set from which this was taken by Rajkumar Raghuwanshi and Rafia
Sabih.
Discussion: http://postgr.es/m/CA+TgmoagTnF2yqR3PT2rv=om=wJiZ4-A+ATwdnriTGku1CLYxA@mail.gmail.com