from Param nodes, per discussion a few days ago on pghackers. Add new
expression node type FieldSelect that implements the functionality where
it's actually needed. Clean up some other unused fields in Func nodes
as well.
NOTE: initdb forced due to change in stored expression trees for rules.
materialized tupleset is small enough) instead of a temporary relation.
This was something I was thinking of doing anyway for performance, and Jan
says he needs it for TOAST because he doesn't want to cope with toasting
noname relations. With this change, the 'noname table' support in heap.c
is dead code, and I have accordingly removed it. Also clean up 'noname'
plan handling in planner --- nonames are either sort or materialize plans,
and it seems less confusing to handle them separately under those names.
to simplify constant expressions and expand SubLink nodes into SubPlans
is done in a separate routine subquery_planner() that calls union_planner().
We formerly did most of this work in query_planner(), but that's the
wrong place because it may never see the real targetlist. Splitting
union_planner into two routines also allows us to avoid redundant work
when union_planner is invoked recursively for UNION and inheritance
cases. Upshot is that it is now possible to do something like
select float8(count(*)) / (select count(*) from int4_tbl) from int4_tbl
group by f1;
which has never worked before.
portion of the query result that will be retrieved. As far as I could
tell, the consensus was that we should let the planner do the best it
can with a LIMIT query, and require the user to add ORDER BY if he
wants consistent results from different LIMIT values.
accesses versus sequential accesses, a (very crude) estimate of the
effects of caching on random page accesses, and cost to evaluate WHERE-
clause expressions. Export critical parameters for this model as SET
variables. Also, create SET variables for the planner's enable flags
(enable_seqscan, enable_indexscan, etc) so that these can be controlled
more conveniently than via PGOPTIONS.
Planner now estimates both startup cost (cost before retrieving
first tuple) and total cost of each path, so it can optimize queries
with LIMIT on a reasonable basis by interpolating between these costs.
Same facility is a win for EXISTS(...) subqueries and some other cases.
Redesign pathkey representation to achieve a major speedup in planning
(I saw as much as 5X on a 10-way join); also minor changes in planner
to reduce memory consumption by recycling discarded Path nodes and
not constructing unnecessary lists.
Minor cleanups to display more-plausible costs in some cases in
EXPLAIN output.
Initdb forced by change in interface to index cost estimation
functions.
SELECT DISTINCT ON (expr [, expr ...]) targetlist ...
and there is a check to make sure that the user didn't specify an ORDER BY
that's incompatible with the DISTINCT operation.
Reimplement nodeUnique and nodeGroup to use the proper datatype-specific
equality function for each column being compared --- they used to do
bitwise comparisons or convert the data to text strings and strcmp().
(To add insult to injury, they'd look up the conversion functions once
for each tuple...) Parse/plan representation of DISTINCT is now a list
of SortClause nodes.
initdb forced by querytree change...
subselects can only appear on the righthand side of a binary operator.
That's still true for quantified predicates like x = ANY (SELECT ...),
but a subselect that delivers a single result can now appear anywhere
in an expression. This is implemented by changing EXPR_SUBLINK sublinks
to represent just the (SELECT ...) expression, without any 'left hand
side' or combining operator --- so they're now more like EXISTS_SUBLINK.
To handle the case of '(x, y, z) = (SELECT ...)', I added a new sublink
type MULTIEXPR_SUBLINK, which acts just like EXPR_SUBLINK used to.
But the grammar will only generate one for a multiple-left-hand-side
row expression.
mentioned in FROM but not elsewhere in the query: such tables should be
joined over anyway. Aside from being more standards-compliant, this allows
removal of some very ugly hacks for COUNT(*) processing. Also, allow
HAVING clause without aggregate functions, since SQL does. Clean up
CREATE RULE statement-list syntax the same way Bruce just fixed the
main stmtmulti production.
CAUTION: addition of a field to RangeTblEntry nodes breaks stored rules;
you will have to initdb if you have any rules.
Frankpitt, plus some improvements from yours truly. The simplifier depends
on the proiscachable field of pg_proc to tell it whether a function is
safe to pre-evaluate --- things like nextval() are not, for example.
Update pg_proc.h to contain reasonable cacheability information; as of
6.5.* hardly any functions were marked cacheable. I may have erred too
far in the other direction; see recent mail to pghackers for more info.
This update does not force an initdb, exactly, but you won't see much
benefit from the simplifier until you do one.
additional argument specifying the kind of lock to acquire/release (or
'NoLock' to do no lock processing). Ensure that all relations are locked
with some appropriate lock level before being examined --- this ensures
that relevant shared-inval messages have been processed and should prevent
problems caused by concurrent VACUUM. Fix several bugs having to do with
mismatched increment/decrement of relation ref count and mismatched
heap_open/close (which amounts to the same thing). A bogus ref count on
a relation doesn't matter much *unless* a SI Inval message happens to
arrive at the wrong time, which is probably why we got away with this
sloppiness for so long. Repair missing grab of AccessExclusiveLock in
DROP TABLE, ALTER/RENAME TABLE, etc, as noted by Hiroshi.
Recommend 'make clean all' after pulling this update; I modified the
Relation struct layout slightly.
Will post further discussion to pghackers list shortly.
conditions. There are some pretty bogus heuristics in prepqual.c that
try to decide whether to output CNF or DNF format; they need to be replaced,
likely. Right now the code is probably too willing to choose DNF form,
which might hurt performance in some cases that used to work OK.
But at least we have a foundation to build on.
Most parts of the planner should ignore, or indeed never even see, uplevel
Vars because they will be or have been replaced by Params. There were a
couple of places that got it wrong though, probably my fault from recent
changes...
and fix_opids processing to a single recursive pass over the plan tree
executed at the very tail end of planning, rather than haphazardly here
and there at different places. Now that tlist Vars do not get modified
until the very end, it's possible to get rid of the klugy var_equal and
match_varid partial-matching routines, and just use plain equal()
throughout the optimizer. This is a step towards allowing merge and
hash joins to be done on expressions instead of only Vars ...
sort order down into planner, instead of handling it only at the very top
level of the planner. This fixes many things. An explicit sort is now
avoided if there is a cheaper alternative (typically an indexscan) not
only for ORDER BY, but also for the internal sort of GROUP BY. It works
even when there is no other reason (such as a WHERE condition) to consider
the indexscan. It works for indexes on functions. It works for indexes
on functions, backwards. It's just so cool...
CAUTION: I have changed the representation of SortClause nodes, therefore
THIS UPDATE BREAKS STORED RULES. You will need to initdb.
> >
> > was implemented by Jan Wieck.
> > His work is for ascending order cases.
> >
> > Here is a patch to prevent sorting also in descending
> > order cases.
> > Because I had already changed _bt_first() to position
> > backward correctly before v6.5,this patch would work.
> >
Hiroshi Inoue
Inoue@tpf.co.jp
returned NULL, which it will do in some cases where an elog(ERROR) would
probably be more appropriate. For the moment, generate a not-very-
informative error message rather than proceeding to certain coredump.
Probably ought to think about making query_planner elog instead of
returning NULL, but this is at least a safe change for now.
lists are now plain old garden-variety Lists, allocated with palloc,
rather than specialized expansible-array data allocated with malloc.
This substantially simplifies their handling and eliminates several
sources of memory leakage.
Several basic types of erroneous queries (syntax error, attempt to
insert a duplicate key into a unique index) now demonstrably leak
zero bytes per query.
change functionality, but makes the code more ANSI C'ish.
My AIX xlc compiler barfs on all of these. Can someone please
review and apply to current.
<<port.patch>>
Thanks
Andreas
Ok. I made patches replacing all of "#if FALSE" or "#if 0" to "#ifdef
NOT_USED" for current. I have tested these patches in that the
postgres binaries are identical.