The lower case spellings are C and C++ standard and are used in most
parts of the PostgreSQL sources. The upper case spellings are only used
in some files/modules. So standardize on the standard spellings.
The APIs for ICU, Perl, and Windows define their own TRUE and FALSE, so
those are left as is when using those APIs.
In code comments, we use the lower-case spelling for the C concepts and
keep the upper-case spelling for the SQL concepts.
Reviewed-by: Michael Paquier <michael.paquier@gmail.com>
Don't move parenthesized lines to the left, even if that means they
flow past the right margin.
By default, BSD indent lines up statement continuation lines that are
within parentheses so that they start just to the right of the preceding
left parenthesis. However, traditionally, if that resulted in the
continuation line extending to the right of the desired right margin,
then indent would push it left just far enough to not overrun the margin,
if it could do so without making the continuation line start to the left of
the current statement indent. That makes for a weird mix of indentations
unless one has been completely rigid about never violating the 80-column
limit.
This behavior has been pretty universally panned by Postgres developers.
Hence, disable it with indent's new -lpl switch, so that parenthesized
lines are always lined up with the preceding left paren.
This patch is much less interesting than the first round of indent
changes, but also bulkier, so I thought it best to separate the effects.
Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org
Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
Change pg_bsd_indent to follow upstream rules for placement of comments
to the right of code, and remove pgindent hack that caused comments
following #endif to not obey the general rule.
Commit e3860ffa4d wasn't actually using
the published version of pg_bsd_indent, but a hacked-up version that
tried to minimize the amount of movement of comments to the right of
code. The situation of interest is where such a comment has to be
moved to the right of its default placement at column 33 because there's
code there. BSD indent has always moved right in units of tab stops
in such cases --- but in the previous incarnation, indent was working
in 8-space tab stops, while now it knows we use 4-space tabs. So the
net result is that in about half the cases, such comments are placed
one tab stop left of before. This is better all around: it leaves
more room on the line for comment text, and it means that in such
cases the comment uniformly starts at the next 4-space tab stop after
the code, rather than sometimes one and sometimes two tabs after.
Also, ensure that comments following #endif are indented the same
as comments following other preprocessor commands such as #else.
That inconsistency turns out to have been self-inflicted damage
from a poorly-thought-through post-indent "fixup" in pgindent.
This patch is much less interesting than the first round of indent
changes, but also bulkier, so I thought it best to separate the effects.
Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org
Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
WaitLatch, WaitLatchOrSocket, and WaitEventSetWait now taken an
additional wait_event_info parameter; legal values are defined in
pgstat.h. This makes it possible to uniquely identify every point in
the core code where we are waiting for a latch; extensions can pass
WAIT_EXTENSION.
Because latches were the major wait primitive not previously covered
by this patch, it is now possible to see information in
pg_stat_activity on a large number of important wait events not
previously addressed, such as ClientRead, ClientWrite, and SyncRep.
Unfortunately, many of the wait events added by this patch will fail
to appear in pg_stat_activity because they're only used in background
processes which don't currently appear in pg_stat_activity. We should
fix this either by creating a separate view for such information, or
else by deciding to include them in pg_stat_activity after all.
Michael Paquier and Robert Haas, reviewed by Alexander Korotkov and
Thomas Munro.
Contention on the relation extension lock can become quite fierce when
multiple processes are inserting data into the same relation at the same
time at a high rate. Experimentation shows the extending the relation
multiple blocks at a time improves scalability.
Dilip Kumar, reviewed by Petr Jelinek, Amit Kapila, and me.
When a process is waiting for a heavyweight lock, we will now indicate
the type of heavyweight lock for which it is waiting. Also, you can
now see when a process is waiting for a lightweight lock - in which
case we will indicate the individual lock name or the tranche, as
appropriate - or for a buffer pin.
Amit Kapila, Ildus Kurbangaliev, reviewed by me. Lots of helpful
discussion and suggestions by many others, including Alexander
Korotkov, Vladimir Borodin, and many others.
This patch introduces "pg_blocking_pids(int) returns int[]", which returns
the PIDs of any sessions that are blocking the session with the given PID.
Historically people have obtained such information using a self-join on
the pg_locks view, but it's unreasonably tedious to do it that way with any
modicum of correctness, and the addition of parallel queries has pretty
much broken that approach altogether. (Given some more columns in the view
than there are today, you could imagine handling parallel-query cases with
a 4-way join; but ugh.)
The new function has the following behaviors that are painful or impossible
to get right via pg_locks:
1. Correctly understands which lock modes block which other ones.
2. In soft-block situations (two processes both waiting for conflicting lock
modes), only the one that's in front in the wait queue is reported to
block the other.
3. In parallel-query cases, reports all sessions blocking any member of
the given PID's lock group, and reports a session by naming its leader
process's PID, which will be the pg_backend_pid() value visible to
clients.
The motivation for doing this right now is mostly to fix the isolation
tests. Commit 38f8bdcac4 lobotomized
isolationtester's is-it-waiting query by removing its ability to recognize
nonconflicting lock modes, as a crude workaround for the inability to
handle soft-block situations properly. But even without the lock mode
tests, the old query was excessively slow, particularly in
CLOBBER_CACHE_ALWAYS builds; some of our buildfarm animals fail the new
deadlock-hard test because the deadlock timeout elapses before they can
probe the waiting status of all eight sessions. Replacing the pg_locks
self-join with use of pg_blocking_pids() is not only much more correct, but
a lot faster: I measure it at about 9X faster in a typical dev build with
Asserts, and 3X faster in CLOBBER_CACHE_ALWAYS builds. That should provide
enough headroom for the slower CLOBBER_CACHE_ALWAYS animals to pass the
test, without having to lengthen deadlock_timeout yet more and thus slow
down the test for everyone else.
The API spec for this function was changed completely (and for the better)
by commit 3cba8999b3, but it didn't bother
with anything as mundane as updating the comments.
For locking purposes, we now regard heavyweight locks as mutually
non-conflicting between cooperating parallel processes. There are some
possible pitfalls to this approach that are not to be taken lightly,
but it works OK for now and can be changed later if we find a better
approach. Without this, it's very easy for parallel queries to
silently self-deadlock if the user backend holds strong relation locks.
Robert Haas, with help from Amit Kapila. Thanks to Noah Misch and
Andres Freund for extensive discussion of possible issues with this
approach.
Previously, each PGPROC's backendLock was part of the main tranche,
and the PGPROC just contained a pointer. Now, the actual LWLock is
part of the PGPROC.
As with previous, similar patches, this makes it significantly easier
to identify these lwlocks in LWLOCK_STATS or Trace_lwlocks output
and improves modularity.
Author: Ildus Kurbangaliev
Reviewed-by: Amit Kapila, Robert Haas
RemoveLocalLock() must consider the possibility that LockAcquireExtended()
failed to palloc the initial space for a locallock's lockOwners array.
I had evidently meant to cope with this hazard when the code was originally
written (commit 1785acebf2), but missed that
the pfree needed to be protected with an if-test. Just to make sure things
are left in a clean state, reset numLockOwners as well.
Per low-memory testing by Andreas Seltenreich. Back-patch to all supported
branches.
GetLockConflicts() has for a long time not properly terminated the
returned array. During normal processing the returned array is zero
initialized which, while not pretty, is sufficient to be recognized as
a invalid virtual transaction id. But the HotStandby case is more than
aesthetically broken: The allocated (and reused) array is neither
zeroed upon allocation, nor reinitialized, nor terminated.
Not having a terminating element means that the end of the array will
not be recognized and that recovery conflict handling will thus read
ahead into adjacent memory. Only terminating when hitting memory
content that looks like a invalid virtual transaction id. Luckily
this seems so far not have caused significant problems, besides making
recovery conflict more expensive.
Discussion: 20150127142713.GD29457@awork2.anarazel.de
Backpatch into all supported branches.
Previously, if you wanted anything besides C-string hash keys, you had to
specify a custom hashing function to hash_create(). Nearly all such
callers were specifying tag_hash or oid_hash; which is tedious, and rather
error-prone, since a caller could easily miss the opportunity to optimize
by using hash_uint32 when appropriate. Replace this with a design whereby
callers using simple binary-data keys just specify HASH_BLOBS and don't
need to mess with specific support functions. hash_create() itself will
take care of optimizing when the key size is four bytes.
This nets out saving a few hundred bytes of code space, and offers
a measurable performance improvement in tidbitmap.c (which was not
exploiting the opportunity to use hash_uint32 for its 4-byte keys).
There might be some wins elsewhere too, I didn't analyze closely.
In future we could look into offering a similar optimized hashing function
for 8-byte keys. Under this design that could be done in a centralized
and machine-independent fashion, whereas getting it right for keys of
platform-dependent sizes would've been notationally painful before.
For the moment, the old way still works fine, so as not to break source
code compatibility for loadable modules. Eventually we might want to
remove tag_hash and friends from the exported API altogether, since there's
no real need for them to be explicitly referenced from outside dynahash.c.
Teodor Sigaev and Tom Lane
xlog.c is huge, this makes it a little bit smaller, which is nice. Functions
related to putting together the WAL record are in xloginsert.c, and the
lower level stuff for managing WAL buffers and such are in xlog.c.
Also move the definition of XLogRecord to a separate header file. This
causes churn in the #includes of all the files that write WAL records, and
redo routines, but it avoids pulling in xlog.h into most places.
Reviewed by Michael Paquier, Alvaro Herrera, Andres Freund and Amit Kapila.
The one existing assertion of this type has tripped a few times in the
buildfarm lately, but it's not clear whether the problem is really
originating there or whether it's leftovers from a trip through one
of the other two paths that lack a matching assertion. So add one.
Since the same bug(s) most likely exist(s) in the back-branches also,
back-patch to 9.2, where the fast-path lock mechanism was added.
Otherwise, the compiler might decide to move modifications to data
within this structure outside the enclosing SpinLockAcquire /
SpinLockRelease pair, leading to shared memory corruption.
This may or may not explain a recent lmgr-related buildfarm failure
on prairiedog, but it needs to be fixed either way.
This makes it possible to store lwlocks as part of some other data
structure in the main shared memory segment, or in a dynamic shared
memory segment. There is still a main LWLock array and this patch does
not move anything out of it, but it provides necessary infrastructure
for doing that in the future.
This change is likely to increase the size of LWLockPadded on some
platforms, especially 32-bit platforms where it was previously only
16 bytes.
Patch by me. Review by Andres Freund and KaiGai Kohei.
The various places that transferred fast-path locks to the main lock table
neglected to release the PGPROC's backendLock if SetupLockInTable failed
due to being out of shared memory. In most cases this is no big deal since
ensuing error cleanup would release all held LWLocks anyway. But there are
some hot-standby functions that don't consider failure of
FastPathTransferRelationLocks to be a hard error, and in those cases this
oversight could lead to system lockup. For consistency, make all of these
places look the same as FastPathTransferRelationLocks.
Noted while looking for the cause of Dan Wood's bugs --- this wasn't it,
but it's a bug anyway.
We have for a long time checked the head pointer of each of the backend's
proclock lists and skipped acquiring the corresponding locktable partition
lock if the head pointer was NULL. This was safe enough in the days when
proclock lists were changed only by the owning backend, but it is pretty
questionable now that the fast-path patch added cases where backends add
entries to other backends' proclock lists. However, we don't really wish
to revert to locking each partition lock every time, because in simple
transactions that would add a lot of useless lock/unlock cycles on
already-heavily-contended LWLocks. Fortunately, the only way that another
backend could be modifying our proclock list at this point would be if it
was promoting a formerly fast-path lock of ours; and any such lock must be
one that we'd decided not to delete in the previous loop over the locallock
table. So it's okay if we miss seeing it in this loop; we'd just decide
not to delete it again. However, once we've detected a non-empty list,
we'd better re-fetch the list head pointer after acquiring the partition
lock. This guards against possibly fetching a corrupt-but-non-null pointer
if pointer fetch/store isn't atomic. It's not clear if any practical
architectures are like that, but we've never assumed that before and don't
wish to start here. In any case, the situation certainly deserves a code
comment.
While at it, refactor the partition traversal loop to use a for() construct
instead of a while() loop with goto's.
Back-patch, just in case the risk is real and not hypothetical.
When acquiring a lock in fast-path mode, we must reset the locallock
object's lock and proclock fields to NULL. They are not necessarily that
way to start with, because the locallock could be left over from a failed
lock acquisition attempt earlier in the transaction. Failure to do this
led to all sorts of interesting misbehaviors when LockRelease tried to
clean up no-longer-related lock and proclock objects in shared memory.
Per report from Dan Wood.
In passing, modify LockRelease to elog not just Assert if it doesn't find
lock and proclock objects for a formerly fast-path lock, matching the code
in FastPathGetRelationLockEntry and LockRefindAndRelease. This isn't a
bug but it will help in diagnosing any future bugs in this area.
Also, modify FastPathTransferRelationLocks and FastPathGetRelationLockEntry
to break out of their loops over the fastpath array once they've found the
sole matching entry. This was inconsistently done in some search loops
and not others.
Improve assorted related comments, too.
Back-patch to 9.2 where the fast-path mechanism was introduced.
The array allocated by GetRunningTransactionLocks() needs to be pfree'd
when we're done with it. Otherwise we leak some memory during each
checkpoint, if wal_level = hot_standby. This manifests as memory bloat
in the checkpointer process, or in bgwriter in versions before we made
the checkpointer separate.
Reported and fixed by Naoya Anzai. Back-patch to 9.0 where the issue
was introduced.
In passing, improve comments for GetRunningTransactionLocks(), and add
an Assert that we didn't overrun the palloc'd array.
This patch introduces two additional lock modes for tuples: "SELECT FOR
KEY SHARE" and "SELECT FOR NO KEY UPDATE". These don't block each
other, in contrast with already existing "SELECT FOR SHARE" and "SELECT
FOR UPDATE". UPDATE commands that do not modify the values stored in
the columns that are part of the key of the tuple now grab a SELECT FOR
NO KEY UPDATE lock on the tuple, allowing them to proceed concurrently
with tuple locks of the FOR KEY SHARE variety.
Foreign key triggers now use FOR KEY SHARE instead of FOR SHARE; this
means the concurrency improvement applies to them, which is the whole
point of this patch.
The added tuple lock semantics require some rejiggering of the multixact
module, so that the locking level that each transaction is holding can
be stored alongside its Xid. Also, multixacts now need to persist
across server restarts and crashes, because they can now represent not
only tuple locks, but also tuple updates. This means we need more
careful tracking of lifetime of pg_multixact SLRU files; since they now
persist longer, we require more infrastructure to figure out when they
can be removed. pg_upgrade also needs to be careful to copy
pg_multixact files over from the old server to the new, or at least part
of multixact.c state, depending on the versions of the old and new
servers.
Tuple time qualification rules (HeapTupleSatisfies routines) need to be
careful not to consider tuples with the "is multi" infomask bit set as
being only locked; they might need to look up MultiXact values (i.e.
possibly do pg_multixact I/O) to find out the Xid that updated a tuple,
whereas they previously were assured to only use information readily
available from the tuple header. This is considered acceptable, because
the extra I/O would involve cases that would previously cause some
commands to block waiting for concurrent transactions to finish.
Another important change is the fact that locking tuples that have
previously been updated causes the future versions to be marked as
locked, too; this is essential for correctness of foreign key checks.
This causes additional WAL-logging, also (there was previously a single
WAL record for a locked tuple; now there are as many as updated copies
of the tuple there exist.)
With all this in place, contention related to tuples being checked by
foreign key rules should be much reduced.
As a bonus, the old behavior that a subtransaction grabbing a stronger
tuple lock than the parent (sub)transaction held on a given tuple and
later aborting caused the weaker lock to be lost, has been fixed.
Many new spec files were added for isolation tester framework, to ensure
overall behavior is sane. There's probably room for several more tests.
There were several reviewers of this patch; in particular, Noah Misch
and Andres Freund spent considerable time in it. Original idea for the
patch came from Simon Riggs, after a problem report by Joel Jacobson.
Most code is from me, with contributions from Marti Raudsepp, Alexander
Shulgin, Noah Misch and Andres Freund.
This patch was discussed in several pgsql-hackers threads; the most
important start at the following message-ids:
AANLkTimo9XVcEzfiBR-ut3KVNDkjm2Vxh+t8kAmWjPuv@mail.gmail.com1290721684-sup-3951@alvh.no-ip.org1294953201-sup-2099@alvh.no-ip.org1320343602-sup-2290@alvh.no-ip.org1339690386-sup-8927@alvh.no-ip.org4FE5FF020200002500048A3D@gw.wicourts.gov4FEAB90A0200002500048B7D@gw.wicourts.gov
This got broken in the original fast-path locking patch, because
I failed to account for the fact that Hot Standby startup process
might take a strong relation lock on a relation in a database to
which it is not bound, and confused MyDatabaseId with the database
ID of the relation being locked.
Report and diagnosis by Andres Freund. Final form of patch by me.
The code in PostPrepare_Locks supposed that it could reassign locks to
the prepared transaction's dummy PGPROC by deleting the PROCLOCK table
entries and immediately creating new ones. This was safe when that code
was written, but since we invented partitioning of the shared lock table,
it's not safe --- another process could steal away the PROCLOCK entry in
the short interval when it's on the freelist. Then, if we were otherwise
out of shared memory, PostPrepare_Locks would have to PANIC, since it's
too late to back out of the PREPARE at that point.
Fix by inventing a dynahash.c function to atomically update a hashtable
entry's key. (This might possibly have other uses in future.)
This is an ancient bug that in principle we ought to back-patch, but the
odds of someone hitting it in the field seem really tiny, because (a) the
risk window is small, and (b) nobody runs servers with maxed-out lock
tables for long, because they'll be getting non-PANIC out-of-memory errors
anyway. So fixing it in HEAD seems sufficient, at least until the new
code has gotten some testing.
If VirtualXactLock() has to wait for a transaction that holds its VXID lock
as a fast-path lock, it must first convert the fast-path lock to a regular
lock. It failed to take the required "partition" lock on the main
shared-memory lock table while doing so. This is the direct cause of the
assert failure in GetLockStatusData() recently observed in the buildfarm,
but more worryingly it could result in arbitrary corruption of the shared
lock table if some other process were concurrently engaged in modifying the
same partition of the lock table. Fortunately, VirtualXactLock() is only
used by CREATE INDEX CONCURRENTLY and DROP INDEX CONCURRENTLY, so the
opportunities for failure are fewer than they might have been.
In passing, improve some comments and be a bit more consistent about
order of operations.
In situations where there are over 8MB of empty pages at the end of
a table, the truncation work for trailing empty pages takes longer
than deadlock_timeout, and there is frequent access to the table by
processes other than autovacuum, there was a problem with the
autovacuum worker process being canceled by the deadlock checking
code. The truncation work done by autovacuum up that point was
lost, and the attempt tried again by a later autovacuum worker. The
attempts could continue indefinitely without making progress,
consuming resources and blocking other processes for up to
deadlock_timeout each time.
This patch has the autovacuum worker checking whether it is
blocking any other thread at 20ms intervals. If such a condition
develops, the autovacuum worker will persist the work it has done
so far, release its lock on the table, and sleep in 50ms intervals
for up to 5 seconds, hoping to be able to re-acquire the lock and
try again. If it is unable to get the lock in that time, it moves
on and a worker will try to continue later from the point this one
left off.
While this patch doesn't change the rules about when and what to
truncate, it does cause the truncation to occur sooner, with less
blocking, and with the consumption of fewer resources when there is
contention for the table's lock.
The only user-visible change other than improved performance is
that the table size during truncation may change incrementally
instead of just once.
This problem exists in all supported versions but is infrequently
reported, although some reports of performance problems when
autovacuum runs might be caused by this. Initial commit is just the
master branch, but this should probably be backpatched once the
build farm and general developer usage confirm that there are no
surprising effects.
Jan Wieck
This speeds up reassigning locks to the parent owner, when the transaction
holds a lot of locks, but only a few of them belong to the current resource
owner. This is particularly helps pg_dump when dumping a large number of
objects.
The cache can hold up to 15 locks in each resource owner. After that, the
cache is marked as overflowed, and we fall back to the old method of
scanning the whole local lock table. The tradeoff here is that the cache has
to be scanned whenever a lock is released, so if the cache is too large,
lock release becomes more expensive. 15 seems enough to cover pg_dump, and
doesn't have much impact on lock release.
Jeff Janes, reviewed by Amit Kapila and Heikki Linnakangas.
First, the previous code failed to account for the fact that, during Hot
Standby operation, the startup process takes AccessExclusiveLocks on
relations without setting MyDatabaseId. This resulted in fast path
strong lock counts failing to be incremented with the startup process
took locks, which in turn allowed conflicting lock requests to succeed
when they should not have. Report by Erik Rijkers, diagnosis by Heikki
Linnakangas.
Second, LockReleaseAll() failed to honor the allLocks and lockmethodid
restrictions with respect to fast-path locks. It's not clear to me
whether this produces any user-visible breakage at the moment, but it's
certainly wrong. Rearrange order of operations in LockReleaseAll to fix.
Noted by Tom Lane.
Commit 62c7bd31c8 had assorted problems, most
visibly that it broke PREPARE TRANSACTION in the presence of session-level
advisory locks (which should be ignored by PREPARE), as per a recent
complaint from Stephen Rees. More abstractly, the patch made the
LockMethodData.transactional flag not merely useless but outright
dangerous, because in point of fact that flag no longer tells you anything
at all about whether a lock is held transactionally. This fix therefore
removes that flag altogether. We now rely entirely on the convention
already in use in lock.c that transactional lock holds must be owned by
some ResourceOwner, while session holds are never so owned. Setting the
locallock struct's owner link to NULL thus denotes a session hold, and
there is no redundant marker for that.
PREPARE TRANSACTION now works again when there are session-level advisory
locks, and it is also able to transfer transactional advisory locks to the
prepared transaction, but for implementation reasons it throws an error if
we hold both types of lock on a single lockable object. Perhaps it will be
worth improving that someday.
Assorted other minor cleanup and documentation editing, as well.
Back-patch to 9.1, except that in the 9.1 branch I did not remove the
LockMethodData.transactional flag for fear of causing an ABI break for
any external code that might be examining those structs.