qualified operator names directly, for example CREATE OPERATOR myschema.+
( ... ). To qualify an operator name in an expression you need to write
OPERATOR(myschema.+) (thanks to Peter for suggesting an escape hatch).
I also took advantage of having to reformat pg_operator to fix something
that'd been bugging me for a while: mergejoinable operators should have
explicit links to the associated cross-data-type comparison operators,
rather than hardwiring an assumption that they are named < and >.
entries, per pghackers discussion. This fixes aggregates to live in
namespaces, and also simplifies/speeds up lookup in parse_func.c.
Also, add a 'proimplicit' flag to pg_proc that controls whether a type
coercion function may be invoked implicitly, or only explicitly. The
current settings of these flags are more permissive than I would like,
but we will need to debate and refine the behavior; for now, I avoided
breaking regression tests as much as I could.
now just below FATAL in server_min_messages. Added more text to
highlight ordering difference between it and client_min_messages.
---------------------------------------------------------------------------
REALLYFATAL => PANIC
STOP => PANIC
New INFO level the prints to client by default
New LOG level the prints to server log by default
Cause VACUUM information to print only to the client
NOTICE => INFO where purely information messages are sent
DEBUG => LOG for purely server status messages
DEBUG removed, kept as backward compatible
DEBUG5, DEBUG4, DEBUG3, DEBUG2, DEBUG1 added
DebugLvl removed in favor of new DEBUG[1-5] symbols
New server_min_messages GUC parameter with values:
DEBUG[5-1], INFO, NOTICE, ERROR, LOG, FATAL, PANIC
New client_min_messages GUC parameter with values:
DEBUG[5-1], LOG, INFO, NOTICE, ERROR, FATAL, PANIC
Server startup now logged with LOG instead of DEBUG
Remove debug_level GUC parameter
elog() numbers now start at 10
Add test to print error message if older elog() values are passed to elog()
Bootstrap mode now has a -d that requires an argument, like postmaster
1. If there is exactly one pg_operator entry of the right name and oprkind,
oper() and related routines would return that entry whether its input type
had anything to do with the request or not. This is just premature
optimization: we shouldn't return the single candidate until after we verify
that it really is a valid candidate, ie, is at least coercion-compatible
with the given types.
2. oper() and related routines only promise a coercion-compatible result.
Unfortunately, there were quite a few callers that assumed the returned
operator is binary-compatible with the given datatype; they would proceed
to call it without making any datatype coercions. These callers include
sorting, grouping, aggregation, and VACUUM ANALYZE. In general I think
it is appropriate for these callers to require an exact or binary-compatible
match, so I've added a new routine compatible_oper() that only succeeds if
it can find an operator that doesn't require any run-time conversions.
Callers now call oper() or compatible_oper() depending on whether they are
prepared to deal with type conversion or not.
The upshot of these bugs is revealed by the following silliness in PL/Tcl's
selftest: it creates an operator @< on int4, and then tries to use it to
sort a char(N) column. The system would let it do that :-( (and evidently
has done so since 6.3 :-( :-(). The result in this case was just a silly
sort order, but the reverse combination would've provoked coredump from
trying to dereference integers. With this fix you get more reasonable
behavior:
pltcl_test=# select * from T_pkey1 order by key1, key2 using @<;
ERROR: Unable to identify an operator '@<' for types 'bpchar' and 'bpchar'
You will have to retype this query using an explicit cast
maintained for each cache entry. A cache entry will not be freed until
the matching ReleaseSysCache call has been executed. This eliminates
worries about cache entries getting dropped while still in use. See
my posting to pg-hackers of even date for more info.
for example, an SQL function can be used in a functional index. (I make
no promises about speed, but it'll work ;-).) Clean up and simplify
handling of functions returning sets.
There's now only one transition value and transition function.
NULL handling in aggregates is a lot cleaner. Also, use Numeric
accumulators instead of integer accumulators for sum/avg on integer
datatypes --- this avoids overflow at the cost of being a little slower.
Implement VARIANCE() and STDDEV() aggregates in the standard backend.
Also, enable new LIKE selectivity estimators by default. Unrelated
change, but as long as I had to force initdb anyway...
memory contexts. Currently, only leaks in expressions executed as
quals or projections are handled. Clean up some old dead cruft in
executor while at it --- unused fields in state nodes, that sort of thing.
for details). It doesn't really do that much yet, since there are no
short-term memory contexts in the executor, but the infrastructure is
in place and long-term contexts are handled reasonably. A few long-
standing bugs have been fixed, such as 'VACUUM; anything' in a single
query string crashing. Also, out-of-memory is now considered a
recoverable ERROR, not FATAL.
Eliminate a large amount of crufty, now-dead code in and around
memory management.
Fix problem with holding off SIGTRAP, SIGSEGV, etc in postmaster and
backend startup.
key call sites are changed, but most called functions are still oldstyle.
An exception is that the PL managers are updated (so, for example, NULL
handling now behaves as expected in plperl and plpgsql functions).
NOTE initdb is forced due to added column in pg_proc.
from a constraint condition does not violate the constraint (cf. discussion
on pghackers 12/9/99). Implemented by adding a parameter to ExecQual,
specifying whether to return TRUE or FALSE when the qual result is
really NULL in three-valued boolean logic. Currently, ExecRelCheck is
the only caller that asks for TRUE, but if we find any other places that
have the wrong response to NULL, it'll be easy to fix them.
before calling execProject, when the outerPlan has returned zero tuples.
I took this out under the mistaken impression that the input tuple
couldn't be referenced by execProject if we weren't in GROUP BY mode.
But it can, if we're in an UPDATE or DELETE...
an empty targetlist *and* fails to return any tuples, as will happen
for example with 'SELECT COUNT(1) FROM table WHERE ...' if the where-
clause selects no tuples. It's so nice to make a fix by diking out code,
instead of adding more...
with no input rows, per pghackers discussions around 7/22/99. Clean up
a bunch of ugly coding while at it; remove redundant re-lookup of
aggregate info at start of each new GROUP. Arrange to pfree intermediate
values when they are pass-by-ref types, so that aggregates on pass-by-ref
types no longer eat memory. This takes care of a couple of TODO items...
and fix_opids processing to a single recursive pass over the plan tree
executed at the very tail end of planning, rather than haphazardly here
and there at different places. Now that tlist Vars do not get modified
until the very end, it's possible to get rid of the klugy var_equal and
match_varid partial-matching routines, and just use plain equal()
throughout the optimizer. This is a step towards allowing merge and
hash joins to be done on expressions instead of only Vars ...
sort order down into planner, instead of handling it only at the very top
level of the planner. This fixes many things. An explicit sort is now
avoided if there is a cheaper alternative (typically an indexscan) not
only for ORDER BY, but also for the internal sort of GROUP BY. It works
even when there is no other reason (such as a WHERE condition) to consider
the indexscan. It works for indexes on functions. It works for indexes
on functions, backwards. It's just so cool...
CAUTION: I have changed the representation of SortClause nodes, therefore
THIS UPDATE BREAKS STORED RULES. You will need to initdb.
this one could be useful for people experiencing out-of-memory crashes while
executing queries which retrieve or use a very large number of tuples.
The problem happens when storage is allocated for functions results used in
a large query, for example:
select upper(name) from big_table;
select big_table.array[1] from big_table;
select count(upper(name)) from big_table;
This patch is a dirty hack that fixes the out-of-memory problem for the most
common cases, like the above ones. It is not the final solution for the
problem but it can work for some people, so I'm posting it.
The patch should be safe because all changes are under #ifdef. Furthermore
the feature can be enabled or disabled at runtime by the `free_tuple_memory'
options in the pg_options file. The option is disabled by default and must
be explicitly enabled at runtime to have any effect.
To enable the patch add the follwing line to Makefile.custom:
CUSTOM_COPT += -DFREE_TUPLE_MEMORY
To enable the option at runtime add the following line to pg_option:
free_tuple_memory=1
Massimo
INTERSECT and EXCEPT is available for postgresql-v6.4!
The patch against v6.4 is included at the end of the current text
(in uuencoded form!)
I also included the text of my Master's Thesis. (a postscript
version). I hope that you find something of it useful and would be
happy if parts of it find their way into the PostgreSQL documentation
project (If so, tell me, then I send the sources of the document!)
The contents of the document are:
-) The first chapter might be of less interest as it gives only an
overview on SQL.
-) The second chapter gives a description on much of PostgreSQL's
features (like user defined types etc. and how to use these features)
-) The third chapter starts with an overview of PostgreSQL's internal
structure with focus on the stages a query has to pass (i.e. parser,
planner/optimizer, executor). Then a detailed description of the
implementation of the Having clause and the Intersect/Except logic is
given.
Originally I worked on v6.3.2 but never found time enough to prepare
and post a patch. Now I applied the changes to v6.4 to get Intersect
and Except working with the new version. Chapter 3 of my documentation
deals with the changes against v6.3.2, so keep that in mind when
comparing the parts of the code printed there with the patched sources
of v6.4.
Here are some remarks on the patch. There are some things that have
still to be done but at the moment I don't have time to do them
myself. (I'm doing my military service at the moment) Sorry for that
:-(
-) I used a rewrite technique for the implementation of the Except/Intersect
logic which rewrites the query to a semantically equivalent query before
it is handed to the rewrite system (for views, rules etc.), planner,
executor etc.
-) In v6.3.2 the types of the attributes of two select statements
connected by the UNION keyword had to match 100%. In v6.4 the types
only need to be familiar (i.e. int and float can be mixed). Since this
feature did not exist when I worked on Intersect/Except it
does not work correctly for Except/Intersect queries WHEN USED IN
COMBINATION WITH UNIONS! (i.e. sometimes the wrong type is used for the
resulting table. This is because until now the types of the attributes of
the first select statement have been used for the resulting table.
When Intersects and/or Excepts are used in combination with Unions it
might happen, that the first select statement of the original query
appears at another position in the query which will be executed. The reason
for this is the technique used for the implementation of
Except/Intersect which does a query rewrite!)
NOTE: It is NOT broken for pure UNION queries and pure INTERSECT/EXCEPT
queries!!!
-) I had to add the field intersect_clause to some data structures
but did not find time to implement printfuncs for the new field.
This does NOT break the debug modes but when an Except/Intersect
is used the query debug output will be the already rewritten query.
-) Massive changes to the grammar rules for SELECT and INSERT statements
have been necessary (see comments in gram.y and documentation for
deatails) in order to be able to use mixed queries like
(SELECT ... UNION (SELECT ... EXCEPT SELECT)) INTERSECT SELECT...;
-) When using UNION/EXCEPT/INTERSECT you will get:
NOTICE: equal: "Don't know if nodes of type xxx are equal".
I did not have time to add comparsion support for all the needed nodes,
but the default behaviour of the function equal met my requirements.
I did not dare to supress this message!
That's the reason why the regression test for union will fail: These
messages are also included in the union.out file!
-) Somebody of you changed the union_planner() function for v6.4
(I copied the targetlist to new_tlist and that was removed and
replaced by a cleanup of the original targetlist). These chnages
violated some having queries executed against views so I changed
it back again. I did not have time to examine the differences between the
two versions but now it works :-)
If you want to find out, try the file queries/view_having.sql on
both versions and compare the results . Two queries won't produce a
correct result with your version.
regards
Stefan