1
0
mirror of https://github.com/postgres/postgres.git synced 2025-11-22 12:22:45 +03:00
Commit Graph

754 Commits

Author SHA1 Message Date
Tom Lane
19a541143a Add an explicit representation of the output targetlist to Paths.
Up to now, there's been an assumption that all Paths for a given relation
compute the same output column set (targetlist).  However, there are good
reasons to remove that assumption.  For example, an indexscan on an
expression index might be able to return the value of an expensive function
"for free".  While we have the ability to generate such a plan today in
simple cases, we don't have a way to model that it's cheaper than a plan
that computes the function from scratch, nor a way to create such a plan
in join cases (where the function computation would normally happen at
the topmost join node).  Also, we need this so that we can have Paths
representing post-scan/join steps, where the targetlist may well change
from one step to the next.  Therefore, invent a "struct PathTarget"
representing the columns we expect a plan step to emit.  It's convenient
to include the output tuple width and tlist evaluation cost in this struct,
and there will likely be additional fields in future.

While Path nodes that actually do have custom outputs will need their own
PathTargets, it will still be true that most Paths for a given relation
will compute the same tlist.  To reduce the overhead added by this patch,
keep a "default PathTarget" in RelOptInfo, and allow Paths that compute
that column set to just point to their parent RelOptInfo's reltarget.
(In the patch as committed, actually every Path is like that, since we
do not yet have any cases of custom PathTargets.)

I took this opportunity to provide some more-honest costing of
PlaceHolderVar evaluation.  Up to now, the assumption that "scan/join
reltargetlists have cost zero" was applied not only to Vars, where it's
reasonable, but also PlaceHolderVars where it isn't.  Now, we add the eval
cost of a PlaceHolderVar's expression to the first plan level where it can
be computed, by including it in the PathTarget cost field and adding that
to the cost estimates for Paths.  This isn't perfect yet but it's much
better than before, and there is a way forward to improve it more.  This
costing change affects the join order chosen for a couple of the regression
tests, changing expected row ordering.
2016-02-18 20:02:03 -05:00
Robert Haas
fbe5a3fb73 Only try to push down foreign joins if the user mapping OIDs match.
Previously, the foreign join pushdown infrastructure left the question
of security entirely up to individual FDWs, but it would be easy for
a foreign data wrapper to inadvertently open up subtle security holes
that way.  So, make it the core code's job to determine which user
mapping OID is relevant, and don't attempt join pushdown unless it's
the same for all relevant relations.

Per a suggestion from Tom Lane.  Shigeru Hanada and Ashutosh Bapat,
reviewed by Etsuro Fujita and KaiGai Kohei, with some further
changes by me.
2016-01-28 14:05:36 -05:00
Tom Lane
b99551832e Add defenses against putting expanded objects into Const nodes.
Putting a reference to an expanded-format value into a Const node would be
a bad idea for a couple of reasons.  It'd be possible for the supposedly
immutable Const to change value, if something modified the referenced
variable ... in fact, if the Const's reference were R/W, any function that
has the Const as argument might itself change it at runtime.  Also, because
datumIsEqual() is pretty simplistic, the Const might fail to compare equal
to other Consts that it should compare equal to, notably including copies
of itself.  This could lead to unexpected planner behavior, such as "could
not find pathkey item to sort" errors or inferior plans.

I have not been able to find any way to get an expanded value into a Const
within the existing core code; but Paul Ramsey was able to trigger the
problem by writing a datatype input function that returns an expanded
value.

The best fix seems to be to establish a rule that varlena values being
placed into Const nodes should be passed through pg_detoast_datum().
That will do nothing (and cost little) in normal cases, but it will flatten
expanded values and thereby avoid the above problems.  Also, it will
convert short-header or compressed values into canonical format, which will
avoid possible unexpected lack-of-equality issues for those cases too.
And it provides a last-ditch defense against putting a toasted value into
a Const, which we already knew was dangerous, cf commit 2b0c86b665.
(In the light of this discussion, I'm no longer sure that that commit
provided 100% protection against such cases, but this fix should do it.)

The test added in commit 65c3d05e18 to catch datatype input functions
with unstable results would fail for functions that returned expanded
values; but it seems a bit uncharitable to deem a result unstable just
because it's expressed in expanded form, so revise the coding so that we
check for bitwise equality only after applying pg_detoast_datum().  That's
a sufficient condition anyway given the new rule about detoasting when
forming a Const.

Back-patch to 9.5 where the expanded-object facility was added.  It's
possible that this should go back further; but in the absence of clear
evidence that there's any live bug in older branches, I'll refrain for now.
2016-01-21 12:56:08 -05:00
Robert Haas
45be99f8cd Support parallel joins, and make related improvements.
The core innovation of this patch is the introduction of the concept
of a partial path; that is, a path which if executed in parallel will
generate a subset of the output rows in each process.  Gathering a
partial path produces an ordinary (complete) path.  This allows us to
generate paths for parallel joins by joining a partial path for one
side (which at the baserel level is currently always a Partial Seq
Scan) to an ordinary path on the other side.  This is subject to
various restrictions at present, especially that this strategy seems
unlikely to be sensible for merge joins, so only nested loops and
hash joins paths are generated.

This also allows an Append node to be pushed below a Gather node in
the case of a partitioned table.

Testing revealed that early versions of this patch made poor decisions
in some cases, which turned out to be caused by the fact that the
original cost model for Parallel Seq Scan wasn't very good.  So this
patch tries to make some modest improvements in that area.

There is much more to be done in the area of generating good parallel
plans in all cases, but this seems like a useful step forward.

Patch by me, reviewed by Dilip Kumar and Amit Kapila.
2016-01-20 14:40:26 -05:00
Tom Lane
65c5fcd353 Restructure index access method API to hide most of it at the C level.
This patch reduces pg_am to just two columns, a name and a handler
function.  All the data formerly obtained from pg_am is now provided
in a C struct returned by the handler function.  This is similar to
the designs we've adopted for FDWs and tablesample methods.  There
are multiple advantages.  For one, the index AM's support functions
are now simple C functions, making them faster to call and much less
error-prone, since the C compiler can now check function signatures.
For another, this will make it far more practical to define index access
methods in installable extensions.

A disadvantage is that SQL-level code can no longer see attributes
of index AMs; in particular, some of the crosschecks in the opr_sanity
regression test are no longer possible from SQL.  We've addressed that
by adding a facility for the index AM to perform such checks instead.
(Much more could be done in that line, but for now we're content if the
amvalidate functions more or less replace what opr_sanity used to do.)
We might also want to expose some sort of reporting functionality, but
this patch doesn't do that.

Alexander Korotkov, reviewed by Petr Jelínek, and rather heavily
editorialized on by me.
2016-01-17 19:36:59 -05:00
Bruce Momjian
ee94300446 Update copyright for 2016
Backpatch certain files through 9.1
2016-01-02 13:33:40 -05:00
Tom Lane
4fcf48450d Get rid of the planner's LateralJoinInfo data structure.
I originally modeled this data structure on SpecialJoinInfo, but after
commit acfcd45cac that looks like a pretty poor decision.
All we really need is relid sets identifying laterally-referenced rels;
and most of the time, what we want to know about includes indirect lateral
references, a case the LateralJoinInfo data was unsuited to compute with
any efficiency.  The previous commit redefined RelOptInfo.lateral_relids
as the transitive closure of lateral references, so that it easily supports
checking indirect references.  For the places where we really do want just
direct references, add a new RelOptInfo field direct_lateral_relids, which
is easily set up as a copy of lateral_relids before we perform the
transitive closure calculation.  Then we can just drop lateral_info_list
and LateralJoinInfo and the supporting code.  This makes the planner's
handling of lateral references noticeably more efficient, and shorter too.

Such a change can't be back-patched into stable branches for fear of
breaking extensions that might be looking at the planner's data structures;
but it seems not too late to push it into 9.5, so I've done so.
2015-12-11 15:52:38 -05:00
Tom Lane
acfcd45cac Still more fixes for planner's handling of LATERAL references.
More fuzz testing by Andreas Seltenreich exposed that the planner did not
cope well with chains of lateral references.  If relation X references Y
laterally, and Y references Z laterally, then we will have to scan X on the
inside of a nestloop with Z, so for all intents and purposes X is laterally
dependent on Z too.  The planner did not understand this and would generate
intermediate joins that could not be used.  While that was usually harmless
except for wasting some planning cycles, under the right circumstances it
would lead to "failed to build any N-way joins" or "could not devise a
query plan" planner failures.

To fix that, convert the existing per-relation lateral_relids and
lateral_referencers relid sets into their transitive closures; that is,
they now show all relations on which a rel is directly or indirectly
laterally dependent.  This not only fixes the chained-reference problem
but allows some of the relevant tests to be made substantially simpler
and faster, since they can be reduced to simple bitmap manipulations
instead of searches of the LateralJoinInfo list.

Also, when a PlaceHolderVar that is due to be evaluated at a join contains
lateral references, we should treat those references as indirect lateral
dependencies of each of the join's base relations.  This prevents us from
trying to join any individual base relations to the lateral reference
source before the join is formed, which again cannot work.

Andreas' testing also exposed another oversight in the "dangerous
PlaceHolderVar" test added in commit 85e5e222b1.  Simply rejecting
unsafe join paths in joinpath.c is insufficient, because in some cases
we will end up rejecting *all* possible paths for a particular join, again
leading to "could not devise a query plan" failures.  The restriction has
to be known also to join_is_legal and its cohort functions, so that they
will not select a join for which that will happen.  I chose to move the
supporting logic into joinrels.c where the latter functions are.

Back-patch to 9.3 where LATERAL support was introduced.
2015-12-11 14:22:20 -05:00
Robert Haas
385f337c9f Allow foreign and custom joins to handle EvalPlanQual rechecks.
Commit e7cb7ee145 provided basic
infrastructure for allowing a foreign data wrapper or custom scan
provider to replace a join of one or more tables with a scan.
However, this infrastructure failed to take into account the need
for possible EvalPlanQual rechecks, and ExecScanFetch would fail
an assertion (or just overwrite memory) if such a check was attempted
for a plan containing a pushed-down join.  To fix, adjust the EPQ
machinery to skip some processing steps when scanrelid == 0, making
those the responsibility of scan's recheck method, which also has
the responsibility in this case of correctly populating the relevant
slot.

To allow foreign scans to gain control in the right place to make
use of this new facility, add a new, optional RecheckForeignScan
method.  Also, allow a foreign scan to have a child plan, which can
be used to correctly populate the slot (or perhaps for something
else, but this is the only use currently envisioned).

KaiGai Kohei, reviewed by Robert Haas, Etsuro Fujita, and Kyotaro
Horiguchi.
2015-12-08 12:31:03 -05:00
Tom Lane
edca44b152 Simplify LATERAL-related calculations within add_paths_to_joinrel().
While convincing myself that commit 7e19db0c09 would solve both of
the problems recently reported by Andreas Seltenreich, I realized that
add_paths_to_joinrel's handling of LATERAL restrictions could be made
noticeably simpler and faster if we were to retain the minimum possible
parameterization for each joinrel (that is, the set of relids supplying
unsatisfied lateral references in it).  We already retain that for
baserels, in RelOptInfo.lateral_relids, so we can use that field for
joinrels too.

I re-pgindent'd the files touched here, which affects some unrelated
comments.

This is, I believe, just a minor optimization not a bug fix, so no
back-patch.
2015-12-07 18:56:17 -05:00
Tom Lane
7e19db0c09 Fix another oversight in checking if a join with LATERAL refs is legal.
It was possible for the planner to decide to join a LATERAL subquery to
the outer side of an outer join before the outer join itself is completed.
Normally that's fine because of the associativity rules, but it doesn't
work if the subquery contains a lateral reference to the inner side of the
outer join.  In such a situation the outer join *must* be done first.
join_is_legal() missed this consideration and would allow the join to be
attempted, but the actual path-building code correctly decided that no
valid join path could be made, sometimes leading to planner errors such as
"failed to build any N-way joins".

Per report from Andreas Seltenreich.  Back-patch to 9.3 where LATERAL
support was added.
2015-12-07 17:42:11 -05:00
Robert Haas
80558c1f5a Generate parallel sequential scan plans in simple cases.
Add a new flag, consider_parallel, to each RelOptInfo, indicating
whether a plan for that relation could conceivably be run inside of
a parallel worker.  Right now, we're pretty conservative: for example,
it might be possible to defer applying a parallel-restricted qual
in a worker, and later do it in the leader, but right now we just
don't try to parallelize access to that relation.  That's probably
the right decision in most cases, anyway.

Using the new flag, generate parallel sequential scan plans for plain
baserels, meaning that we now have parallel sequential scan in
PostgreSQL.  The logic here is pretty unsophisticated right now: the
costing model probably isn't right in detail, and we can't push joins
beneath Gather nodes, so the number of plans that can actually benefit
from this is pretty limited right now.  Lots more work is needed.
Nevertheless, it seems time to enable this functionality so that all
this code can actually be tested easily by users and developers.

Note that, if you wish to test this functionality, it will be
necessary to set max_parallel_degree to a value greater than the
default of 0.  Once a few more loose ends have been tidied up here, we
might want to consider changing the default value of this GUC, but
I'm leaving it alone for now.

Along the way, fix a bug in cost_gather: the previous coding thought
that a Gather node's transfer overhead should be costed on the basis of
the relation size rather than the number of tuples that actually need
to be passed off to the leader.

Patch by me, reviewed in earlier versions by Amit Kapila.
2015-11-11 09:02:52 -05:00
Robert Haas
f0661c4e8c Make sequential scans parallel-aware.
In addition, this path fills in a number of missing bits and pieces in
the parallel infrastructure.  Paths and plans now have a parallel_aware
flag indicating whether whatever parallel-aware logic they have should
be engaged.  It is believed that we will need this flag for a number of
path/plan types, not just sequential scans, which is why the flag is
generic rather than part of the SeqScan structures specifically.
Also, execParallel.c now gives parallel nodes a chance to initialize
their PlanState nodes from the DSM during parallel worker startup.

Amit Kapila, with a fair amount of adjustment by me.  Review of previous
patch versions by Haribabu Kommi and others.
2015-11-11 08:57:52 -05:00
Robert Haas
3bd909b220 Add a Gather executor node.
A Gather executor node runs any number of copies of a plan in an equal
number of workers and merges all of the results into a single tuple
stream.  It can also run the plan itself, if the workers are
unavailable or haven't started up yet.  It is intended to work with
the Partial Seq Scan node which will be added in future commits.

It could also be used to implement parallel query of a different sort
by itself, without help from Partial Seq Scan, if the single_copy mode
is used.  In that mode, a worker executes the plan, and the parallel
leader does not, merely collecting the worker's results.  So, a Gather
node could be inserted into a plan to split the execution of that plan
across two processes.  Nested Gather nodes aren't currently supported,
but we might want to add support for that in the future.

There's nothing in the planner to actually generate Gather nodes yet,
so it's not quite time to break out the champagne.  But we're getting
close.

Amit Kapila.  Some designs suggestions were provided by me, and I also
reviewed the patch.  Single-copy mode, documentation, and other minor
changes also by me.
2015-09-30 19:23:36 -04:00
Robert Haas
758fcfdc01 Comment update for join pushdown.
Etsuro Fujita
2015-09-29 07:42:30 -04:00
Robert Haas
7aea8e4f2d Determine whether it's safe to attempt a parallel plan for a query.
Commit 924bcf4f16 introduced a framework
for parallel computation in PostgreSQL that makes most but not all
built-in functions safe to execute in parallel mode.  In order to have
parallel query, we'll need to be able to determine whether that query
contains functions (either built-in or user-defined) that cannot be
safely executed in parallel mode.  This requires those functions to be
labeled, so this patch introduces an infrastructure for that.  Some
functions currently labeled as safe may need to be revised depending on
how pending issues related to heavyweight locking under paralllelism
are resolved.

Parallel plans can't be used except for the case where the query will
run to completion.  If portal execution were suspended, the parallel
mode restrictions would need to remain in effect during that time, but
that might make other queries fail.  Therefore, this patch introduces
a framework that enables consideration of parallel plans only when it
is known that the plan will be run to completion.  This probably needs
some refinement; for example, at bind time, we do not know whether a
query run via the extended protocol will be execution to completion or
run with a limited fetch count.  Having the client indicate its
intentions at bind time would constitute a wire protocol break.  Some
contexts in which parallel mode would be safe are not adjusted by this
patch; the default is not to try parallel plans except from call sites
that have been updated to say that such plans are OK.

This commit doesn't introduce any parallel paths or plans; it just
provides a way to determine whether they could potentially be used.
I'm committing it on the theory that the remaining parallel sequential
scan patches will also get committed to this release, hopefully in the
not-too-distant future.

Robert Haas and Amit Kapila.  Reviewed (in earlier versions) by Noah
Misch.
2015-09-16 15:38:47 -04:00
Tom Lane
dea1491ffb Teach predtest.c that "foo" implies "foo IS NOT NULL".
Per complaint from Peter Holzer.  It's useful to cover this special case,
since for a boolean variable "foo", earlier parts of the planner will have
reduced variants like "foo = true" to just "foo", and thus we may fail
to recognize the applicability of a partial index with predicate
"foo IS NOT NULL".

Back-patch to 9.5, but not further; given the lack of previous complaints
this doesn't seem like behavior to change in stable branches.
2015-08-01 14:31:46 -04:00
Tom Lane
95f4e59c32 Remove an unsafe Assert, and explain join_clause_is_movable_into() better.
join_clause_is_movable_into() is approximate, in the sense that it might
sometimes return "false" when actually it would be valid to push the given
join clause down to the specified level.  This is okay ... but there was
an Assert in get_joinrel_parampathinfo() that's only safe if the answers
are always exact.  Comment out the Assert, and add a bunch of commentary
to clarify what's going on.

Per fuzz testing by Andreas Seltenreich.  The added regression test is
a pretty silly query, but it's based on his crasher example.

Back-patch to 9.2 where the faulty logic was introduced.
2015-07-28 13:20:39 -04:00
Andres Freund
159cff58cf Check the relevant index element in ON CONFLICT unique index inference.
ON CONFLICT unique index inference had a thinko that could affect cases
where the user-supplied inference clause required that an attribute
match a particular (user specified) collation and/or opclass.

infer_collation_opclass_match() has to check for opclass and/or
collation matches and that the attribute is in the list of attributes or
expressions known to be in the definition of the index under
consideration. The bug was that these two conditions weren't necessarily
evaluated for the same index attribute.

Author: Peter Geoghegan
Discussion: CAM3SWZR4uug=WvmGk7UgsqHn2MkEzy9YU-+8jKGO4JPhesyeWg@mail.gmail.com
Backpatch: 9.5, where ON CONFLICT was introduced
2015-07-26 18:20:41 +02:00
Andres Freund
e6d8cb77c0 Recognize GROUPING() as a aggregate expression.
Previously GROUPING() was not recognized as a aggregate expression,
erroneously allowing the planner to move it from HAVING to WHERE.

Author: Jeevan Chalke
Reviewed-By: Andrew Gierth
Discussion: CAM2+6=WG9omG5rFOMAYBweJxmpTaapvVp5pCeMrE6BfpCwr4Og@mail.gmail.com
Backpatch: 9.5, where grouping sets were introduced
2015-07-26 16:50:02 +02:00
Tom Lane
dd7a8f66ed Redesign tablesample method API, and do extensive code review.
The original implementation of TABLESAMPLE modeled the tablesample method
API on index access methods, which wasn't a good choice because, without
specialized DDL commands, there's no way to build an extension that can
implement a TSM.  (Raw inserts into system catalogs are not an acceptable
thing to do, because we can't undo them during DROP EXTENSION, nor will
pg_upgrade behave sanely.)  Instead adopt an API more like procedural
language handlers or foreign data wrappers, wherein the only SQL-level
support object needed is a single handler function identified by having
a special return type.  This lets us get rid of the supporting catalog
altogether, so that no custom DDL support is needed for the feature.

Adjust the API so that it can support non-constant tablesample arguments
(the original coding assumed we could evaluate the argument expressions at
ExecInitSampleScan time, which is undesirable even if it weren't outright
unsafe), and discourage sampling methods from looking at invisible tuples.
Make sure that the BERNOULLI and SYSTEM methods are genuinely repeatable
within and across queries, as required by the SQL standard, and deal more
honestly with methods that can't support that requirement.

Make a full code-review pass over the tablesample additions, and fix
assorted bugs, omissions, infelicities, and cosmetic issues (such as
failure to put the added code stanzas in a consistent ordering).
Improve EXPLAIN's output of tablesample plans, too.

Back-patch to 9.5 so that we don't have to support the original API
in production.
2015-07-25 14:39:00 -04:00
Joe Conway
b26e3d660d Make RLS work with UPDATE ... WHERE CURRENT OF
UPDATE ... WHERE CURRENT OF would not work in conjunction with
RLS. Arrange to allow the CURRENT OF expression to be pushed down.
Issue noted by Peter Geoghegan. Patch by Dean Rasheed. Back patch
to 9.5 where RLS was introduced.
2015-07-24 12:55:30 -07:00
Robert Haas
51d0fe5d56 Update get_relation_info comment.
Thomas Munro
2015-06-23 10:09:53 -04:00
Tom Lane
3b0f77601b Fix some questionable edge-case behaviors in add_path() and friends.
add_path_precheck was doing exact comparisons of path costs, but it really
needs to do them fuzzily to be sure it won't reject paths that could
survive add_path's comparisons.  (This can only matter if the initial cost
estimate is very close to the final one, but that turns out to often be
true.)

Also, it should ignore startup cost for this purpose if and only if
compare_path_costs_fuzzily would do so.  The previous coding always ignored
startup cost for parameterized paths, which is wrong as of commit
3f59be836c555fa6; it could result in improper early rejection of paths that
we care about for SEMI/ANTI joins.  It also always considered startup cost
for unparameterized paths, which is just as wrong though the only effect is
to waste planner cycles on paths that can't survive.  Instead, it should
consider startup cost only when directed to by the consider_startup/
consider_param_startup relation flags.

Likewise, compare_path_costs_fuzzily should have symmetrical behavior
for parameterized and unparameterized paths.  In this case, the best
answer seems to be that after establishing that total costs are fuzzily
equal, we should compare startup costs whether or not the consider_xxx
flags are on.  That is what it's always done for unparameterized paths,
so let's make the behavior for parameterized  paths match.

These issues were noted while developing the SEMI/ANTI join costing fix
of commit 3f59be836c, but we chose not to back-patch these fixes,
because they can cause changes in the planner's choices among
nearly-same-cost plans.  (There is in fact one minor change in plan choice
within the core regression tests.)  Destabilizing plan choices in back
branches without very clear improvements is frowned on, so we'll just fix
this in HEAD.
2015-06-03 18:02:39 -04:00
Tom Lane
3f59be836c Fix planner's cost estimation for SEMI/ANTI joins with inner indexscans.
When the inner side of a nestloop SEMI or ANTI join is an indexscan that
uses all the join clauses as indexquals, it can be presumed that both
matched and unmatched outer rows will be processed very quickly: for
matched rows, we'll stop after fetching one row from the indexscan, while
for unmatched rows we'll have an indexscan that finds no matching index
entries, which should also be quick.  The planner already knew about this,
but it was nonetheless charging for at least one full run of the inner
indexscan, as a consequence of concerns about the behavior of materialized
inner scans --- but those concerns don't apply in the fast case.  If the
inner side has low cardinality (many matching rows) this could make an
indexscan plan look far more expensive than it actually is.  To fix,
rearrange the work in initial_cost_nestloop/final_cost_nestloop so that we
don't add the inner scan cost until we've inspected the indexquals, and
then we can add either the full-run cost or just the first tuple's cost as
appropriate.

Experimentation with this fix uncovered another problem: add_path and
friends were coded to disregard cheap startup cost when considering
parameterized paths.  That's usually okay (and desirable, because it thins
the path herd faster); but in this fast case for SEMI/ANTI joins, it could
result in throwing away the desired plain indexscan path in favor of a
bitmap scan path before we ever get to the join costing logic.  In the
many-matching-rows cases of interest here, a bitmap scan will do a lot more
work than required, so this is a problem.  To fix, add a per-relation flag
consider_param_startup that works like the existing consider_startup flag,
but applies to parameterized paths, and set it for relations that are the
inside of a SEMI or ANTI join.

To make this patch reasonably safe to back-patch, care has been taken to
avoid changing the planner's behavior except in the very narrow case of
SEMI/ANTI joins with inner indexscans.  There are places in
compare_path_costs_fuzzily and add_path_precheck that are not terribly
consistent with the new approach, but changing them will affect planner
decisions at the margins in other cases, so we'll leave that for a
HEAD-only fix.

Back-patch to 9.3; before that, the consider_startup flag didn't exist,
meaning that the second aspect of the patch would be too invasive.

Per a complaint from Peter Holzer and analysis by Tomas Vondra.
2015-06-03 11:59:10 -04:00
Bruce Momjian
807b9e0dff pgindent run for 9.5 2015-05-23 21:35:49 -04:00
Andres Freund
0740cbd759 Refactor ON CONFLICT index inference parse tree representation.
Defer lookup of opfamily and input type of a of a user specified opclass
until the optimizer selects among available unique indexes; and store
the opclass in the parse analyzed tree instead.  The primary reason for
doing this is that for rule deparsing it's easier to use the opclass
than the previous representation.

While at it also rename a variable in the inference code to better fit
it's purpose.

This is separate from the actual fixes for deparsing to make review
easier.
2015-05-19 21:21:27 +02:00
Andres Freund
f3d3118532 Support GROUPING SETS, CUBE and ROLLUP.
This SQL standard functionality allows to aggregate data by different
GROUP BY clauses at once. Each grouping set returns rows with columns
grouped by in other sets set to NULL.

This could previously be achieved by doing each grouping as a separate
query, conjoined by UNION ALLs. Besides being considerably more concise,
grouping sets will in many cases be faster, requiring only one scan over
the underlying data.

The current implementation of grouping sets only supports using sorting
for input. Individual sets that share a sort order are computed in one
pass. If there are sets that don't share a sort order, additional sort &
aggregation steps are performed. These additional passes are sourced by
the previous sort step; thus avoiding repeated scans of the source data.

The code is structured in a way that adding support for purely using
hash aggregation or a mix of hashing and sorting is possible. Sorting
was chosen to be supported first, as it is the most generic method of
implementation.

Instead of, as in an earlier versions of the patch, representing the
chain of sort and aggregation steps as full blown planner and executor
nodes, all but the first sort are performed inside the aggregation node
itself. This avoids the need to do some unusual gymnastics to handle
having to return aggregated and non-aggregated tuples from underlying
nodes, as well as having to shut down underlying nodes early to limit
memory usage.  The optimizer still builds Sort/Agg node to describe each
phase, but they're not part of the plan tree, but instead additional
data for the aggregation node. They're a convenient and preexisting way
to describe aggregation and sorting.  The first (and possibly only) sort
step is still performed as a separate execution step. That retains
similarity with existing group by plans, makes rescans fairly simple,
avoids very deep plans (leading to slow explains) and easily allows to
avoid the sorting step if the underlying data is sorted by other means.

A somewhat ugly side of this patch is having to deal with a grammar
ambiguity between the new CUBE keyword and the cube extension/functions
named cube (and rollup). To avoid breaking existing deployments of the
cube extension it has not been renamed, neither has cube been made a
reserved keyword. Instead precedence hacking is used to make GROUP BY
cube(..) refer to the CUBE grouping sets feature, and not the function
cube(). To actually group by a function cube(), unlikely as that might
be, the function name has to be quoted.

Needs a catversion bump because stored rules may change.

Author: Andrew Gierth and Atri Sharma, with contributions from Andres Freund
Reviewed-By: Andres Freund, Noah Misch, Tom Lane, Svenne Krap, Tomas
    Vondra, Erik Rijkers, Marti Raudsepp, Pavel Stehule
Discussion: CAOeZVidmVRe2jU6aMk_5qkxnB7dfmPROzM7Ur8JPW5j8Y5X-Lw@mail.gmail.com
2015-05-16 03:46:31 +02:00
Alvaro Herrera
26df7066cc Move strategy numbers to include/access/stratnum.h
For upcoming BRIN opclasses, it's convenient to have strategy numbers
defined in a single place.  Since there's nothing appropriate, create
it.  The StrategyNumber typedef now lives there, as well as existing
strategy numbers for B-trees (from skey.h) and R-tree-and-friends (from
gist.h).  skey.h is forced to include stratnum.h because of the
StrategyNumber typedef, but gist.h is not; extensions that currently
rely on gist.h for rtree strategy numbers might need to add a new

A few .c files can stop including skey.h and/or gist.h, which is a nice
side benefit.

Per discussion:
https://www.postgresql.org/message-id/20150514232132.GZ2523@alvh.no-ip.org

Authored by Emre Hasegeli and Álvaro.

(It's not clear to me why bootscanner.l has any #include lines at all.)
2015-05-15 17:03:16 -03:00
Simon Riggs
f6d208d6e5 TABLESAMPLE, SQL Standard and extensible
Add a TABLESAMPLE clause to SELECT statements that allows
user to specify random BERNOULLI sampling or block level
SYSTEM sampling. Implementation allows for extensible
sampling functions to be written, using a standard API.
Basic version follows SQLStandard exactly. Usable
concrete use cases for the sampling API follow in later
commits.

Petr Jelinek

Reviewed by Michael Paquier and Simon Riggs
2015-05-15 14:37:10 -04:00
Tom Lane
1a8a4e5cde Code review for foreign/custom join pushdown patch.
Commit e7cb7ee145 included some design
decisions that seem pretty questionable to me, and there was quite a lot
of stuff not to like about the documentation and comments.  Clean up
as follows:

* Consider foreign joins only between foreign tables on the same server,
rather than between any two foreign tables with the same underlying FDW
handler function.  In most if not all cases, the FDW would simply have had
to apply the same-server restriction itself (far more expensively, both for
lack of caching and because it would be repeated for each combination of
input sub-joins), or else risk nasty bugs.  Anyone who's really intent on
doing something outside this restriction can always use the
set_join_pathlist_hook.

* Rename fdw_ps_tlist/custom_ps_tlist to fdw_scan_tlist/custom_scan_tlist
to better reflect what they're for, and allow these custom scan tlists
to be used even for base relations.

* Change make_foreignscan() API to include passing the fdw_scan_tlist
value, since the FDW is required to set that.  Backwards compatibility
doesn't seem like an adequate reason to expect FDWs to set it in some
ad-hoc extra step, and anyway existing FDWs can just pass NIL.

* Change the API of path-generating subroutines of add_paths_to_joinrel,
and in particular that of GetForeignJoinPaths and set_join_pathlist_hook,
so that various less-used parameters are passed in a struct rather than
as separate parameter-list entries.  The objective here is to reduce the
probability that future additions to those parameter lists will result in
source-level API breaks for users of these hooks.  It's possible that this
is even a small win for the core code, since most CPU architectures can't
pass more than half a dozen parameters efficiently anyway.  I kept root,
joinrel, outerrel, innerrel, and jointype as separate parameters to reduce
code churn in joinpath.c --- in particular, putting jointype into the
struct would have been problematic because of the subroutines' habit of
changing their local copies of that variable.

* Avoid ad-hocery in ExecAssignScanProjectionInfo.  It was probably all
right for it to know about IndexOnlyScan, but if the list is to grow
we should refactor the knowledge out to the callers.

* Restore nodeForeignscan.c's previous use of the relcache to avoid
extra GetFdwRoutine lookups for base-relation scans.

* Lots of cleanup of documentation and missed comments.  Re-order some
code additions into more logical places.
2015-05-10 14:36:36 -04:00
Andres Freund
bab64ef9e8 Fix two problems in infer_arbiter_indexes().
The first is a pretty simple bug where a relcache entry is used after
the relation is closed. In this particular situation it does not appear
to have bad consequences unless compiled with RELCACHE_FORCE_RELEASE.

The second is that infer_arbiter_indexes() skipped indexes that aren't
yet valid according to indcheckxmin. That's not required here, because
uniqueness checks don't care about visibility according to an older
snapshot.  While thats not really a bug, it makes things undesirably
non-deterministic.  There is some hope that this explains a test failure
on buildfarm member jaguarundi.

Discussion: 9096.1431102730@sss.pgh.pa.us
2015-05-08 22:28:23 +02:00
Andres Freund
168d5805e4 Add support for INSERT ... ON CONFLICT DO NOTHING/UPDATE.
The newly added ON CONFLICT clause allows to specify an alternative to
raising a unique or exclusion constraint violation error when inserting.
ON CONFLICT refers to constraints that can either be specified using a
inference clause (by specifying the columns of a unique constraint) or
by naming a unique or exclusion constraint.  DO NOTHING avoids the
constraint violation, without touching the pre-existing row.  DO UPDATE
SET ... [WHERE ...] updates the pre-existing tuple, and has access to
both the tuple proposed for insertion and the existing tuple; the
optional WHERE clause can be used to prevent an update from being
executed.  The UPDATE SET and WHERE clauses have access to the tuple
proposed for insertion using the "magic" EXCLUDED alias, and to the
pre-existing tuple using the table name or its alias.

This feature is often referred to as upsert.

This is implemented using a new infrastructure called "speculative
insertion". It is an optimistic variant of regular insertion that first
does a pre-check for existing tuples and then attempts an insert.  If a
violating tuple was inserted concurrently, the speculatively inserted
tuple is deleted and a new attempt is made.  If the pre-check finds a
matching tuple the alternative DO NOTHING or DO UPDATE action is taken.
If the insertion succeeds without detecting a conflict, the tuple is
deemed inserted.

To handle the possible ambiguity between the excluded alias and a table
named excluded, and for convenience with long relation names, INSERT
INTO now can alias its target table.

Bumps catversion as stored rules change.

Author: Peter Geoghegan, with significant contributions from Heikki
    Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes.
Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs,
    Dean Rasheed, Stephen Frost and many others.
2015-05-08 05:43:10 +02:00
Robert Haas
e7cb7ee145 Allow FDWs and custom scan providers to replace joins with scans.
Foreign data wrappers can use this capability for so-called "join
pushdown"; that is, instead of executing two separate foreign scans
and then joining the results locally, they can generate a path which
performs the join on the remote server and then is scanned locally.
This commit does not extend postgres_fdw to take advantage of this
capability; it just provides the infrastructure.

Custom scan providers can use this in a similar way.  Previously,
it was only possible for a custom scan provider to scan a single
relation.  Now, it can scan an entire join tree, provided of course
that it knows how to produce the same results that the join would
have produced if executed normally.

KaiGai Kohei, reviewed by Shigeru Hanada, Ashutosh Bapat, and me.
2015-05-01 08:50:35 -04:00
Stephen Frost
dcbf5948e1 Improve qual pushdown for RLS and SB views
The original security barrier view implementation, on which RLS is
built, prevented all non-leakproof functions from being pushed down to
below the view, even when the function was not receiving any data from
the view.  This optimization improves on that situation by, instead of
checking strictly for non-leakproof functions, it checks for Vars being
passed to non-leakproof functions and allows functions which do not
accept arguments or whose arguments are not from the current query level
(eg: constants can be particularly useful) to be pushed down.

As discussed, this does mean that a function which is pushed down might
gain some idea that there are rows meeting a certain criteria based on
the number of times the function is called, but this isn't a
particularly new issue and the documentation in rules.sgml already
addressed similar covert-channel risks.  That documentation is updated
to reflect that non-leakproof functions may be pushed down now, if
they meet the above-described criteria.

Author: Dean Rasheed, with a bit of rework to make things clearer,
along with comment and documentation updates from me.
2015-04-27 12:29:42 -04:00
Heikki Linnakangas
d04c8ed904 Add support for index-only scans in GiST.
This adds a new GiST opclass method, 'fetch', which is used to reconstruct
the original Datum from the value stored in the index. Also, the 'canreturn'
index AM interface function gains a new 'attno' argument. That makes it
possible to use index-only scans on a multi-column index where some of the
opclasses support index-only scans but some do not.

This patch adds support in the box and point opclasses. Other opclasses
can added later as follow-on patches (btree_gist would be particularly
interesting).

Anastasia Lubennikova, with additional fixes and modifications by me.
2015-03-26 19:12:00 +02:00
Tom Lane
b55722692b Improve planner's cost estimation in the presence of semijoins.
If we have a semijoin, say
	SELECT * FROM x WHERE x1 IN (SELECT y1 FROM y)
and we're estimating the cost of a parameterized indexscan on x, the number
of repetitions of the indexscan should not be taken as the size of y; it'll
really only be the number of distinct values of y1, because the only valid
plan with y on the outside of a nestloop would require y to be unique-ified
before joining it to x.  Most of the time this doesn't make that much
difference, but sometimes it can lead to drastically underestimating the
cost of the indexscan and hence choosing a bad plan, as pointed out by
David Kubečka.

Fixing this is a bit difficult because parameterized indexscans are costed
out quite early in the planning process, before we have the information
that would be needed to call estimate_num_groups() and thereby estimate the
number of distinct values of the join column(s).  However we can move the
code that extracts a semijoin RHS's unique-ification columns, so that it's
done in initsplan.c rather than on-the-fly in create_unique_path().  That
shouldn't make any difference speed-wise and it's really a bit cleaner too.

The other bit of information we need is the size of the semijoin RHS,
which is easy if it's a single relation (we make those estimates before
considering indexscan costs) but problematic if it's a join relation.
The solution adopted here is just to use the product of the sizes of the
join component rels.  That will generally be an overestimate, but since
estimate_num_groups() only uses this input as a clamp, an overestimate
shouldn't hurt us too badly.  In any case we don't allow this new logic
to produce a value larger than we would have chosen before, so that at
worst an overestimate leaves us no wiser than we were before.
2015-03-11 21:21:00 -04:00
Tom Lane
c063da1769 Add parse location fields to NullTest and BooleanTest structs.
We did not need a location tag on NullTest or BooleanTest before, because
no error messages referred directly to their locations.  That's planned
to change though, so add these fields in a separate housekeeping commit.

Catversion bump because stored rules may change.
2015-02-22 14:40:27 -05:00
Tom Lane
e1a11d9311 Use FLEXIBLE_ARRAY_MEMBER for HeapTupleHeaderData.t_bits[].
This requires changing quite a few places that were depending on
sizeof(HeapTupleHeaderData), but it seems for the best.

Michael Paquier, some adjustments by me
2015-02-21 15:13:06 -05:00
Tom Lane
75df6dc083 Fix ancient thinko in default table rowcount estimation.
The code used sizeof(ItemPointerData) where sizeof(ItemIdData) is correct,
since we're trying to account for a tuple's line pointer.  Spotted by
Tomonari Katsumata (bug #12584).

Although this mistake is of very long standing, no back-patch, since it's
a relatively harmless error and changing it would risk changing default
planner behavior in stable branches.  (I don't see any change in regression
test outputs here, but the buildfarm may think differently.)
2015-01-18 17:04:11 -05:00
Bruce Momjian
4baaf863ec Update copyright for 2015
Backpatch certain files through 9.0
2015-01-06 11:43:47 -05:00
Tom Lane
4a14f13a0a Improve hash_create's API for selecting simple-binary-key hash functions.
Previously, if you wanted anything besides C-string hash keys, you had to
specify a custom hashing function to hash_create().  Nearly all such
callers were specifying tag_hash or oid_hash; which is tedious, and rather
error-prone, since a caller could easily miss the opportunity to optimize
by using hash_uint32 when appropriate.  Replace this with a design whereby
callers using simple binary-data keys just specify HASH_BLOBS and don't
need to mess with specific support functions.  hash_create() itself will
take care of optimizing when the key size is four bytes.

This nets out saving a few hundred bytes of code space, and offers
a measurable performance improvement in tidbitmap.c (which was not
exploiting the opportunity to use hash_uint32 for its 4-byte keys).
There might be some wins elsewhere too, I didn't analyze closely.

In future we could look into offering a similar optimized hashing function
for 8-byte keys.  Under this design that could be done in a centralized
and machine-independent fashion, whereas getting it right for keys of
platform-dependent sizes would've been notationally painful before.

For the moment, the old way still works fine, so as not to break source
code compatibility for loadable modules.  Eventually we might want to
remove tag_hash and friends from the exported API altogether, since there's
no real need for them to be explicitly referenced from outside dynahash.c.

Teodor Sigaev and Tom Lane
2014-12-18 13:36:36 -05:00
Tom Lane
d25367ec4f Add bms_get_singleton_member(), and use it where appropriate.
This patch adds a function that replaces a bms_membership() test followed
by a bms_singleton_member() call, performing both the test and the
extraction of a singleton set's member in one scan of the bitmapset.
The performance advantage over the old way is probably minimal in current
usage, but it seems worthwhile on notational grounds anyway.

David Rowley
2014-11-28 14:16:24 -05:00
Tom Lane
f4e031c662 Add bms_next_member(), and use it where appropriate.
This patch adds a way of iterating through the members of a bitmapset
nondestructively, unlike the old way with bms_first_member().  While
bms_next_member() is very slightly slower than bms_first_member()
(at least for typical-size bitmapsets), eliminating the need to palloc
and pfree a temporary copy of the target bitmapset is a significant win.
So this method should be preferred in all cases where a temporary copy
would be necessary.

Tom Lane, with suggestions from Dean Rasheed and David Rowley
2014-11-28 13:37:25 -05:00
Tom Lane
c2ea2285e9 Simplify API for initially hooking custom-path providers into the planner.
Instead of register_custom_path_provider and a CreateCustomScanPath
callback, let's just provide a standard function hook in set_rel_pathlist.
This is more flexible than what was previously committed, is more like the
usual conventions for planner hooks, and requires less support code in the
core.  We had discussed this design (including centralizing the
set_cheapest() calls) back in March or so, so I'm not sure why it wasn't
done like this already.
2014-11-21 14:05:46 -05:00
Tom Lane
a34fa8ee7c Initial code review for CustomScan patch.
Get rid of the pernicious entanglement between planner and executor headers
introduced by commit 0b03e5951b.

Also, rearrange the CustomFoo struct/typedef definitions so that all the
typedef names are seen as used by the compiler.  Without this pgindent
will mess things up a bit, which is not so important perhaps, but it also
removes a bizarre discrepancy between the declaration arrangement used for
CustomExecMethods and that used for CustomScanMethods and
CustomPathMethods.

Clean up the commentary around ExecSupportsMarkRestore to reflect the
rather large change in its API.

Const-ify register_custom_path_provider's argument.  This necessitates
casting away const in the function, but that seems better than forcing
callers of the function to do so (or else not const-ify their method
pointer structs, which was sort of the whole point).

De-export fix_expr_common.  I don't like the exporting of fix_scan_expr
or replace_nestloop_params either, but this one surely has got little
excuse.
2014-11-20 18:36:07 -05:00
Robert Haas
0b03e5951b Introduce custom path and scan providers.
This allows extension modules to define their own methods for
scanning a relation, and get the core code to use them.  It's
unclear as yet how much use this capability will find, but we
won't find out if we never commit it.

KaiGai Kohei, reviewed at various times and in various levels
of detail by Shigeru Hanada, Tom Lane, Andres Freund, Álvaro
Herrera, and myself.
2014-11-07 17:34:36 -05:00
Tom Lane
f330a6d140 Fix mishandling of FieldSelect-on-whole-row-Var in nested lateral queries.
If an inline-able SQL function taking a composite argument is used in a
LATERAL subselect, and the composite argument is a lateral reference,
the planner could fail with "variable not found in subplan target list",
as seen in bug #11703 from Karl Bartel.  (The outer function call used in
the bug report and in the committed regression test is not really necessary
to provoke the bug --- you can get it if you manually expand the outer
function into "LATERAL (SELECT inner_function(outer_relation))", too.)

The cause of this is that we generate the reltargetlist for the referenced
relation before doing eval_const_expressions() on the lateral sub-select's
expressions (cf find_lateral_references()), so what's scheduled to be
emitted by the referenced relation is a whole-row Var, not the simplified
single-column Var produced by optimizing the function's FieldSelect on the
whole-row Var.  Then setrefs.c fails to match up that lateral reference to
what's available from the outer scan.

Preserving the FieldSelect optimization in such cases would require either
major planner restructuring (to recursively do expression simplification
on sub-selects much earlier) or some amazingly ugly kluge to change the
reltargetlist of a possibly-already-planned relation.  It seems better
just to skip the optimization when the Var is from an upper query level;
the case is not so common that it's likely anyone will notice a few
wasted cycles.

AFAICT this problem only occurs for uplevel LATERAL references, so
back-patch to 9.3 where LATERAL was added.
2014-10-20 12:23:42 -04:00
Tom Lane
5a6c168c78 Fix some more problems with nested append relations.
As of commit a87c72915 (which later got backpatched as far as 9.1),
we're explicitly supporting the notion that append relations can be
nested; this can occur when UNION ALL constructs are nested, or when
a UNION ALL contains a table with inheritance children.

Bug #11457 from Nelson Page, as well as an earlier report from Elvis
Pranskevichus, showed that there were still nasty bugs associated with such
cases: in particular the EquivalenceClass mechanism could try to generate
"join" clauses connecting an appendrel child to some grandparent appendrel,
which would result in assertion failures or bogus plans.

Upon investigation I concluded that all current callers of
find_childrel_appendrelinfo() need to be fixed to explicitly consider
multiple levels of parent appendrels.  The most complex fix was in
processing of "broken" EquivalenceClasses, which are ECs for which we have
been unable to generate all the derived equality clauses we would like to
because of missing cross-type equality operators in the underlying btree
operator family.  That code path is more or less entirely untested by
the regression tests to date, because no standard opfamilies have such
holes in them.  So I wrote a new regression test script to try to exercise
it a bit, which turned out to be quite a worthwhile activity as it exposed
existing bugs in all supported branches.

The present patch is essentially the same as far back as 9.2, which is
where parameterized paths were introduced.  In 9.0 and 9.1, we only need
to back-patch a small fragment of commit 5b7b5518d, which fixes failure to
propagate out the original WHERE clauses when a broken EC contains constant
members.  (The regression test case results show that these older branches
are noticeably stupider than 9.2+ in terms of the quality of the plans
generated; but we don't really care about plan quality in such cases,
only that the plan not be outright wrong.  A more invasive fix in the
older branches would not be a good idea anyway from a plan-stability
standpoint.)
2014-10-01 19:31:12 -04:00
Tom Lane
1b4cc493d2 Preserve AND/OR flatness while extracting restriction OR clauses.
The code I added in commit f343a880d5 was
careless about preserving AND/OR flatness: it could create a structure with
an OR node directly underneath another one.  That breaks an assumption
that's fairly important for planning efficiency, not to mention triggering
various Asserts (as reported by Benjamin Smith).  Add a trifle more logic
to handle the case properly.
2014-09-09 18:35:31 -04:00